libsodium: Needed for Dnscrypto-proxy Release 1.3.0
[tomato.git] / release / src / router / libsodium / src / libsodium / crypto_sign / edwards25519sha512batch / ref / fe25519_edwards25519sha512batch.c
blob4a490446ef6b20ef260446e62d2a2b0dd6d90d04
1 #include "fe25519.h"
3 #define WINDOWSIZE 4 /* Should be 1,2, or 4 */
4 #define WINDOWMASK ((1<<WINDOWSIZE)-1)
6 static void reduce_add_sub(fe25519 *r)
8 crypto_uint32 t;
9 int i,rep;
11 for(rep=0;rep<4;rep++)
13 t = r->v[31] >> 7;
14 r->v[31] &= 127;
15 t *= 19;
16 r->v[0] += t;
17 for(i=0;i<31;i++)
19 t = r->v[i] >> 8;
20 r->v[i+1] += t;
21 r->v[i] &= 255;
26 static void reduce_mul(fe25519 *r)
28 crypto_uint32 t;
29 int i,rep;
31 for(rep=0;rep<2;rep++)
33 t = r->v[31] >> 7;
34 r->v[31] &= 127;
35 t *= 19;
36 r->v[0] += t;
37 for(i=0;i<31;i++)
39 t = r->v[i] >> 8;
40 r->v[i+1] += t;
41 r->v[i] &= 255;
46 /* reduction modulo 2^255-19 */
47 static void freeze(fe25519 *r)
49 int i;
50 unsigned int m = (r->v[31] == 127);
51 for(i=30;i>1;i--)
52 m *= (r->v[i] == 255);
53 m *= (r->v[0] >= 237);
55 r->v[31] -= m*127;
56 for(i=30;i>0;i--)
57 r->v[i] -= m*255;
58 r->v[0] -= m*237;
61 /*freeze input before calling isone*/
62 static int isone(const fe25519 *x)
64 int i;
65 int r = (x->v[0] == 1);
66 for(i=1;i<32;i++)
67 r *= (x->v[i] == 0);
68 return r;
71 /*freeze input before calling iszero*/
72 static int iszero(const fe25519 *x)
74 int i;
75 int r = (x->v[0] == 0);
76 for(i=1;i<32;i++)
77 r *= (x->v[i] == 0);
78 return r;
82 static int issquare(const fe25519 *x)
84 unsigned char e[32] = {0xf6,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x3f}; /* (p-1)/2 */
85 fe25519 t;
87 fe25519_pow(&t,x,e);
88 freeze(&t);
89 return isone(&t) || iszero(&t);
92 void fe25519_unpack(fe25519 *r, const unsigned char x[32])
94 int i;
95 for(i=0;i<32;i++) r->v[i] = x[i];
96 r->v[31] &= 127;
99 /* Assumes input x being reduced mod 2^255 */
100 void fe25519_pack(unsigned char r[32], const fe25519 *x)
102 int i;
103 for(i=0;i<32;i++)
104 r[i] = x->v[i];
106 /* freeze byte array */
107 unsigned int m = (r[31] == 127); /* XXX: some compilers might use branches; fix */
108 for(i=30;i>1;i--)
109 m *= (r[i] == 255);
110 m *= (r[0] >= 237);
111 r[31] -= m*127;
112 for(i=30;i>0;i--)
113 r[i] -= m*255;
114 r[0] -= m*237;
117 void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b)
119 unsigned char nb = 1-b;
120 int i;
121 for(i=0;i<32;i++) r->v[i] = nb * r->v[i] + b * x->v[i];
124 unsigned char fe25519_getparity(const fe25519 *x)
126 fe25519 t;
127 int i;
128 for(i=0;i<32;i++) t.v[i] = x->v[i];
129 freeze(&t);
130 return t.v[0] & 1;
133 void fe25519_setone(fe25519 *r)
135 int i;
136 r->v[0] = 1;
137 for(i=1;i<32;i++) r->v[i]=0;
140 void fe25519_setzero(fe25519 *r)
142 int i;
143 for(i=0;i<32;i++) r->v[i]=0;
146 void fe25519_neg(fe25519 *r, const fe25519 *x)
148 fe25519 t;
149 int i;
150 for(i=0;i<32;i++) t.v[i]=x->v[i];
151 fe25519_setzero(r);
152 fe25519_sub(r, r, &t);
155 void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y)
157 int i;
158 for(i=0;i<32;i++) r->v[i] = x->v[i] + y->v[i];
159 reduce_add_sub(r);
162 void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y)
164 int i;
165 crypto_uint32 t[32];
166 t[0] = x->v[0] + 0x1da;
167 t[31] = x->v[31] + 0xfe;
168 for(i=1;i<31;i++) t[i] = x->v[i] + 0x1fe;
169 for(i=0;i<32;i++) r->v[i] = t[i] - y->v[i];
170 reduce_add_sub(r);
173 void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y)
175 int i,j;
176 crypto_uint32 t[63];
177 for(i=0;i<63;i++)t[i] = 0;
179 for(i=0;i<32;i++)
180 for(j=0;j<32;j++)
181 t[i+j] += x->v[i] * y->v[j];
183 for(i=32;i<63;i++)
184 r->v[i-32] = t[i-32] + 38*t[i];
185 r->v[31] = t[31]; /* result now in r[0]...r[31] */
187 reduce_mul(r);
190 void fe25519_square(fe25519 *r, const fe25519 *x)
192 fe25519_mul(r, x, x);
195 /*XXX: Make constant time! */
196 void fe25519_pow(fe25519 *r, const fe25519 *x, const unsigned char *e)
199 fe25519 g;
200 fe25519_setone(&g);
201 int i;
202 unsigned char j;
203 for(i=32;i>0;i--)
205 for(j=128;j>0;j>>=1)
207 fe25519_square(&g,&g);
208 if(e[i-1] & j)
209 fe25519_mul(&g,&g,x);
212 for(i=0;i<32;i++) r->v[i] = g.v[i];
214 fe25519 g;
215 fe25519_setone(&g);
216 int i,j,k;
217 fe25519 pre[(1 << WINDOWSIZE)];
218 fe25519 t;
219 unsigned char w;
221 // Precomputation
222 fe25519_setone(pre);
223 pre[1] = *x;
224 for(i=2;i<(1<<WINDOWSIZE);i+=2)
226 fe25519_square(pre+i, pre+i/2);
227 fe25519_mul(pre+i+1, pre+i, pre+1);
230 // Fixed-window scalar multiplication
231 for(i=32;i>0;i--)
233 for(j=8-WINDOWSIZE;j>=0;j-=WINDOWSIZE)
235 for(k=0;k<WINDOWSIZE;k++)
236 fe25519_square(&g, &g);
237 // Cache-timing resistant loading of precomputed value:
238 w = (e[i-1]>>j) & WINDOWMASK;
239 t = pre[0];
240 for(k=1;k<(1<<WINDOWSIZE);k++)
241 fe25519_cmov(&t, &pre[k], k==w);
242 fe25519_mul(&g, &g, &t);
245 *r = g;
248 /* Return 0 on success, 1 otherwise */
249 int fe25519_sqrt_vartime(fe25519 *r, const fe25519 *x, unsigned char parity)
251 /* See HAC, Alg. 3.37 */
252 if (!issquare(x)) return -1;
253 unsigned char e[32] = {0xfb,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x1f}; /* (p-1)/4 */
254 unsigned char e2[32] = {0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x0f}; /* (p+3)/8 */
255 unsigned char e3[32] = {0xfd,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x0f}; /* (p-5)/8 */
256 fe25519 p = {{0}};
257 fe25519 d;
258 int i;
259 fe25519_pow(&d,x,e);
260 freeze(&d);
261 if(isone(&d))
262 fe25519_pow(r,x,e2);
263 else
265 for(i=0;i<32;i++)
266 d.v[i] = 4*x->v[i];
267 fe25519_pow(&d,&d,e3);
268 for(i=0;i<32;i++)
269 r->v[i] = 2*x->v[i];
270 fe25519_mul(r,r,&d);
272 freeze(r);
273 if((r->v[0] & 1) != (parity & 1))
275 fe25519_sub(r,&p,r);
277 return 0;
280 void fe25519_invert(fe25519 *r, const fe25519 *x)
282 fe25519 z2;
283 fe25519 z9;
284 fe25519 z11;
285 fe25519 z2_5_0;
286 fe25519 z2_10_0;
287 fe25519 z2_20_0;
288 fe25519 z2_50_0;
289 fe25519 z2_100_0;
290 fe25519 t0;
291 fe25519 t1;
292 int i;
294 /* 2 */ fe25519_square(&z2,x);
295 /* 4 */ fe25519_square(&t1,&z2);
296 /* 8 */ fe25519_square(&t0,&t1);
297 /* 9 */ fe25519_mul(&z9,&t0,x);
298 /* 11 */ fe25519_mul(&z11,&z9,&z2);
299 /* 22 */ fe25519_square(&t0,&z11);
300 /* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t0,&z9);
302 /* 2^6 - 2^1 */ fe25519_square(&t0,&z2_5_0);
303 /* 2^7 - 2^2 */ fe25519_square(&t1,&t0);
304 /* 2^8 - 2^3 */ fe25519_square(&t0,&t1);
305 /* 2^9 - 2^4 */ fe25519_square(&t1,&t0);
306 /* 2^10 - 2^5 */ fe25519_square(&t0,&t1);
307 /* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t0,&z2_5_0);
309 /* 2^11 - 2^1 */ fe25519_square(&t0,&z2_10_0);
310 /* 2^12 - 2^2 */ fe25519_square(&t1,&t0);
311 /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
312 /* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t1,&z2_10_0);
314 /* 2^21 - 2^1 */ fe25519_square(&t0,&z2_20_0);
315 /* 2^22 - 2^2 */ fe25519_square(&t1,&t0);
316 /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
317 /* 2^40 - 2^0 */ fe25519_mul(&t0,&t1,&z2_20_0);
319 /* 2^41 - 2^1 */ fe25519_square(&t1,&t0);
320 /* 2^42 - 2^2 */ fe25519_square(&t0,&t1);
321 /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
322 /* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t0,&z2_10_0);
324 /* 2^51 - 2^1 */ fe25519_square(&t0,&z2_50_0);
325 /* 2^52 - 2^2 */ fe25519_square(&t1,&t0);
326 /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
327 /* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t1,&z2_50_0);
329 /* 2^101 - 2^1 */ fe25519_square(&t1,&z2_100_0);
330 /* 2^102 - 2^2 */ fe25519_square(&t0,&t1);
331 /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
332 /* 2^200 - 2^0 */ fe25519_mul(&t1,&t0,&z2_100_0);
334 /* 2^201 - 2^1 */ fe25519_square(&t0,&t1);
335 /* 2^202 - 2^2 */ fe25519_square(&t1,&t0);
336 /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
337 /* 2^250 - 2^0 */ fe25519_mul(&t0,&t1,&z2_50_0);
339 /* 2^251 - 2^1 */ fe25519_square(&t1,&t0);
340 /* 2^252 - 2^2 */ fe25519_square(&t0,&t1);
341 /* 2^253 - 2^3 */ fe25519_square(&t1,&t0);
342 /* 2^254 - 2^4 */ fe25519_square(&t0,&t1);
343 /* 2^255 - 2^5 */ fe25519_square(&t1,&t0);
344 /* 2^255 - 21 */ fe25519_mul(r,&t1,&z11);