libsodium: Needed for Dnscrypto-proxy Release 1.3.0
[tomato.git] / release / src / router / ffmpeg / libavcodec / aacsbr.c
blob0de81a5025da392900fbb81b4a6a1fa568888b74
1 /*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
29 #include "aac.h"
30 #include "sbr.h"
31 #include "aacsbr.h"
32 #include "aacsbrdata.h"
33 #include "fft.h"
35 #include <stdint.h>
36 #include <float.h>
38 #define ENVELOPE_ADJUSTMENT_OFFSET 2
39 #define NOISE_FLOOR_OFFSET 6.0f
41 /**
42 * SBR VLC tables
44 enum {
45 T_HUFFMAN_ENV_1_5DB,
46 F_HUFFMAN_ENV_1_5DB,
47 T_HUFFMAN_ENV_BAL_1_5DB,
48 F_HUFFMAN_ENV_BAL_1_5DB,
49 T_HUFFMAN_ENV_3_0DB,
50 F_HUFFMAN_ENV_3_0DB,
51 T_HUFFMAN_ENV_BAL_3_0DB,
52 F_HUFFMAN_ENV_BAL_3_0DB,
53 T_HUFFMAN_NOISE_3_0DB,
54 T_HUFFMAN_NOISE_BAL_3_0DB,
57 /**
58 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
60 enum {
61 FIXFIX,
62 FIXVAR,
63 VARFIX,
64 VARVAR,
67 enum {
68 EXTENSION_ID_PS = 2,
71 static VLC vlc_sbr[10];
72 static const int8_t vlc_sbr_lav[10] =
73 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
74 static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
75 static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
76 static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
77 static const DECLARE_ALIGNED(16, float, zero64)[64];
79 #define SBR_INIT_VLC_STATIC(num, size) \
80 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
81 sbr_tmp[num].sbr_bits , 1, 1, \
82 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
83 size)
85 #define SBR_VLC_ROW(name) \
86 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
88 av_cold void ff_aac_sbr_init(void)
90 int n, k;
91 static const struct {
92 const void *sbr_codes, *sbr_bits;
93 const unsigned int table_size, elem_size;
94 } sbr_tmp[] = {
95 SBR_VLC_ROW(t_huffman_env_1_5dB),
96 SBR_VLC_ROW(f_huffman_env_1_5dB),
97 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
98 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
99 SBR_VLC_ROW(t_huffman_env_3_0dB),
100 SBR_VLC_ROW(f_huffman_env_3_0dB),
101 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
102 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
103 SBR_VLC_ROW(t_huffman_noise_3_0dB),
104 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
107 // SBR VLC table initialization
108 SBR_INIT_VLC_STATIC(0, 1098);
109 SBR_INIT_VLC_STATIC(1, 1092);
110 SBR_INIT_VLC_STATIC(2, 768);
111 SBR_INIT_VLC_STATIC(3, 1026);
112 SBR_INIT_VLC_STATIC(4, 1058);
113 SBR_INIT_VLC_STATIC(5, 1052);
114 SBR_INIT_VLC_STATIC(6, 544);
115 SBR_INIT_VLC_STATIC(7, 544);
116 SBR_INIT_VLC_STATIC(8, 592);
117 SBR_INIT_VLC_STATIC(9, 512);
119 for (n = 0; n < 64; n++) {
120 float pre = M_PI * n / 64;
121 analysis_cos_pre[n] = cosf(pre);
122 analysis_sin_pre[n] = sinf(pre);
124 for (k = 0; k < 32; k++) {
125 float post = M_PI * (k + 0.5) / 128;
126 analysis_cossin_post[k][0] = 4.0 * cosf(post);
127 analysis_cossin_post[k][1] = -4.0 * sinf(post);
129 for (n = 1; n < 320; n++)
130 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
131 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
132 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
134 for (n = 0; n < 320; n++)
135 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
138 av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
140 sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
141 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
142 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
143 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
144 ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
145 ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
148 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
150 ff_mdct_end(&sbr->mdct);
151 ff_rdft_end(&sbr->rdft);
154 static int qsort_comparison_function_int16(const void *a, const void *b)
156 return *(const int16_t *)a - *(const int16_t *)b;
159 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
161 int i;
162 for (i = 0; i <= last_el; i++)
163 if (table[i] == needle)
164 return 1;
165 return 0;
168 /// Limiter Frequency Band Table (14496-3 sp04 p198)
169 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
171 int k;
172 if (sbr->bs_limiter_bands > 0) {
173 static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
174 1.18509277094158210129f, //2^(0.49/2)
175 1.11987160404675912501f }; //2^(0.49/3)
176 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
177 int16_t patch_borders[7];
178 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
180 patch_borders[0] = sbr->kx[1];
181 for (k = 1; k <= sbr->num_patches; k++)
182 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
184 memcpy(sbr->f_tablelim, sbr->f_tablelow,
185 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
186 if (sbr->num_patches > 1)
187 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
188 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
190 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
191 sizeof(sbr->f_tablelim[0]),
192 qsort_comparison_function_int16);
194 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
195 while (out < sbr->f_tablelim + sbr->n_lim) {
196 if (*in >= *out * lim_bands_per_octave_warped) {
197 *++out = *in++;
198 } else if (*in == *out ||
199 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
200 in++;
201 sbr->n_lim--;
202 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
203 *out = *in++;
204 sbr->n_lim--;
205 } else {
206 *++out = *in++;
209 } else {
210 sbr->f_tablelim[0] = sbr->f_tablelow[0];
211 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
212 sbr->n_lim = 1;
216 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
218 unsigned int cnt = get_bits_count(gb);
219 uint8_t bs_header_extra_1;
220 uint8_t bs_header_extra_2;
221 int old_bs_limiter_bands = sbr->bs_limiter_bands;
222 SpectrumParameters old_spectrum_params;
224 sbr->start = 1;
226 // Save last spectrum parameters variables to compare to new ones
227 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
229 sbr->bs_amp_res_header = get_bits1(gb);
230 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
231 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
232 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
233 skip_bits(gb, 2); // bs_reserved
235 bs_header_extra_1 = get_bits1(gb);
236 bs_header_extra_2 = get_bits1(gb);
238 if (bs_header_extra_1) {
239 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
240 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
241 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
242 } else {
243 sbr->spectrum_params.bs_freq_scale = 2;
244 sbr->spectrum_params.bs_alter_scale = 1;
245 sbr->spectrum_params.bs_noise_bands = 2;
248 // Check if spectrum parameters changed
249 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
250 sbr->reset = 1;
252 if (bs_header_extra_2) {
253 sbr->bs_limiter_bands = get_bits(gb, 2);
254 sbr->bs_limiter_gains = get_bits(gb, 2);
255 sbr->bs_interpol_freq = get_bits1(gb);
256 sbr->bs_smoothing_mode = get_bits1(gb);
257 } else {
258 sbr->bs_limiter_bands = 2;
259 sbr->bs_limiter_gains = 2;
260 sbr->bs_interpol_freq = 1;
261 sbr->bs_smoothing_mode = 1;
264 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
265 sbr_make_f_tablelim(sbr);
267 return get_bits_count(gb) - cnt;
270 static int array_min_int16(const int16_t *array, int nel)
272 int i, min = array[0];
273 for (i = 1; i < nel; i++)
274 min = FFMIN(array[i], min);
275 return min;
278 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
280 int k, previous, present;
281 float base, prod;
283 base = powf((float)stop / start, 1.0f / num_bands);
284 prod = start;
285 previous = start;
287 for (k = 0; k < num_bands-1; k++) {
288 prod *= base;
289 present = lrintf(prod);
290 bands[k] = present - previous;
291 previous = present;
293 bands[num_bands-1] = stop - previous;
296 static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
298 // Requirements (14496-3 sp04 p205)
299 if (n_master <= 0) {
300 av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
301 return -1;
303 if (bs_xover_band >= n_master) {
304 av_log(avccontext, AV_LOG_ERROR,
305 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
306 bs_xover_band);
307 return -1;
309 return 0;
312 /// Master Frequency Band Table (14496-3 sp04 p194)
313 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
314 SpectrumParameters *spectrum)
316 unsigned int temp, max_qmf_subbands;
317 unsigned int start_min, stop_min;
318 int k;
319 const int8_t *sbr_offset_ptr;
320 int16_t stop_dk[13];
322 if (sbr->sample_rate < 32000) {
323 temp = 3000;
324 } else if (sbr->sample_rate < 64000) {
325 temp = 4000;
326 } else
327 temp = 5000;
329 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
330 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
332 switch (sbr->sample_rate) {
333 case 16000:
334 sbr_offset_ptr = sbr_offset[0];
335 break;
336 case 22050:
337 sbr_offset_ptr = sbr_offset[1];
338 break;
339 case 24000:
340 sbr_offset_ptr = sbr_offset[2];
341 break;
342 case 32000:
343 sbr_offset_ptr = sbr_offset[3];
344 break;
345 case 44100: case 48000: case 64000:
346 sbr_offset_ptr = sbr_offset[4];
347 break;
348 case 88200: case 96000: case 128000: case 176400: case 192000:
349 sbr_offset_ptr = sbr_offset[5];
350 break;
351 default:
352 av_log(ac->avccontext, AV_LOG_ERROR,
353 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
354 return -1;
357 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
359 if (spectrum->bs_stop_freq < 14) {
360 sbr->k[2] = stop_min;
361 make_bands(stop_dk, stop_min, 64, 13);
362 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
363 for (k = 0; k < spectrum->bs_stop_freq; k++)
364 sbr->k[2] += stop_dk[k];
365 } else if (spectrum->bs_stop_freq == 14) {
366 sbr->k[2] = 2*sbr->k[0];
367 } else if (spectrum->bs_stop_freq == 15) {
368 sbr->k[2] = 3*sbr->k[0];
369 } else {
370 av_log(ac->avccontext, AV_LOG_ERROR,
371 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
372 return -1;
374 sbr->k[2] = FFMIN(64, sbr->k[2]);
376 // Requirements (14496-3 sp04 p205)
377 if (sbr->sample_rate <= 32000) {
378 max_qmf_subbands = 48;
379 } else if (sbr->sample_rate == 44100) {
380 max_qmf_subbands = 35;
381 } else if (sbr->sample_rate >= 48000)
382 max_qmf_subbands = 32;
384 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
385 av_log(ac->avccontext, AV_LOG_ERROR,
386 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
387 return -1;
390 if (!spectrum->bs_freq_scale) {
391 unsigned int dk;
392 int k2diff;
394 dk = spectrum->bs_alter_scale + 1;
395 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
396 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
397 return -1;
399 for (k = 1; k <= sbr->n_master; k++)
400 sbr->f_master[k] = dk;
402 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
403 if (k2diff < 0) {
404 sbr->f_master[1]--;
405 sbr->f_master[2]-= (k2diff < 1);
406 } else if (k2diff) {
407 sbr->f_master[sbr->n_master]++;
410 sbr->f_master[0] = sbr->k[0];
411 for (k = 1; k <= sbr->n_master; k++)
412 sbr->f_master[k] += sbr->f_master[k - 1];
414 } else {
415 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
416 int two_regions, num_bands_0;
417 int vdk0_max, vdk1_min;
418 int16_t vk0[49];
420 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
421 two_regions = 1;
422 sbr->k[1] = 2 * sbr->k[0];
423 } else {
424 two_regions = 0;
425 sbr->k[1] = sbr->k[2];
428 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
430 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
431 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
432 return -1;
435 vk0[0] = 0;
437 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
439 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
440 vdk0_max = vk0[num_bands_0];
442 vk0[0] = sbr->k[0];
443 for (k = 1; k <= num_bands_0; k++) {
444 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
445 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
446 return -1;
448 vk0[k] += vk0[k-1];
451 if (two_regions) {
452 int16_t vk1[49];
453 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
454 : 1.0f; // bs_alter_scale = {0,1}
455 int num_bands_1 = lrintf(half_bands * invwarp *
456 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
458 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
460 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
462 if (vdk1_min < vdk0_max) {
463 int change;
464 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
465 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
466 vk1[1] += change;
467 vk1[num_bands_1] -= change;
470 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
472 vk1[0] = sbr->k[1];
473 for (k = 1; k <= num_bands_1; k++) {
474 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
475 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
476 return -1;
478 vk1[k] += vk1[k-1];
481 sbr->n_master = num_bands_0 + num_bands_1;
482 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
483 return -1;
484 memcpy(&sbr->f_master[0], vk0,
485 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
486 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
487 num_bands_1 * sizeof(sbr->f_master[0]));
489 } else {
490 sbr->n_master = num_bands_0;
491 if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
492 return -1;
493 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
497 return 0;
500 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
501 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
503 int i, k, sb = 0;
504 int msb = sbr->k[0];
505 int usb = sbr->kx[1];
506 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
508 sbr->num_patches = 0;
510 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
511 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
512 } else
513 k = sbr->n_master;
515 do {
516 int odd = 0;
517 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
518 sb = sbr->f_master[i];
519 odd = (sb + sbr->k[0]) & 1;
522 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
523 // After this check the final number of patches can still be six which is
524 // illegal however the Coding Technologies decoder check stream has a final
525 // count of 6 patches
526 if (sbr->num_patches > 5) {
527 av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
528 return -1;
531 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
532 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
534 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
535 usb = sb;
536 msb = sb;
537 sbr->num_patches++;
538 } else
539 msb = sbr->kx[1];
541 if (sbr->f_master[k] - sb < 3)
542 k = sbr->n_master;
543 } while (sb != sbr->kx[1] + sbr->m[1]);
545 if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
546 sbr->num_patches--;
548 return 0;
551 /// Derived Frequency Band Tables (14496-3 sp04 p197)
552 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
554 int k, temp;
556 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
557 sbr->n[0] = (sbr->n[1] + 1) >> 1;
559 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
560 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
561 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
562 sbr->kx[1] = sbr->f_tablehigh[0];
564 // Requirements (14496-3 sp04 p205)
565 if (sbr->kx[1] + sbr->m[1] > 64) {
566 av_log(ac->avccontext, AV_LOG_ERROR,
567 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
568 return -1;
570 if (sbr->kx[1] > 32) {
571 av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
572 return -1;
575 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
576 temp = sbr->n[1] & 1;
577 for (k = 1; k <= sbr->n[0]; k++)
578 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
580 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
581 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
582 if (sbr->n_q > 5) {
583 av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
584 return -1;
587 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
588 temp = 0;
589 for (k = 1; k <= sbr->n_q; k++) {
590 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
591 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
594 if (sbr_hf_calc_npatches(ac, sbr) < 0)
595 return -1;
597 sbr_make_f_tablelim(sbr);
599 sbr->data[0].f_indexnoise = 0;
600 sbr->data[1].f_indexnoise = 0;
602 return 0;
605 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
606 int elements)
608 int i;
609 for (i = 0; i < elements; i++) {
610 vec[i] = get_bits1(gb);
614 /** ceil(log2(index+1)) */
615 static const int8_t ceil_log2[] = {
616 0, 1, 2, 2, 3, 3,
619 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
620 GetBitContext *gb, SBRData *ch_data)
622 int i;
623 unsigned bs_pointer = 0;
624 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
625 int abs_bord_trail = 16;
626 int num_rel_lead, num_rel_trail;
627 unsigned bs_num_env_old = ch_data->bs_num_env;
629 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
630 ch_data->bs_amp_res = sbr->bs_amp_res_header;
631 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
633 switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
634 case FIXFIX:
635 ch_data->bs_num_env = 1 << get_bits(gb, 2);
636 num_rel_lead = ch_data->bs_num_env - 1;
637 if (ch_data->bs_num_env == 1)
638 ch_data->bs_amp_res = 0;
640 if (ch_data->bs_num_env > 4) {
641 av_log(ac->avccontext, AV_LOG_ERROR,
642 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
643 ch_data->bs_num_env);
644 return -1;
647 ch_data->t_env[0] = 0;
648 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
650 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
651 ch_data->bs_num_env;
652 for (i = 0; i < num_rel_lead; i++)
653 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
655 ch_data->bs_freq_res[1] = get_bits1(gb);
656 for (i = 1; i < ch_data->bs_num_env; i++)
657 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
658 break;
659 case FIXVAR:
660 abs_bord_trail += get_bits(gb, 2);
661 num_rel_trail = get_bits(gb, 2);
662 ch_data->bs_num_env = num_rel_trail + 1;
663 ch_data->t_env[0] = 0;
664 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
666 for (i = 0; i < num_rel_trail; i++)
667 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
668 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
670 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
672 for (i = 0; i < ch_data->bs_num_env; i++)
673 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
674 break;
675 case VARFIX:
676 ch_data->t_env[0] = get_bits(gb, 2);
677 num_rel_lead = get_bits(gb, 2);
678 ch_data->bs_num_env = num_rel_lead + 1;
679 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
681 for (i = 0; i < num_rel_lead; i++)
682 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
684 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
686 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
687 break;
688 case VARVAR:
689 ch_data->t_env[0] = get_bits(gb, 2);
690 abs_bord_trail += get_bits(gb, 2);
691 num_rel_lead = get_bits(gb, 2);
692 num_rel_trail = get_bits(gb, 2);
693 ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
695 if (ch_data->bs_num_env > 5) {
696 av_log(ac->avccontext, AV_LOG_ERROR,
697 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
698 ch_data->bs_num_env);
699 return -1;
702 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
704 for (i = 0; i < num_rel_lead; i++)
705 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
706 for (i = 0; i < num_rel_trail; i++)
707 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
708 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
710 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
712 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
713 break;
716 if (bs_pointer > ch_data->bs_num_env + 1) {
717 av_log(ac->avccontext, AV_LOG_ERROR,
718 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
719 bs_pointer);
720 return -1;
723 for (i = 1; i <= ch_data->bs_num_env; i++) {
724 if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
725 av_log(ac->avccontext, AV_LOG_ERROR, "Non monotone time borders\n");
726 return -1;
730 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
732 ch_data->t_q[0] = ch_data->t_env[0];
733 ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
734 if (ch_data->bs_num_noise > 1) {
735 unsigned int idx;
736 if (ch_data->bs_frame_class == FIXFIX) {
737 idx = ch_data->bs_num_env >> 1;
738 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
739 idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
740 } else { // VARFIX
741 if (!bs_pointer)
742 idx = 1;
743 else if (bs_pointer == 1)
744 idx = ch_data->bs_num_env - 1;
745 else // bs_pointer > 1
746 idx = bs_pointer - 1;
748 ch_data->t_q[1] = ch_data->t_env[idx];
751 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
752 ch_data->e_a[1] = -1;
753 if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
754 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
755 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
756 ch_data->e_a[1] = bs_pointer - 1;
758 return 0;
761 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
762 //These variables are saved from the previous frame rather than copied
763 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
764 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
765 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
767 //These variables are read from the bitstream and therefore copied
768 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
769 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
770 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
771 dst->bs_num_env = src->bs_num_env;
772 dst->bs_amp_res = src->bs_amp_res;
773 dst->bs_num_noise = src->bs_num_noise;
774 dst->bs_frame_class = src->bs_frame_class;
775 dst->e_a[1] = src->e_a[1];
778 /// Read how the envelope and noise floor data is delta coded
779 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
780 SBRData *ch_data)
782 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
783 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
786 /// Read inverse filtering data
787 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
788 SBRData *ch_data)
790 int i;
792 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
793 for (i = 0; i < sbr->n_q; i++)
794 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
797 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
798 SBRData *ch_data, int ch)
800 int bits;
801 int i, j, k;
802 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
803 int t_lav, f_lav;
804 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
805 const int odd = sbr->n[1] & 1;
807 if (sbr->bs_coupling && ch) {
808 if (ch_data->bs_amp_res) {
809 bits = 5;
810 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
811 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
812 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
813 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
814 } else {
815 bits = 6;
816 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
817 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
818 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
819 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
821 } else {
822 if (ch_data->bs_amp_res) {
823 bits = 6;
824 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
825 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
826 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
827 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
828 } else {
829 bits = 7;
830 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
831 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
832 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
833 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
837 for (i = 0; i < ch_data->bs_num_env; i++) {
838 if (ch_data->bs_df_env[i]) {
839 // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
840 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
841 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
842 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
843 } else if (ch_data->bs_freq_res[i + 1]) {
844 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
845 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
846 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
848 } else {
849 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
850 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
851 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
854 } else {
855 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
856 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
857 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
861 //assign 0th elements of env_facs from last elements
862 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
863 sizeof(ch_data->env_facs[0]));
866 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
867 SBRData *ch_data, int ch)
869 int i, j;
870 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
871 int t_lav, f_lav;
872 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
874 if (sbr->bs_coupling && ch) {
875 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
876 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
877 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
878 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
879 } else {
880 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
881 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
882 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
883 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
886 for (i = 0; i < ch_data->bs_num_noise; i++) {
887 if (ch_data->bs_df_noise[i]) {
888 for (j = 0; j < sbr->n_q; j++)
889 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
890 } else {
891 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
892 for (j = 1; j < sbr->n_q; j++)
893 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
897 //assign 0th elements of noise_facs from last elements
898 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
899 sizeof(ch_data->noise_facs[0]));
902 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
903 GetBitContext *gb,
904 int bs_extension_id, int *num_bits_left)
906 //TODO - implement ps_data for parametric stereo parsing
907 switch (bs_extension_id) {
908 case EXTENSION_ID_PS:
909 if (!ac->m4ac.ps) {
910 av_log(ac->avccontext, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
911 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
912 *num_bits_left = 0;
913 } else {
914 #if 0
915 *num_bits_left -= ff_ps_data(gb, ps);
916 #else
917 av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
918 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
919 *num_bits_left = 0;
920 #endif
922 break;
923 default:
924 av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
925 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
926 *num_bits_left = 0;
927 break;
931 static int read_sbr_single_channel_element(AACContext *ac,
932 SpectralBandReplication *sbr,
933 GetBitContext *gb)
935 if (get_bits1(gb)) // bs_data_extra
936 skip_bits(gb, 4); // bs_reserved
938 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
939 return -1;
940 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
941 read_sbr_invf(sbr, gb, &sbr->data[0]);
942 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
943 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
945 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
946 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
948 return 0;
951 static int read_sbr_channel_pair_element(AACContext *ac,
952 SpectralBandReplication *sbr,
953 GetBitContext *gb)
955 if (get_bits1(gb)) // bs_data_extra
956 skip_bits(gb, 8); // bs_reserved
958 if ((sbr->bs_coupling = get_bits1(gb))) {
959 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
960 return -1;
961 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
962 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
963 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
964 read_sbr_invf(sbr, gb, &sbr->data[0]);
965 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
966 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
967 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
968 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
969 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
970 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
971 } else {
972 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
973 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
974 return -1;
975 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
976 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
977 read_sbr_invf(sbr, gb, &sbr->data[0]);
978 read_sbr_invf(sbr, gb, &sbr->data[1]);
979 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
980 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
981 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
982 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
985 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
986 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
987 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
988 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
990 return 0;
993 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
994 GetBitContext *gb, int id_aac)
996 unsigned int cnt = get_bits_count(gb);
998 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
999 if (read_sbr_single_channel_element(ac, sbr, gb)) {
1000 sbr->start = 0;
1001 return get_bits_count(gb) - cnt;
1003 } else if (id_aac == TYPE_CPE) {
1004 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1005 sbr->start = 0;
1006 return get_bits_count(gb) - cnt;
1008 } else {
1009 av_log(ac->avccontext, AV_LOG_ERROR,
1010 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1011 sbr->start = 0;
1012 return get_bits_count(gb) - cnt;
1014 if (get_bits1(gb)) { // bs_extended_data
1015 int num_bits_left = get_bits(gb, 4); // bs_extension_size
1016 if (num_bits_left == 15)
1017 num_bits_left += get_bits(gb, 8); // bs_esc_count
1019 num_bits_left <<= 3;
1020 while (num_bits_left > 7) {
1021 num_bits_left -= 2;
1022 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1026 return get_bits_count(gb) - cnt;
1029 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1031 int err;
1032 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1033 if (err >= 0)
1034 err = sbr_make_f_derived(ac, sbr);
1035 if (err < 0) {
1036 av_log(ac->avccontext, AV_LOG_ERROR,
1037 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1038 sbr->start = 0;
1043 * Decode Spectral Band Replication extension data; reference: table 4.55.
1045 * @param crc flag indicating the presence of CRC checksum
1046 * @param cnt length of TYPE_FIL syntactic element in bytes
1048 * @return Returns number of bytes consumed from the TYPE_FIL element.
1050 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
1051 GetBitContext *gb_host, int crc, int cnt, int id_aac)
1053 unsigned int num_sbr_bits = 0, num_align_bits;
1054 unsigned bytes_read;
1055 GetBitContext gbc = *gb_host, *gb = &gbc;
1056 skip_bits_long(gb_host, cnt*8 - 4);
1058 sbr->reset = 0;
1060 if (!sbr->sample_rate)
1061 sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1062 if (!ac->m4ac.ext_sample_rate)
1063 ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
1065 if (crc) {
1066 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1067 num_sbr_bits += 10;
1070 //Save some state from the previous frame.
1071 sbr->kx[0] = sbr->kx[1];
1072 sbr->m[0] = sbr->m[1];
1074 num_sbr_bits++;
1075 if (get_bits1(gb)) // bs_header_flag
1076 num_sbr_bits += read_sbr_header(sbr, gb);
1078 if (sbr->reset)
1079 sbr_reset(ac, sbr);
1081 if (sbr->start)
1082 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1084 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1085 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1087 if (bytes_read > cnt) {
1088 av_log(ac->avccontext, AV_LOG_ERROR,
1089 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1091 return cnt;
1094 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1095 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1097 int k, e;
1098 int ch;
1100 if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1101 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
1102 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1103 for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
1104 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1105 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1106 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1107 float fac = temp1 / (1.0f + temp2);
1108 sbr->data[0].env_facs[e][k] = fac;
1109 sbr->data[1].env_facs[e][k] = fac * temp2;
1112 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1113 for (k = 0; k < sbr->n_q; k++) {
1114 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1115 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1116 float fac = temp1 / (1.0f + temp2);
1117 sbr->data[0].noise_facs[e][k] = fac;
1118 sbr->data[1].noise_facs[e][k] = fac * temp2;
1121 } else { // SCE or one non-coupled CPE
1122 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1123 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1124 for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
1125 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
1126 sbr->data[ch].env_facs[e][k] =
1127 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1128 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1129 for (k = 0; k < sbr->n_q; k++)
1130 sbr->data[ch].noise_facs[e][k] =
1131 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1137 * Analysis QMF Bank (14496-3 sp04 p206)
1139 * @param x pointer to the beginning of the first sample window
1140 * @param W array of complex-valued samples split into subbands
1142 static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
1143 float z[320], float W[2][32][32][2],
1144 float scale)
1146 int i, k;
1147 memcpy(W[0], W[1], sizeof(W[0]));
1148 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1149 if (scale != 1.0f)
1150 dsp->vector_fmul_scalar(x+288, in, scale, 1024);
1151 else
1152 memcpy(x+288, in, 1024*sizeof(*x));
1153 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1154 // are not supported
1155 float re, im;
1156 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1157 for (k = 0; k < 64; k++) {
1158 float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
1159 z[k] = f * analysis_cos_pre[k];
1160 z[k+64] = f;
1162 ff_rdft_calc(rdft, z);
1163 re = z[0] * 0.5f;
1164 im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
1165 W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
1166 W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
1167 for (k = 1; k < 32; k++) {
1168 re = z[2*k ] - re;
1169 im = z[2*k+1] - im;
1170 W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
1171 W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
1173 x += 32;
1178 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1179 * (14496-3 sp04 p206)
1181 static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
1182 float *out, float X[2][32][64],
1183 float mdct_buf[2][64],
1184 float *v0, int *v_off, const unsigned int div,
1185 float bias, float scale)
1187 int i, n;
1188 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1189 int scale_and_bias = scale != 1.0f || bias != 0.0f;
1190 float *v;
1191 for (i = 0; i < 32; i++) {
1192 if (*v_off == 0) {
1193 int saved_samples = (1280 - 128) >> div;
1194 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1195 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
1196 } else {
1197 *v_off -= 128 >> div;
1199 v = v0 + *v_off;
1200 for (n = 1; n < 64 >> div; n+=2) {
1201 X[1][i][n] = -X[1][i][n];
1203 if (div) {
1204 memset(X[0][i]+32, 0, 32*sizeof(float));
1205 memset(X[1][i]+32, 0, 32*sizeof(float));
1207 ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
1208 ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
1209 if (div) {
1210 for (n = 0; n < 32; n++) {
1211 v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ];
1212 v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
1214 } else {
1215 for (n = 0; n < 64; n++) {
1216 v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
1217 v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
1220 dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
1221 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1222 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1223 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1224 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1225 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1226 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1227 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1228 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1229 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1230 if (scale_and_bias)
1231 for (n = 0; n < 64 >> div; n++)
1232 out[n] = out[n] * scale + bias;
1233 out += 64 >> div;
1237 static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
1239 int i;
1240 float real_sum = 0.0f;
1241 float imag_sum = 0.0f;
1242 if (lag) {
1243 for (i = 1; i < 38; i++) {
1244 real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
1245 imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
1247 phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
1248 phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
1249 if (lag == 1) {
1250 phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
1251 phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
1253 } else {
1254 for (i = 1; i < 38; i++) {
1255 real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
1257 phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
1258 phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
1262 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1263 * (14496-3 sp04 p214)
1264 * Warning: This routine does not seem numerically stable.
1266 static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
1267 const float X_low[32][40][2], int k0)
1269 int k;
1270 for (k = 0; k < k0; k++) {
1271 float phi[3][2][2], dk;
1273 autocorrelate(X_low[k], phi, 0);
1274 autocorrelate(X_low[k], phi, 1);
1275 autocorrelate(X_low[k], phi, 2);
1277 dk = phi[2][1][0] * phi[1][0][0] -
1278 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1280 if (!dk) {
1281 alpha1[k][0] = 0;
1282 alpha1[k][1] = 0;
1283 } else {
1284 float temp_real, temp_im;
1285 temp_real = phi[0][0][0] * phi[1][1][0] -
1286 phi[0][0][1] * phi[1][1][1] -
1287 phi[0][1][0] * phi[1][0][0];
1288 temp_im = phi[0][0][0] * phi[1][1][1] +
1289 phi[0][0][1] * phi[1][1][0] -
1290 phi[0][1][1] * phi[1][0][0];
1292 alpha1[k][0] = temp_real / dk;
1293 alpha1[k][1] = temp_im / dk;
1296 if (!phi[1][0][0]) {
1297 alpha0[k][0] = 0;
1298 alpha0[k][1] = 0;
1299 } else {
1300 float temp_real, temp_im;
1301 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1302 alpha1[k][1] * phi[1][1][1];
1303 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1304 alpha1[k][0] * phi[1][1][1];
1306 alpha0[k][0] = -temp_real / phi[1][0][0];
1307 alpha0[k][1] = -temp_im / phi[1][0][0];
1310 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1311 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1312 alpha1[k][0] = 0;
1313 alpha1[k][1] = 0;
1314 alpha0[k][0] = 0;
1315 alpha0[k][1] = 0;
1320 /// Chirp Factors (14496-3 sp04 p214)
1321 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1323 int i;
1324 float new_bw;
1325 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1327 for (i = 0; i < sbr->n_q; i++) {
1328 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1329 new_bw = 0.6f;
1330 } else
1331 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1333 if (new_bw < ch_data->bw_array[i]) {
1334 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
1335 } else
1336 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1337 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1341 /// Generate the subband filtered lowband
1342 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1343 float X_low[32][40][2], const float W[2][32][32][2])
1345 int i, k;
1346 const int t_HFGen = 8;
1347 const int i_f = 32;
1348 memset(X_low, 0, 32*sizeof(*X_low));
1349 for (k = 0; k < sbr->kx[1]; k++) {
1350 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1351 X_low[k][i][0] = W[1][i - t_HFGen][k][0];
1352 X_low[k][i][1] = W[1][i - t_HFGen][k][1];
1355 for (k = 0; k < sbr->kx[0]; k++) {
1356 for (i = 0; i < t_HFGen; i++) {
1357 X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
1358 X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
1361 return 0;
1364 /// High Frequency Generator (14496-3 sp04 p215)
1365 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1366 float X_high[64][40][2], const float X_low[32][40][2],
1367 const float (*alpha0)[2], const float (*alpha1)[2],
1368 const float bw_array[5], const uint8_t *t_env,
1369 int bs_num_env)
1371 int i, j, x;
1372 int g = 0;
1373 int k = sbr->kx[1];
1374 for (j = 0; j < sbr->num_patches; j++) {
1375 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1376 float alpha[4];
1377 const int p = sbr->patch_start_subband[j] + x;
1378 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1379 g++;
1380 g--;
1382 if (g < 0) {
1383 av_log(ac->avccontext, AV_LOG_ERROR,
1384 "ERROR : no subband found for frequency %d\n", k);
1385 return -1;
1388 alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
1389 alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
1390 alpha[2] = alpha0[p][0] * bw_array[g];
1391 alpha[3] = alpha0[p][1] * bw_array[g];
1393 for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
1394 const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
1395 X_high[k][idx][0] =
1396 X_low[p][idx - 2][0] * alpha[0] -
1397 X_low[p][idx - 2][1] * alpha[1] +
1398 X_low[p][idx - 1][0] * alpha[2] -
1399 X_low[p][idx - 1][1] * alpha[3] +
1400 X_low[p][idx][0];
1401 X_high[k][idx][1] =
1402 X_low[p][idx - 2][1] * alpha[0] +
1403 X_low[p][idx - 2][0] * alpha[1] +
1404 X_low[p][idx - 1][1] * alpha[2] +
1405 X_low[p][idx - 1][0] * alpha[3] +
1406 X_low[p][idx][1];
1410 if (k < sbr->m[1] + sbr->kx[1])
1411 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1413 return 0;
1416 /// Generate the subband filtered lowband
1417 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
1418 const float X_low[32][40][2], const float Y[2][38][64][2],
1419 int ch)
1421 int k, i;
1422 const int i_f = 32;
1423 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1424 memset(X, 0, 2*sizeof(*X));
1425 for (k = 0; k < sbr->kx[0]; k++) {
1426 for (i = 0; i < i_Temp; i++) {
1427 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1428 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1431 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1432 for (i = 0; i < i_Temp; i++) {
1433 X[0][i][k] = Y[0][i + i_f][k][0];
1434 X[1][i][k] = Y[0][i + i_f][k][1];
1438 for (k = 0; k < sbr->kx[1]; k++) {
1439 for (i = i_Temp; i < i_f; i++) {
1440 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1441 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1444 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1445 for (i = i_Temp; i < i_f; i++) {
1446 X[0][i][k] = Y[1][i][k][0];
1447 X[1][i][k] = Y[1][i][k][1];
1450 return 0;
1453 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1454 * (14496-3 sp04 p217)
1456 static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1457 SBRData *ch_data, int e_a[2])
1459 int e, i, m;
1461 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1462 for (e = 0; e < ch_data->bs_num_env; e++) {
1463 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1464 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1465 int k;
1467 for (i = 0; i < ilim; i++)
1468 for (m = table[i]; m < table[i + 1]; m++)
1469 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1471 // ch_data->bs_num_noise > 1 => 2 noise floors
1472 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1473 for (i = 0; i < sbr->n_q; i++)
1474 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1475 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1477 for (i = 0; i < sbr->n[1]; i++) {
1478 if (ch_data->bs_add_harmonic_flag) {
1479 const unsigned int m_midpoint =
1480 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1482 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1483 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1487 for (i = 0; i < ilim; i++) {
1488 int additional_sinusoid_present = 0;
1489 for (m = table[i]; m < table[i + 1]; m++) {
1490 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1491 additional_sinusoid_present = 1;
1492 break;
1495 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1496 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1500 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1503 /// Estimation of current envelope (14496-3 sp04 p218)
1504 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1505 SpectralBandReplication *sbr, SBRData *ch_data)
1507 int e, i, m;
1509 if (sbr->bs_interpol_freq) {
1510 for (e = 0; e < ch_data->bs_num_env; e++) {
1511 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1512 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1513 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1515 for (m = 0; m < sbr->m[1]; m++) {
1516 float sum = 0.0f;
1518 for (i = ilb; i < iub; i++) {
1519 sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
1520 X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
1522 e_curr[e][m] = sum * recip_env_size;
1525 } else {
1526 int k, p;
1528 for (e = 0; e < ch_data->bs_num_env; e++) {
1529 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1530 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1531 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1532 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1534 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1535 float sum = 0.0f;
1536 const int den = env_size * (table[p + 1] - table[p]);
1538 for (k = table[p]; k < table[p + 1]; k++) {
1539 for (i = ilb; i < iub; i++) {
1540 sum += X_high[k][i][0] * X_high[k][i][0] +
1541 X_high[k][i][1] * X_high[k][i][1];
1544 sum /= den;
1545 for (k = table[p]; k < table[p + 1]; k++) {
1546 e_curr[e][k - sbr->kx[1]] = sum;
1554 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1555 * and Calculation of gain (14496-3 sp04 p219)
1557 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
1558 SBRData *ch_data, const int e_a[2])
1560 int e, k, m;
1561 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1562 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1564 for (e = 0; e < ch_data->bs_num_env; e++) {
1565 int delta = !((e == e_a[1]) || (e == e_a[0]));
1566 for (k = 0; k < sbr->n_lim; k++) {
1567 float gain_boost, gain_max;
1568 float sum[2] = { 0.0f, 0.0f };
1569 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1570 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1571 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1572 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1573 if (!sbr->s_mapped[e][m]) {
1574 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1575 ((1.0f + sbr->e_curr[e][m]) *
1576 (1.0f + sbr->q_mapped[e][m] * delta)));
1577 } else {
1578 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1579 ((1.0f + sbr->e_curr[e][m]) *
1580 (1.0f + sbr->q_mapped[e][m])));
1583 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1584 sum[0] += sbr->e_origmapped[e][m];
1585 sum[1] += sbr->e_curr[e][m];
1587 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1588 gain_max = FFMIN(100000, gain_max);
1589 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1590 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1591 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
1592 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1594 sum[0] = sum[1] = 0.0f;
1595 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1596 sum[0] += sbr->e_origmapped[e][m];
1597 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1598 + sbr->s_m[e][m] * sbr->s_m[e][m]
1599 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1601 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1602 gain_boost = FFMIN(1.584893192, gain_boost);
1603 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1604 sbr->gain[e][m] *= gain_boost;
1605 sbr->q_m[e][m] *= gain_boost;
1606 sbr->s_m[e][m] *= gain_boost;
1612 /// Assembling HF Signals (14496-3 sp04 p220)
1613 static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
1614 SpectralBandReplication *sbr, SBRData *ch_data,
1615 const int e_a[2])
1617 int e, i, j, m;
1618 const int h_SL = 4 * !sbr->bs_smoothing_mode;
1619 const int kx = sbr->kx[1];
1620 const int m_max = sbr->m[1];
1621 static const float h_smooth[5] = {
1622 0.33333333333333,
1623 0.30150283239582,
1624 0.21816949906249,
1625 0.11516383427084,
1626 0.03183050093751,
1628 static const int8_t phi[2][4] = {
1629 { 1, 0, -1, 0}, // real
1630 { 0, 1, 0, -1}, // imaginary
1632 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1633 int indexnoise = ch_data->f_indexnoise;
1634 int indexsine = ch_data->f_indexsine;
1635 memcpy(Y[0], Y[1], sizeof(Y[0]));
1637 if (sbr->reset) {
1638 for (i = 0; i < h_SL; i++) {
1639 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1640 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
1642 } else if (h_SL) {
1643 memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
1644 memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
1647 for (e = 0; e < ch_data->bs_num_env; e++) {
1648 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1649 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1650 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
1654 for (e = 0; e < ch_data->bs_num_env; e++) {
1655 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1656 int phi_sign = (1 - 2*(kx & 1));
1658 if (h_SL && e != e_a[0] && e != e_a[1]) {
1659 for (m = 0; m < m_max; m++) {
1660 const int idx1 = i + h_SL;
1661 float g_filt = 0.0f;
1662 for (j = 0; j <= h_SL; j++)
1663 g_filt += g_temp[idx1 - j][m] * h_smooth[j];
1664 Y[1][i][m + kx][0] =
1665 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1666 Y[1][i][m + kx][1] =
1667 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1669 } else {
1670 for (m = 0; m < m_max; m++) {
1671 const float g_filt = g_temp[i + h_SL][m];
1672 Y[1][i][m + kx][0] =
1673 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1674 Y[1][i][m + kx][1] =
1675 X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1679 if (e != e_a[0] && e != e_a[1]) {
1680 for (m = 0; m < m_max; m++) {
1681 indexnoise = (indexnoise + 1) & 0x1ff;
1682 if (sbr->s_m[e][m]) {
1683 Y[1][i][m + kx][0] +=
1684 sbr->s_m[e][m] * phi[0][indexsine];
1685 Y[1][i][m + kx][1] +=
1686 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1687 } else {
1688 float q_filt;
1689 if (h_SL) {
1690 const int idx1 = i + h_SL;
1691 q_filt = 0.0f;
1692 for (j = 0; j <= h_SL; j++)
1693 q_filt += q_temp[idx1 - j][m] * h_smooth[j];
1694 } else {
1695 q_filt = q_temp[i][m];
1697 Y[1][i][m + kx][0] +=
1698 q_filt * sbr_noise_table[indexnoise][0];
1699 Y[1][i][m + kx][1] +=
1700 q_filt * sbr_noise_table[indexnoise][1];
1702 phi_sign = -phi_sign;
1704 } else {
1705 indexnoise = (indexnoise + m_max) & 0x1ff;
1706 for (m = 0; m < m_max; m++) {
1707 Y[1][i][m + kx][0] +=
1708 sbr->s_m[e][m] * phi[0][indexsine];
1709 Y[1][i][m + kx][1] +=
1710 sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1711 phi_sign = -phi_sign;
1714 indexsine = (indexsine + 1) & 3;
1717 ch_data->f_indexnoise = indexnoise;
1718 ch_data->f_indexsine = indexsine;
1721 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
1722 float* L, float* R)
1724 int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
1725 int ch;
1726 int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1728 if (sbr->start) {
1729 sbr_dequant(sbr, id_aac);
1731 for (ch = 0; ch < nch; ch++) {
1732 /* decode channel */
1733 sbr_qmf_analysis(&ac->dsp, &sbr->rdft, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1734 (float*)sbr->qmf_filter_scratch,
1735 sbr->data[ch].W, 1/(-1024 * ac->sf_scale));
1736 sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
1737 if (sbr->start) {
1738 sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
1739 sbr_chirp(sbr, &sbr->data[ch]);
1740 sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
1741 sbr->data[ch].bw_array, sbr->data[ch].t_env,
1742 sbr->data[ch].bs_num_env);
1744 // hf_adj
1745 sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1746 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1747 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1748 sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
1749 sbr->data[ch].e_a);
1752 /* synthesis */
1753 sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
1755 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
1756 sbr->data[0].synthesis_filterbank_samples,
1757 &sbr->data[0].synthesis_filterbank_samples_offset,
1758 downsampled,
1759 ac->add_bias, -1024 * ac->sf_scale);
1760 if (nch == 2)
1761 sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
1762 sbr->data[1].synthesis_filterbank_samples,
1763 &sbr->data[1].synthesis_filterbank_samples_offset,
1764 downsampled,
1765 ac->add_bias, -1024 * ac->sf_scale);