OpenSSL 1.0.2f
[tomato.git] / release / src / router / openssl / crypto / modes / asm / ghash-armv4.pl
blob8ccc963ef29729ff6babbc029cee75b314a5c518
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # April 2010
12 # The module implements "4-bit" GCM GHASH function and underlying
13 # single multiplication operation in GF(2^128). "4-bit" means that it
14 # uses 256 bytes per-key table [+32 bytes shared table]. There is no
15 # experimental performance data available yet. The only approximation
16 # that can be made at this point is based on code size. Inner loop is
17 # 32 instructions long and on single-issue core should execute in <40
18 # cycles. Having verified that gcc 3.4 didn't unroll corresponding
19 # loop, this assembler loop body was found to be ~3x smaller than
20 # compiler-generated one...
22 # July 2010
24 # Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
25 # Cortex A8 core and ~25 cycles per processed byte (which was observed
26 # to be ~3 times faster than gcc-generated code:-)
28 # February 2011
30 # Profiler-assisted and platform-specific optimization resulted in 7%
31 # improvement on Cortex A8 core and ~23.5 cycles per byte.
33 # March 2011
35 # Add NEON implementation featuring polynomial multiplication, i.e. no
36 # lookup tables involved. On Cortex A8 it was measured to process one
37 # byte in 15 cycles or 55% faster than integer-only code.
39 # April 2014
41 # Switch to multiplication algorithm suggested in paper referred
42 # below and combine it with reduction algorithm from x86 module.
43 # Performance improvement over previous version varies from 65% on
44 # Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8
45 # processes one byte in 8.45 cycles, A9 - in 10.2, Snapdragon S4 -
46 # in 9.33.
48 # Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software
49 # Polynomial Multiplication on ARM Processors using the NEON Engine.
51 # http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf
53 # ====================================================================
54 # Note about "528B" variant. In ARM case it makes lesser sense to
55 # implement it for following reasons:
57 # - performance improvement won't be anywhere near 50%, because 128-
58 # bit shift operation is neatly fused with 128-bit xor here, and
59 # "538B" variant would eliminate only 4-5 instructions out of 32
60 # in the inner loop (meaning that estimated improvement is ~15%);
61 # - ARM-based systems are often embedded ones and extra memory
62 # consumption might be unappreciated (for so little improvement);
64 # Byte order [in]dependence. =========================================
66 # Caller is expected to maintain specific *dword* order in Htable,
67 # namely with *least* significant dword of 128-bit value at *lower*
68 # address. This differs completely from C code and has everything to
69 # do with ldm instruction and order in which dwords are "consumed" by
70 # algorithm. *Byte* order within these dwords in turn is whatever
71 # *native* byte order on current platform. See gcm128.c for working
72 # example...
74 while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
75 open STDOUT,">$output";
77 $Xi="r0"; # argument block
78 $Htbl="r1";
79 $inp="r2";
80 $len="r3";
82 $Zll="r4"; # variables
83 $Zlh="r5";
84 $Zhl="r6";
85 $Zhh="r7";
86 $Tll="r8";
87 $Tlh="r9";
88 $Thl="r10";
89 $Thh="r11";
90 $nlo="r12";
91 ################# r13 is stack pointer
92 $nhi="r14";
93 ################# r15 is program counter
95 $rem_4bit=$inp; # used in gcm_gmult_4bit
96 $cnt=$len;
98 sub Zsmash() {
99 my $i=12;
100 my @args=@_;
101 for ($Zll,$Zlh,$Zhl,$Zhh) {
102 $code.=<<___;
103 #if __ARM_ARCH__>=7 && defined(__ARMEL__)
104 rev $_,$_
105 str $_,[$Xi,#$i]
106 #elif defined(__ARMEB__)
107 str $_,[$Xi,#$i]
108 #else
109 mov $Tlh,$_,lsr#8
110 strb $_,[$Xi,#$i+3]
111 mov $Thl,$_,lsr#16
112 strb $Tlh,[$Xi,#$i+2]
113 mov $Thh,$_,lsr#24
114 strb $Thl,[$Xi,#$i+1]
115 strb $Thh,[$Xi,#$i]
116 #endif
118 $code.="\t".shift(@args)."\n";
119 $i-=4;
123 $code=<<___;
124 #include "arm_arch.h"
126 .text
127 .code 32
129 #ifdef __clang__
130 #define ldrplb ldrbpl
131 #define ldrneb ldrbne
132 #endif
134 .type rem_4bit,%object
135 .align 5
136 rem_4bit:
137 .short 0x0000,0x1C20,0x3840,0x2460
138 .short 0x7080,0x6CA0,0x48C0,0x54E0
139 .short 0xE100,0xFD20,0xD940,0xC560
140 .short 0x9180,0x8DA0,0xA9C0,0xB5E0
141 .size rem_4bit,.-rem_4bit
143 .type rem_4bit_get,%function
144 rem_4bit_get:
145 sub $rem_4bit,pc,#8
146 sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit
147 b .Lrem_4bit_got
149 .size rem_4bit_get,.-rem_4bit_get
151 .global gcm_ghash_4bit
152 .type gcm_ghash_4bit,%function
153 gcm_ghash_4bit:
154 sub r12,pc,#8
155 add $len,$inp,$len @ $len to point at the end
156 stmdb sp!,{r3-r11,lr} @ save $len/end too
157 sub r12,r12,#48 @ &rem_4bit
159 ldmia r12,{r4-r11} @ copy rem_4bit ...
160 stmdb sp!,{r4-r11} @ ... to stack
162 ldrb $nlo,[$inp,#15]
163 ldrb $nhi,[$Xi,#15]
164 .Louter:
165 eor $nlo,$nlo,$nhi
166 and $nhi,$nlo,#0xf0
167 and $nlo,$nlo,#0x0f
168 mov $cnt,#14
170 add $Zhh,$Htbl,$nlo,lsl#4
171 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
172 add $Thh,$Htbl,$nhi
173 ldrb $nlo,[$inp,#14]
175 and $nhi,$Zll,#0xf @ rem
176 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
177 add $nhi,$nhi,$nhi
178 eor $Zll,$Tll,$Zll,lsr#4
179 ldrh $Tll,[sp,$nhi] @ rem_4bit[rem]
180 eor $Zll,$Zll,$Zlh,lsl#28
181 ldrb $nhi,[$Xi,#14]
182 eor $Zlh,$Tlh,$Zlh,lsr#4
183 eor $Zlh,$Zlh,$Zhl,lsl#28
184 eor $Zhl,$Thl,$Zhl,lsr#4
185 eor $Zhl,$Zhl,$Zhh,lsl#28
186 eor $Zhh,$Thh,$Zhh,lsr#4
187 eor $nlo,$nlo,$nhi
188 and $nhi,$nlo,#0xf0
189 and $nlo,$nlo,#0x0f
190 eor $Zhh,$Zhh,$Tll,lsl#16
192 .Linner:
193 add $Thh,$Htbl,$nlo,lsl#4
194 and $nlo,$Zll,#0xf @ rem
195 subs $cnt,$cnt,#1
196 add $nlo,$nlo,$nlo
197 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
198 eor $Zll,$Tll,$Zll,lsr#4
199 eor $Zll,$Zll,$Zlh,lsl#28
200 eor $Zlh,$Tlh,$Zlh,lsr#4
201 eor $Zlh,$Zlh,$Zhl,lsl#28
202 ldrh $Tll,[sp,$nlo] @ rem_4bit[rem]
203 eor $Zhl,$Thl,$Zhl,lsr#4
204 ldrplb $nlo,[$inp,$cnt]
205 eor $Zhl,$Zhl,$Zhh,lsl#28
206 eor $Zhh,$Thh,$Zhh,lsr#4
208 add $Thh,$Htbl,$nhi
209 and $nhi,$Zll,#0xf @ rem
210 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
211 add $nhi,$nhi,$nhi
212 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
213 eor $Zll,$Tll,$Zll,lsr#4
214 ldrplb $Tll,[$Xi,$cnt]
215 eor $Zll,$Zll,$Zlh,lsl#28
216 eor $Zlh,$Tlh,$Zlh,lsr#4
217 ldrh $Tlh,[sp,$nhi]
218 eor $Zlh,$Zlh,$Zhl,lsl#28
219 eor $Zhl,$Thl,$Zhl,lsr#4
220 eor $Zhl,$Zhl,$Zhh,lsl#28
221 eorpl $nlo,$nlo,$Tll
222 eor $Zhh,$Thh,$Zhh,lsr#4
223 andpl $nhi,$nlo,#0xf0
224 andpl $nlo,$nlo,#0x0f
225 eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem]
226 bpl .Linner
228 ldr $len,[sp,#32] @ re-load $len/end
229 add $inp,$inp,#16
230 mov $nhi,$Zll
232 &Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]");
233 $code.=<<___;
234 bne .Louter
236 add sp,sp,#36
237 #if __ARM_ARCH__>=5
238 ldmia sp!,{r4-r11,pc}
239 #else
240 ldmia sp!,{r4-r11,lr}
241 tst lr,#1
242 moveq pc,lr @ be binary compatible with V4, yet
243 bx lr @ interoperable with Thumb ISA:-)
244 #endif
245 .size gcm_ghash_4bit,.-gcm_ghash_4bit
247 .global gcm_gmult_4bit
248 .type gcm_gmult_4bit,%function
249 gcm_gmult_4bit:
250 stmdb sp!,{r4-r11,lr}
251 ldrb $nlo,[$Xi,#15]
252 b rem_4bit_get
253 .Lrem_4bit_got:
254 and $nhi,$nlo,#0xf0
255 and $nlo,$nlo,#0x0f
256 mov $cnt,#14
258 add $Zhh,$Htbl,$nlo,lsl#4
259 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
260 ldrb $nlo,[$Xi,#14]
262 add $Thh,$Htbl,$nhi
263 and $nhi,$Zll,#0xf @ rem
264 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
265 add $nhi,$nhi,$nhi
266 eor $Zll,$Tll,$Zll,lsr#4
267 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
268 eor $Zll,$Zll,$Zlh,lsl#28
269 eor $Zlh,$Tlh,$Zlh,lsr#4
270 eor $Zlh,$Zlh,$Zhl,lsl#28
271 eor $Zhl,$Thl,$Zhl,lsr#4
272 eor $Zhl,$Zhl,$Zhh,lsl#28
273 eor $Zhh,$Thh,$Zhh,lsr#4
274 and $nhi,$nlo,#0xf0
275 eor $Zhh,$Zhh,$Tll,lsl#16
276 and $nlo,$nlo,#0x0f
278 .Loop:
279 add $Thh,$Htbl,$nlo,lsl#4
280 and $nlo,$Zll,#0xf @ rem
281 subs $cnt,$cnt,#1
282 add $nlo,$nlo,$nlo
283 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
284 eor $Zll,$Tll,$Zll,lsr#4
285 eor $Zll,$Zll,$Zlh,lsl#28
286 eor $Zlh,$Tlh,$Zlh,lsr#4
287 eor $Zlh,$Zlh,$Zhl,lsl#28
288 ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem]
289 eor $Zhl,$Thl,$Zhl,lsr#4
290 ldrplb $nlo,[$Xi,$cnt]
291 eor $Zhl,$Zhl,$Zhh,lsl#28
292 eor $Zhh,$Thh,$Zhh,lsr#4
294 add $Thh,$Htbl,$nhi
295 and $nhi,$Zll,#0xf @ rem
296 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
297 add $nhi,$nhi,$nhi
298 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
299 eor $Zll,$Tll,$Zll,lsr#4
300 eor $Zll,$Zll,$Zlh,lsl#28
301 eor $Zlh,$Tlh,$Zlh,lsr#4
302 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
303 eor $Zlh,$Zlh,$Zhl,lsl#28
304 eor $Zhl,$Thl,$Zhl,lsr#4
305 eor $Zhl,$Zhl,$Zhh,lsl#28
306 eor $Zhh,$Thh,$Zhh,lsr#4
307 andpl $nhi,$nlo,#0xf0
308 andpl $nlo,$nlo,#0x0f
309 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
310 bpl .Loop
312 &Zsmash();
313 $code.=<<___;
314 #if __ARM_ARCH__>=5
315 ldmia sp!,{r4-r11,pc}
316 #else
317 ldmia sp!,{r4-r11,lr}
318 tst lr,#1
319 moveq pc,lr @ be binary compatible with V4, yet
320 bx lr @ interoperable with Thumb ISA:-)
321 #endif
322 .size gcm_gmult_4bit,.-gcm_gmult_4bit
325 my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
326 my ($t0,$t1,$t2,$t3)=map("q$_",(8..12));
327 my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31));
329 sub clmul64x64 {
330 my ($r,$a,$b)=@_;
331 $code.=<<___;
332 vext.8 $t0#lo, $a, $a, #1 @ A1
333 vmull.p8 $t0, $t0#lo, $b @ F = A1*B
334 vext.8 $r#lo, $b, $b, #1 @ B1
335 vmull.p8 $r, $a, $r#lo @ E = A*B1
336 vext.8 $t1#lo, $a, $a, #2 @ A2
337 vmull.p8 $t1, $t1#lo, $b @ H = A2*B
338 vext.8 $t3#lo, $b, $b, #2 @ B2
339 vmull.p8 $t3, $a, $t3#lo @ G = A*B2
340 vext.8 $t2#lo, $a, $a, #3 @ A3
341 veor $t0, $t0, $r @ L = E + F
342 vmull.p8 $t2, $t2#lo, $b @ J = A3*B
343 vext.8 $r#lo, $b, $b, #3 @ B3
344 veor $t1, $t1, $t3 @ M = G + H
345 vmull.p8 $r, $a, $r#lo @ I = A*B3
346 veor $t0#lo, $t0#lo, $t0#hi @ t0 = (L) (P0 + P1) << 8
347 vand $t0#hi, $t0#hi, $k48
348 vext.8 $t3#lo, $b, $b, #4 @ B4
349 veor $t1#lo, $t1#lo, $t1#hi @ t1 = (M) (P2 + P3) << 16
350 vand $t1#hi, $t1#hi, $k32
351 vmull.p8 $t3, $a, $t3#lo @ K = A*B4
352 veor $t2, $t2, $r @ N = I + J
353 veor $t0#lo, $t0#lo, $t0#hi
354 veor $t1#lo, $t1#lo, $t1#hi
355 veor $t2#lo, $t2#lo, $t2#hi @ t2 = (N) (P4 + P5) << 24
356 vand $t2#hi, $t2#hi, $k16
357 vext.8 $t0, $t0, $t0, #15
358 veor $t3#lo, $t3#lo, $t3#hi @ t3 = (K) (P6 + P7) << 32
359 vmov.i64 $t3#hi, #0
360 vext.8 $t1, $t1, $t1, #14
361 veor $t2#lo, $t2#lo, $t2#hi
362 vmull.p8 $r, $a, $b @ D = A*B
363 vext.8 $t3, $t3, $t3, #12
364 vext.8 $t2, $t2, $t2, #13
365 veor $t0, $t0, $t1
366 veor $t2, $t2, $t3
367 veor $r, $r, $t0
368 veor $r, $r, $t2
372 $code.=<<___;
373 #if __ARM_MAX_ARCH__>=7
374 .arch armv7-a
375 .fpu neon
377 .global gcm_init_neon
378 .type gcm_init_neon,%function
379 .align 4
380 gcm_init_neon:
381 vld1.64 $IN#hi,[r1,:64]! @ load H
382 vmov.i8 $t0,#0xe1
383 vld1.64 $IN#lo,[r1,:64]
384 vshl.i64 $t0#hi,#57
385 vshr.u64 $t0#lo,#63 @ t0=0xc2....01
386 vdup.8 $t1,$IN#hi[7]
387 vshr.u64 $Hlo,$IN#lo,#63
388 vshr.s8 $t1,#7 @ broadcast carry bit
389 vshl.i64 $IN,$IN,#1
390 vand $t0,$t0,$t1
391 vorr $IN#hi,$Hlo @ H<<<=1
392 veor $IN,$IN,$t0 @ twisted H
393 vstmia r0,{$IN}
395 ret @ bx lr
396 .size gcm_init_neon,.-gcm_init_neon
398 .global gcm_gmult_neon
399 .type gcm_gmult_neon,%function
400 .align 4
401 gcm_gmult_neon:
402 vld1.64 $IN#hi,[$Xi,:64]! @ load Xi
403 vld1.64 $IN#lo,[$Xi,:64]!
404 vmov.i64 $k48,#0x0000ffffffffffff
405 vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H
406 vmov.i64 $k32,#0x00000000ffffffff
407 #ifdef __ARMEL__
408 vrev64.8 $IN,$IN
409 #endif
410 vmov.i64 $k16,#0x000000000000ffff
411 veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing
412 mov $len,#16
413 b .Lgmult_neon
414 .size gcm_gmult_neon,.-gcm_gmult_neon
416 .global gcm_ghash_neon
417 .type gcm_ghash_neon,%function
418 .align 4
419 gcm_ghash_neon:
420 vld1.64 $Xl#hi,[$Xi,:64]! @ load Xi
421 vld1.64 $Xl#lo,[$Xi,:64]!
422 vmov.i64 $k48,#0x0000ffffffffffff
423 vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H
424 vmov.i64 $k32,#0x00000000ffffffff
425 #ifdef __ARMEL__
426 vrev64.8 $Xl,$Xl
427 #endif
428 vmov.i64 $k16,#0x000000000000ffff
429 veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing
431 .Loop_neon:
432 vld1.64 $IN#hi,[$inp]! @ load inp
433 vld1.64 $IN#lo,[$inp]!
434 #ifdef __ARMEL__
435 vrev64.8 $IN,$IN
436 #endif
437 veor $IN,$Xl @ inp^=Xi
438 .Lgmult_neon:
440 &clmul64x64 ($Xl,$Hlo,"$IN#lo"); # H.lo·Xi.lo
441 $code.=<<___;
442 veor $IN#lo,$IN#lo,$IN#hi @ Karatsuba pre-processing
444 &clmul64x64 ($Xm,$Hhl,"$IN#lo"); # (H.lo+H.hi)·(Xi.lo+Xi.hi)
445 &clmul64x64 ($Xh,$Hhi,"$IN#hi"); # H.hi·Xi.hi
446 $code.=<<___;
447 veor $Xm,$Xm,$Xl @ Karatsuba post-processing
448 veor $Xm,$Xm,$Xh
449 veor $Xl#hi,$Xl#hi,$Xm#lo
450 veor $Xh#lo,$Xh#lo,$Xm#hi @ Xh|Xl - 256-bit result
452 @ equivalent of reduction_avx from ghash-x86_64.pl
453 vshl.i64 $t1,$Xl,#57 @ 1st phase
454 vshl.i64 $t2,$Xl,#62
455 veor $t2,$t2,$t1 @
456 vshl.i64 $t1,$Xl,#63
457 veor $t2, $t2, $t1 @
458 veor $Xl#hi,$Xl#hi,$t2#lo @
459 veor $Xh#lo,$Xh#lo,$t2#hi
461 vshr.u64 $t2,$Xl,#1 @ 2nd phase
462 veor $Xh,$Xh,$Xl
463 veor $Xl,$Xl,$t2 @
464 vshr.u64 $t2,$t2,#6
465 vshr.u64 $Xl,$Xl,#1 @
466 veor $Xl,$Xl,$Xh @
467 veor $Xl,$Xl,$t2 @
469 subs $len,#16
470 bne .Loop_neon
472 #ifdef __ARMEL__
473 vrev64.8 $Xl,$Xl
474 #endif
475 sub $Xi,#16
476 vst1.64 $Xl#hi,[$Xi,:64]! @ write out Xi
477 vst1.64 $Xl#lo,[$Xi,:64]
479 ret @ bx lr
480 .size gcm_ghash_neon,.-gcm_ghash_neon
481 #endif
484 $code.=<<___;
485 .asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
486 .align 2
489 foreach (split("\n",$code)) {
490 s/\`([^\`]*)\`/eval $1/geo;
492 s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or
493 s/\bret\b/bx lr/go or
494 s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4
496 print $_,"\n";
498 close STDOUT; # enforce flush