OpenSSL 1.0.2f
[tomato.git] / release / src / router / openssl / crypto / bn / bn_gf2m.c
blob2c61da11093f3339b480f8b035702d0c24612a33
1 /* crypto/bn/bn_gf2m.c */
2 /* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
31 * NOTE: This file is licensed pursuant to the OpenSSL license below and may
32 * be modified; but after modifications, the above covenant may no longer
33 * apply! In such cases, the corresponding paragraph ["In addition, Sun
34 * covenants ... causes the infringement."] and this note can be edited out;
35 * but please keep the Sun copyright notice and attribution.
38 /* ====================================================================
39 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in
50 * the documentation and/or other materials provided with the
51 * distribution.
53 * 3. All advertising materials mentioning features or use of this
54 * software must display the following acknowledgment:
55 * "This product includes software developed by the OpenSSL Project
56 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
58 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
59 * endorse or promote products derived from this software without
60 * prior written permission. For written permission, please contact
61 * openssl-core@openssl.org.
63 * 5. Products derived from this software may not be called "OpenSSL"
64 * nor may "OpenSSL" appear in their names without prior written
65 * permission of the OpenSSL Project.
67 * 6. Redistributions of any form whatsoever must retain the following
68 * acknowledgment:
69 * "This product includes software developed by the OpenSSL Project
70 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
72 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
73 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
74 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
75 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
76 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
77 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
78 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
81 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
82 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
83 * OF THE POSSIBILITY OF SUCH DAMAGE.
84 * ====================================================================
86 * This product includes cryptographic software written by Eric Young
87 * (eay@cryptsoft.com). This product includes software written by Tim
88 * Hudson (tjh@cryptsoft.com).
92 #include <assert.h>
93 #include <limits.h>
94 #include <stdio.h>
95 #include "cryptlib.h"
96 #include "bn_lcl.h"
98 #ifndef OPENSSL_NO_EC2M
101 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
102 * fail.
104 # define MAX_ITERATIONS 50
106 static const BN_ULONG SQR_tb[16] = { 0, 1, 4, 5, 16, 17, 20, 21,
107 64, 65, 68, 69, 80, 81, 84, 85
110 /* Platform-specific macros to accelerate squaring. */
111 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
112 # define SQR1(w) \
113 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
114 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
115 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
116 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
117 # define SQR0(w) \
118 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
119 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
120 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
121 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
122 # endif
123 # ifdef THIRTY_TWO_BIT
124 # define SQR1(w) \
125 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
126 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
127 # define SQR0(w) \
128 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
129 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
130 # endif
132 # if !defined(OPENSSL_BN_ASM_GF2m)
134 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
135 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
136 * the variables have the right amount of space allocated.
138 # ifdef THIRTY_TWO_BIT
139 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
140 const BN_ULONG b)
142 register BN_ULONG h, l, s;
143 BN_ULONG tab[8], top2b = a >> 30;
144 register BN_ULONG a1, a2, a4;
146 a1 = a & (0x3FFFFFFF);
147 a2 = a1 << 1;
148 a4 = a2 << 1;
150 tab[0] = 0;
151 tab[1] = a1;
152 tab[2] = a2;
153 tab[3] = a1 ^ a2;
154 tab[4] = a4;
155 tab[5] = a1 ^ a4;
156 tab[6] = a2 ^ a4;
157 tab[7] = a1 ^ a2 ^ a4;
159 s = tab[b & 0x7];
160 l = s;
161 s = tab[b >> 3 & 0x7];
162 l ^= s << 3;
163 h = s >> 29;
164 s = tab[b >> 6 & 0x7];
165 l ^= s << 6;
166 h ^= s >> 26;
167 s = tab[b >> 9 & 0x7];
168 l ^= s << 9;
169 h ^= s >> 23;
170 s = tab[b >> 12 & 0x7];
171 l ^= s << 12;
172 h ^= s >> 20;
173 s = tab[b >> 15 & 0x7];
174 l ^= s << 15;
175 h ^= s >> 17;
176 s = tab[b >> 18 & 0x7];
177 l ^= s << 18;
178 h ^= s >> 14;
179 s = tab[b >> 21 & 0x7];
180 l ^= s << 21;
181 h ^= s >> 11;
182 s = tab[b >> 24 & 0x7];
183 l ^= s << 24;
184 h ^= s >> 8;
185 s = tab[b >> 27 & 0x7];
186 l ^= s << 27;
187 h ^= s >> 5;
188 s = tab[b >> 30];
189 l ^= s << 30;
190 h ^= s >> 2;
192 /* compensate for the top two bits of a */
194 if (top2b & 01) {
195 l ^= b << 30;
196 h ^= b >> 2;
198 if (top2b & 02) {
199 l ^= b << 31;
200 h ^= b >> 1;
203 *r1 = h;
204 *r0 = l;
206 # endif
207 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
208 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
209 const BN_ULONG b)
211 register BN_ULONG h, l, s;
212 BN_ULONG tab[16], top3b = a >> 61;
213 register BN_ULONG a1, a2, a4, a8;
215 a1 = a & (0x1FFFFFFFFFFFFFFFULL);
216 a2 = a1 << 1;
217 a4 = a2 << 1;
218 a8 = a4 << 1;
220 tab[0] = 0;
221 tab[1] = a1;
222 tab[2] = a2;
223 tab[3] = a1 ^ a2;
224 tab[4] = a4;
225 tab[5] = a1 ^ a4;
226 tab[6] = a2 ^ a4;
227 tab[7] = a1 ^ a2 ^ a4;
228 tab[8] = a8;
229 tab[9] = a1 ^ a8;
230 tab[10] = a2 ^ a8;
231 tab[11] = a1 ^ a2 ^ a8;
232 tab[12] = a4 ^ a8;
233 tab[13] = a1 ^ a4 ^ a8;
234 tab[14] = a2 ^ a4 ^ a8;
235 tab[15] = a1 ^ a2 ^ a4 ^ a8;
237 s = tab[b & 0xF];
238 l = s;
239 s = tab[b >> 4 & 0xF];
240 l ^= s << 4;
241 h = s >> 60;
242 s = tab[b >> 8 & 0xF];
243 l ^= s << 8;
244 h ^= s >> 56;
245 s = tab[b >> 12 & 0xF];
246 l ^= s << 12;
247 h ^= s >> 52;
248 s = tab[b >> 16 & 0xF];
249 l ^= s << 16;
250 h ^= s >> 48;
251 s = tab[b >> 20 & 0xF];
252 l ^= s << 20;
253 h ^= s >> 44;
254 s = tab[b >> 24 & 0xF];
255 l ^= s << 24;
256 h ^= s >> 40;
257 s = tab[b >> 28 & 0xF];
258 l ^= s << 28;
259 h ^= s >> 36;
260 s = tab[b >> 32 & 0xF];
261 l ^= s << 32;
262 h ^= s >> 32;
263 s = tab[b >> 36 & 0xF];
264 l ^= s << 36;
265 h ^= s >> 28;
266 s = tab[b >> 40 & 0xF];
267 l ^= s << 40;
268 h ^= s >> 24;
269 s = tab[b >> 44 & 0xF];
270 l ^= s << 44;
271 h ^= s >> 20;
272 s = tab[b >> 48 & 0xF];
273 l ^= s << 48;
274 h ^= s >> 16;
275 s = tab[b >> 52 & 0xF];
276 l ^= s << 52;
277 h ^= s >> 12;
278 s = tab[b >> 56 & 0xF];
279 l ^= s << 56;
280 h ^= s >> 8;
281 s = tab[b >> 60];
282 l ^= s << 60;
283 h ^= s >> 4;
285 /* compensate for the top three bits of a */
287 if (top3b & 01) {
288 l ^= b << 61;
289 h ^= b >> 3;
291 if (top3b & 02) {
292 l ^= b << 62;
293 h ^= b >> 2;
295 if (top3b & 04) {
296 l ^= b << 63;
297 h ^= b >> 1;
300 *r1 = h;
301 *r0 = l;
303 # endif
306 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
307 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
308 * ensure that the variables have the right amount of space allocated.
310 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
311 const BN_ULONG b1, const BN_ULONG b0)
313 BN_ULONG m1, m0;
314 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
315 bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
316 bn_GF2m_mul_1x1(r + 1, r, a0, b0);
317 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
318 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
319 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
320 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
322 # else
323 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
324 BN_ULONG b0);
325 # endif
328 * Add polynomials a and b and store result in r; r could be a or b, a and b
329 * could be equal; r is the bitwise XOR of a and b.
331 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
333 int i;
334 const BIGNUM *at, *bt;
336 bn_check_top(a);
337 bn_check_top(b);
339 if (a->top < b->top) {
340 at = b;
341 bt = a;
342 } else {
343 at = a;
344 bt = b;
347 if (bn_wexpand(r, at->top) == NULL)
348 return 0;
350 for (i = 0; i < bt->top; i++) {
351 r->d[i] = at->d[i] ^ bt->d[i];
353 for (; i < at->top; i++) {
354 r->d[i] = at->d[i];
357 r->top = at->top;
358 bn_correct_top(r);
360 return 1;
364 * Some functions allow for representation of the irreducible polynomials
365 * as an int[], say p. The irreducible f(t) is then of the form:
366 * t^p[0] + t^p[1] + ... + t^p[k]
367 * where m = p[0] > p[1] > ... > p[k] = 0.
370 /* Performs modular reduction of a and store result in r. r could be a. */
371 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
373 int j, k;
374 int n, dN, d0, d1;
375 BN_ULONG zz, *z;
377 bn_check_top(a);
379 if (!p[0]) {
380 /* reduction mod 1 => return 0 */
381 BN_zero(r);
382 return 1;
386 * Since the algorithm does reduction in the r value, if a != r, copy the
387 * contents of a into r so we can do reduction in r.
389 if (a != r) {
390 if (!bn_wexpand(r, a->top))
391 return 0;
392 for (j = 0; j < a->top; j++) {
393 r->d[j] = a->d[j];
395 r->top = a->top;
397 z = r->d;
399 /* start reduction */
400 dN = p[0] / BN_BITS2;
401 for (j = r->top - 1; j > dN;) {
402 zz = z[j];
403 if (z[j] == 0) {
404 j--;
405 continue;
407 z[j] = 0;
409 for (k = 1; p[k] != 0; k++) {
410 /* reducing component t^p[k] */
411 n = p[0] - p[k];
412 d0 = n % BN_BITS2;
413 d1 = BN_BITS2 - d0;
414 n /= BN_BITS2;
415 z[j - n] ^= (zz >> d0);
416 if (d0)
417 z[j - n - 1] ^= (zz << d1);
420 /* reducing component t^0 */
421 n = dN;
422 d0 = p[0] % BN_BITS2;
423 d1 = BN_BITS2 - d0;
424 z[j - n] ^= (zz >> d0);
425 if (d0)
426 z[j - n - 1] ^= (zz << d1);
429 /* final round of reduction */
430 while (j == dN) {
432 d0 = p[0] % BN_BITS2;
433 zz = z[dN] >> d0;
434 if (zz == 0)
435 break;
436 d1 = BN_BITS2 - d0;
438 /* clear up the top d1 bits */
439 if (d0)
440 z[dN] = (z[dN] << d1) >> d1;
441 else
442 z[dN] = 0;
443 z[0] ^= zz; /* reduction t^0 component */
445 for (k = 1; p[k] != 0; k++) {
446 BN_ULONG tmp_ulong;
448 /* reducing component t^p[k] */
449 n = p[k] / BN_BITS2;
450 d0 = p[k] % BN_BITS2;
451 d1 = BN_BITS2 - d0;
452 z[n] ^= (zz << d0);
453 if (d0 && (tmp_ulong = zz >> d1))
454 z[n + 1] ^= tmp_ulong;
459 bn_correct_top(r);
460 return 1;
464 * Performs modular reduction of a by p and store result in r. r could be a.
465 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
466 * function is only provided for convenience; for best performance, use the
467 * BN_GF2m_mod_arr function.
469 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
471 int ret = 0;
472 int arr[6];
473 bn_check_top(a);
474 bn_check_top(p);
475 ret = BN_GF2m_poly2arr(p, arr, sizeof(arr) / sizeof(arr[0]));
476 if (!ret || ret > (int)(sizeof(arr) / sizeof(arr[0]))) {
477 BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
478 return 0;
480 ret = BN_GF2m_mod_arr(r, a, arr);
481 bn_check_top(r);
482 return ret;
486 * Compute the product of two polynomials a and b, reduce modulo p, and store
487 * the result in r. r could be a or b; a could be b.
489 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
490 const int p[], BN_CTX *ctx)
492 int zlen, i, j, k, ret = 0;
493 BIGNUM *s;
494 BN_ULONG x1, x0, y1, y0, zz[4];
496 bn_check_top(a);
497 bn_check_top(b);
499 if (a == b) {
500 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
503 BN_CTX_start(ctx);
504 if ((s = BN_CTX_get(ctx)) == NULL)
505 goto err;
507 zlen = a->top + b->top + 4;
508 if (!bn_wexpand(s, zlen))
509 goto err;
510 s->top = zlen;
512 for (i = 0; i < zlen; i++)
513 s->d[i] = 0;
515 for (j = 0; j < b->top; j += 2) {
516 y0 = b->d[j];
517 y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
518 for (i = 0; i < a->top; i += 2) {
519 x0 = a->d[i];
520 x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
521 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
522 for (k = 0; k < 4; k++)
523 s->d[i + j + k] ^= zz[k];
527 bn_correct_top(s);
528 if (BN_GF2m_mod_arr(r, s, p))
529 ret = 1;
530 bn_check_top(r);
532 err:
533 BN_CTX_end(ctx);
534 return ret;
538 * Compute the product of two polynomials a and b, reduce modulo p, and store
539 * the result in r. r could be a or b; a could equal b. This function calls
540 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
541 * only provided for convenience; for best performance, use the
542 * BN_GF2m_mod_mul_arr function.
544 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
545 const BIGNUM *p, BN_CTX *ctx)
547 int ret = 0;
548 const int max = BN_num_bits(p) + 1;
549 int *arr = NULL;
550 bn_check_top(a);
551 bn_check_top(b);
552 bn_check_top(p);
553 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
554 goto err;
555 ret = BN_GF2m_poly2arr(p, arr, max);
556 if (!ret || ret > max) {
557 BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
558 goto err;
560 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
561 bn_check_top(r);
562 err:
563 if (arr)
564 OPENSSL_free(arr);
565 return ret;
568 /* Square a, reduce the result mod p, and store it in a. r could be a. */
569 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
570 BN_CTX *ctx)
572 int i, ret = 0;
573 BIGNUM *s;
575 bn_check_top(a);
576 BN_CTX_start(ctx);
577 if ((s = BN_CTX_get(ctx)) == NULL)
578 goto err;
579 if (!bn_wexpand(s, 2 * a->top))
580 goto err;
582 for (i = a->top - 1; i >= 0; i--) {
583 s->d[2 * i + 1] = SQR1(a->d[i]);
584 s->d[2 * i] = SQR0(a->d[i]);
587 s->top = 2 * a->top;
588 bn_correct_top(s);
589 if (!BN_GF2m_mod_arr(r, s, p))
590 goto err;
591 bn_check_top(r);
592 ret = 1;
593 err:
594 BN_CTX_end(ctx);
595 return ret;
599 * Square a, reduce the result mod p, and store it in a. r could be a. This
600 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
601 * wrapper function is only provided for convenience; for best performance,
602 * use the BN_GF2m_mod_sqr_arr function.
604 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
606 int ret = 0;
607 const int max = BN_num_bits(p) + 1;
608 int *arr = NULL;
610 bn_check_top(a);
611 bn_check_top(p);
612 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
613 goto err;
614 ret = BN_GF2m_poly2arr(p, arr, max);
615 if (!ret || ret > max) {
616 BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
617 goto err;
619 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
620 bn_check_top(r);
621 err:
622 if (arr)
623 OPENSSL_free(arr);
624 return ret;
628 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
629 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
630 * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
631 * Curve Cryptography Over Binary Fields".
633 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
635 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
636 int ret = 0;
638 bn_check_top(a);
639 bn_check_top(p);
641 BN_CTX_start(ctx);
643 if ((b = BN_CTX_get(ctx)) == NULL)
644 goto err;
645 if ((c = BN_CTX_get(ctx)) == NULL)
646 goto err;
647 if ((u = BN_CTX_get(ctx)) == NULL)
648 goto err;
649 if ((v = BN_CTX_get(ctx)) == NULL)
650 goto err;
652 if (!BN_GF2m_mod(u, a, p))
653 goto err;
654 if (BN_is_zero(u))
655 goto err;
657 if (!BN_copy(v, p))
658 goto err;
659 # if 0
660 if (!BN_one(b))
661 goto err;
663 while (1) {
664 while (!BN_is_odd(u)) {
665 if (BN_is_zero(u))
666 goto err;
667 if (!BN_rshift1(u, u))
668 goto err;
669 if (BN_is_odd(b)) {
670 if (!BN_GF2m_add(b, b, p))
671 goto err;
673 if (!BN_rshift1(b, b))
674 goto err;
677 if (BN_abs_is_word(u, 1))
678 break;
680 if (BN_num_bits(u) < BN_num_bits(v)) {
681 tmp = u;
682 u = v;
683 v = tmp;
684 tmp = b;
685 b = c;
686 c = tmp;
689 if (!BN_GF2m_add(u, u, v))
690 goto err;
691 if (!BN_GF2m_add(b, b, c))
692 goto err;
694 # else
696 int i;
697 int ubits = BN_num_bits(u);
698 int vbits = BN_num_bits(v); /* v is copy of p */
699 int top = p->top;
700 BN_ULONG *udp, *bdp, *vdp, *cdp;
702 if (!bn_wexpand(u, top))
703 goto err;
704 udp = u->d;
705 for (i = u->top; i < top; i++)
706 udp[i] = 0;
707 u->top = top;
708 if (!bn_wexpand(b, top))
709 goto err;
710 bdp = b->d;
711 bdp[0] = 1;
712 for (i = 1; i < top; i++)
713 bdp[i] = 0;
714 b->top = top;
715 if (!bn_wexpand(c, top))
716 goto err;
717 cdp = c->d;
718 for (i = 0; i < top; i++)
719 cdp[i] = 0;
720 c->top = top;
721 vdp = v->d; /* It pays off to "cache" *->d pointers,
722 * because it allows optimizer to be more
723 * aggressive. But we don't have to "cache"
724 * p->d, because *p is declared 'const'... */
725 while (1) {
726 while (ubits && !(udp[0] & 1)) {
727 BN_ULONG u0, u1, b0, b1, mask;
729 u0 = udp[0];
730 b0 = bdp[0];
731 mask = (BN_ULONG)0 - (b0 & 1);
732 b0 ^= p->d[0] & mask;
733 for (i = 0; i < top - 1; i++) {
734 u1 = udp[i + 1];
735 udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
736 u0 = u1;
737 b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
738 bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
739 b0 = b1;
741 udp[i] = u0 >> 1;
742 bdp[i] = b0 >> 1;
743 ubits--;
746 if (ubits <= BN_BITS2) {
747 if (udp[0] == 0) /* poly was reducible */
748 goto err;
749 if (udp[0] == 1)
750 break;
753 if (ubits < vbits) {
754 i = ubits;
755 ubits = vbits;
756 vbits = i;
757 tmp = u;
758 u = v;
759 v = tmp;
760 tmp = b;
761 b = c;
762 c = tmp;
763 udp = vdp;
764 vdp = v->d;
765 bdp = cdp;
766 cdp = c->d;
768 for (i = 0; i < top; i++) {
769 udp[i] ^= vdp[i];
770 bdp[i] ^= cdp[i];
772 if (ubits == vbits) {
773 BN_ULONG ul;
774 int utop = (ubits - 1) / BN_BITS2;
776 while ((ul = udp[utop]) == 0 && utop)
777 utop--;
778 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
781 bn_correct_top(b);
783 # endif
785 if (!BN_copy(r, b))
786 goto err;
787 bn_check_top(r);
788 ret = 1;
790 err:
791 # ifdef BN_DEBUG /* BN_CTX_end would complain about the
792 * expanded form */
793 bn_correct_top(c);
794 bn_correct_top(u);
795 bn_correct_top(v);
796 # endif
797 BN_CTX_end(ctx);
798 return ret;
802 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
803 * This function calls down to the BN_GF2m_mod_inv implementation; this
804 * wrapper function is only provided for convenience; for best performance,
805 * use the BN_GF2m_mod_inv function.
807 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
808 BN_CTX *ctx)
810 BIGNUM *field;
811 int ret = 0;
813 bn_check_top(xx);
814 BN_CTX_start(ctx);
815 if ((field = BN_CTX_get(ctx)) == NULL)
816 goto err;
817 if (!BN_GF2m_arr2poly(p, field))
818 goto err;
820 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
821 bn_check_top(r);
823 err:
824 BN_CTX_end(ctx);
825 return ret;
828 # ifndef OPENSSL_SUN_GF2M_DIV
830 * Divide y by x, reduce modulo p, and store the result in r. r could be x
831 * or y, x could equal y.
833 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
834 const BIGNUM *p, BN_CTX *ctx)
836 BIGNUM *xinv = NULL;
837 int ret = 0;
839 bn_check_top(y);
840 bn_check_top(x);
841 bn_check_top(p);
843 BN_CTX_start(ctx);
844 xinv = BN_CTX_get(ctx);
845 if (xinv == NULL)
846 goto err;
848 if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
849 goto err;
850 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
851 goto err;
852 bn_check_top(r);
853 ret = 1;
855 err:
856 BN_CTX_end(ctx);
857 return ret;
859 # else
861 * Divide y by x, reduce modulo p, and store the result in r. r could be x
862 * or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from
863 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to the
864 * Great Divide".
866 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
867 const BIGNUM *p, BN_CTX *ctx)
869 BIGNUM *a, *b, *u, *v;
870 int ret = 0;
872 bn_check_top(y);
873 bn_check_top(x);
874 bn_check_top(p);
876 BN_CTX_start(ctx);
878 a = BN_CTX_get(ctx);
879 b = BN_CTX_get(ctx);
880 u = BN_CTX_get(ctx);
881 v = BN_CTX_get(ctx);
882 if (v == NULL)
883 goto err;
885 /* reduce x and y mod p */
886 if (!BN_GF2m_mod(u, y, p))
887 goto err;
888 if (!BN_GF2m_mod(a, x, p))
889 goto err;
890 if (!BN_copy(b, p))
891 goto err;
893 while (!BN_is_odd(a)) {
894 if (!BN_rshift1(a, a))
895 goto err;
896 if (BN_is_odd(u))
897 if (!BN_GF2m_add(u, u, p))
898 goto err;
899 if (!BN_rshift1(u, u))
900 goto err;
903 do {
904 if (BN_GF2m_cmp(b, a) > 0) {
905 if (!BN_GF2m_add(b, b, a))
906 goto err;
907 if (!BN_GF2m_add(v, v, u))
908 goto err;
909 do {
910 if (!BN_rshift1(b, b))
911 goto err;
912 if (BN_is_odd(v))
913 if (!BN_GF2m_add(v, v, p))
914 goto err;
915 if (!BN_rshift1(v, v))
916 goto err;
917 } while (!BN_is_odd(b));
918 } else if (BN_abs_is_word(a, 1))
919 break;
920 else {
921 if (!BN_GF2m_add(a, a, b))
922 goto err;
923 if (!BN_GF2m_add(u, u, v))
924 goto err;
925 do {
926 if (!BN_rshift1(a, a))
927 goto err;
928 if (BN_is_odd(u))
929 if (!BN_GF2m_add(u, u, p))
930 goto err;
931 if (!BN_rshift1(u, u))
932 goto err;
933 } while (!BN_is_odd(a));
935 } while (1);
937 if (!BN_copy(r, u))
938 goto err;
939 bn_check_top(r);
940 ret = 1;
942 err:
943 BN_CTX_end(ctx);
944 return ret;
946 # endif
949 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
950 * * or yy, xx could equal yy. This function calls down to the
951 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
952 * convenience; for best performance, use the BN_GF2m_mod_div function.
954 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
955 const int p[], BN_CTX *ctx)
957 BIGNUM *field;
958 int ret = 0;
960 bn_check_top(yy);
961 bn_check_top(xx);
963 BN_CTX_start(ctx);
964 if ((field = BN_CTX_get(ctx)) == NULL)
965 goto err;
966 if (!BN_GF2m_arr2poly(p, field))
967 goto err;
969 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
970 bn_check_top(r);
972 err:
973 BN_CTX_end(ctx);
974 return ret;
978 * Compute the bth power of a, reduce modulo p, and store the result in r. r
979 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
980 * P1363.
982 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
983 const int p[], BN_CTX *ctx)
985 int ret = 0, i, n;
986 BIGNUM *u;
988 bn_check_top(a);
989 bn_check_top(b);
991 if (BN_is_zero(b))
992 return (BN_one(r));
994 if (BN_abs_is_word(b, 1))
995 return (BN_copy(r, a) != NULL);
997 BN_CTX_start(ctx);
998 if ((u = BN_CTX_get(ctx)) == NULL)
999 goto err;
1001 if (!BN_GF2m_mod_arr(u, a, p))
1002 goto err;
1004 n = BN_num_bits(b) - 1;
1005 for (i = n - 1; i >= 0; i--) {
1006 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
1007 goto err;
1008 if (BN_is_bit_set(b, i)) {
1009 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
1010 goto err;
1013 if (!BN_copy(r, u))
1014 goto err;
1015 bn_check_top(r);
1016 ret = 1;
1017 err:
1018 BN_CTX_end(ctx);
1019 return ret;
1023 * Compute the bth power of a, reduce modulo p, and store the result in r. r
1024 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
1025 * implementation; this wrapper function is only provided for convenience;
1026 * for best performance, use the BN_GF2m_mod_exp_arr function.
1028 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
1029 const BIGNUM *p, BN_CTX *ctx)
1031 int ret = 0;
1032 const int max = BN_num_bits(p) + 1;
1033 int *arr = NULL;
1034 bn_check_top(a);
1035 bn_check_top(b);
1036 bn_check_top(p);
1037 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
1038 goto err;
1039 ret = BN_GF2m_poly2arr(p, arr, max);
1040 if (!ret || ret > max) {
1041 BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
1042 goto err;
1044 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
1045 bn_check_top(r);
1046 err:
1047 if (arr)
1048 OPENSSL_free(arr);
1049 return ret;
1053 * Compute the square root of a, reduce modulo p, and store the result in r.
1054 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
1056 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
1057 BN_CTX *ctx)
1059 int ret = 0;
1060 BIGNUM *u;
1062 bn_check_top(a);
1064 if (!p[0]) {
1065 /* reduction mod 1 => return 0 */
1066 BN_zero(r);
1067 return 1;
1070 BN_CTX_start(ctx);
1071 if ((u = BN_CTX_get(ctx)) == NULL)
1072 goto err;
1074 if (!BN_set_bit(u, p[0] - 1))
1075 goto err;
1076 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
1077 bn_check_top(r);
1079 err:
1080 BN_CTX_end(ctx);
1081 return ret;
1085 * Compute the square root of a, reduce modulo p, and store the result in r.
1086 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
1087 * implementation; this wrapper function is only provided for convenience;
1088 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
1090 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1092 int ret = 0;
1093 const int max = BN_num_bits(p) + 1;
1094 int *arr = NULL;
1095 bn_check_top(a);
1096 bn_check_top(p);
1097 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
1098 goto err;
1099 ret = BN_GF2m_poly2arr(p, arr, max);
1100 if (!ret || ret > max) {
1101 BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
1102 goto err;
1104 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
1105 bn_check_top(r);
1106 err:
1107 if (arr)
1108 OPENSSL_free(arr);
1109 return ret;
1113 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1114 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1116 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1117 BN_CTX *ctx)
1119 int ret = 0, count = 0, j;
1120 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1122 bn_check_top(a_);
1124 if (!p[0]) {
1125 /* reduction mod 1 => return 0 */
1126 BN_zero(r);
1127 return 1;
1130 BN_CTX_start(ctx);
1131 a = BN_CTX_get(ctx);
1132 z = BN_CTX_get(ctx);
1133 w = BN_CTX_get(ctx);
1134 if (w == NULL)
1135 goto err;
1137 if (!BN_GF2m_mod_arr(a, a_, p))
1138 goto err;
1140 if (BN_is_zero(a)) {
1141 BN_zero(r);
1142 ret = 1;
1143 goto err;
1146 if (p[0] & 0x1) { /* m is odd */
1147 /* compute half-trace of a */
1148 if (!BN_copy(z, a))
1149 goto err;
1150 for (j = 1; j <= (p[0] - 1) / 2; j++) {
1151 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1152 goto err;
1153 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1154 goto err;
1155 if (!BN_GF2m_add(z, z, a))
1156 goto err;
1159 } else { /* m is even */
1161 rho = BN_CTX_get(ctx);
1162 w2 = BN_CTX_get(ctx);
1163 tmp = BN_CTX_get(ctx);
1164 if (tmp == NULL)
1165 goto err;
1166 do {
1167 if (!BN_rand(rho, p[0], 0, 0))
1168 goto err;
1169 if (!BN_GF2m_mod_arr(rho, rho, p))
1170 goto err;
1171 BN_zero(z);
1172 if (!BN_copy(w, rho))
1173 goto err;
1174 for (j = 1; j <= p[0] - 1; j++) {
1175 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1176 goto err;
1177 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1178 goto err;
1179 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1180 goto err;
1181 if (!BN_GF2m_add(z, z, tmp))
1182 goto err;
1183 if (!BN_GF2m_add(w, w2, rho))
1184 goto err;
1186 count++;
1187 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1188 if (BN_is_zero(w)) {
1189 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
1190 goto err;
1194 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1195 goto err;
1196 if (!BN_GF2m_add(w, z, w))
1197 goto err;
1198 if (BN_GF2m_cmp(w, a)) {
1199 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
1200 goto err;
1203 if (!BN_copy(r, z))
1204 goto err;
1205 bn_check_top(r);
1207 ret = 1;
1209 err:
1210 BN_CTX_end(ctx);
1211 return ret;
1215 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1216 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1217 * implementation; this wrapper function is only provided for convenience;
1218 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1220 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1221 BN_CTX *ctx)
1223 int ret = 0;
1224 const int max = BN_num_bits(p) + 1;
1225 int *arr = NULL;
1226 bn_check_top(a);
1227 bn_check_top(p);
1228 if ((arr = (int *)OPENSSL_malloc(sizeof(int) * max)) == NULL)
1229 goto err;
1230 ret = BN_GF2m_poly2arr(p, arr, max);
1231 if (!ret || ret > max) {
1232 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
1233 goto err;
1235 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1236 bn_check_top(r);
1237 err:
1238 if (arr)
1239 OPENSSL_free(arr);
1240 return ret;
1244 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1245 * x^i) into an array of integers corresponding to the bits with non-zero
1246 * coefficient. Array is terminated with -1. Up to max elements of the array
1247 * will be filled. Return value is total number of array elements that would
1248 * be filled if array was large enough.
1250 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1252 int i, j, k = 0;
1253 BN_ULONG mask;
1255 if (BN_is_zero(a))
1256 return 0;
1258 for (i = a->top - 1; i >= 0; i--) {
1259 if (!a->d[i])
1260 /* skip word if a->d[i] == 0 */
1261 continue;
1262 mask = BN_TBIT;
1263 for (j = BN_BITS2 - 1; j >= 0; j--) {
1264 if (a->d[i] & mask) {
1265 if (k < max)
1266 p[k] = BN_BITS2 * i + j;
1267 k++;
1269 mask >>= 1;
1273 if (k < max) {
1274 p[k] = -1;
1275 k++;
1278 return k;
1282 * Convert the coefficient array representation of a polynomial to a
1283 * bit-string. The array must be terminated by -1.
1285 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1287 int i;
1289 bn_check_top(a);
1290 BN_zero(a);
1291 for (i = 0; p[i] != -1; i++) {
1292 if (BN_set_bit(a, p[i]) == 0)
1293 return 0;
1295 bn_check_top(a);
1297 return 1;
1300 #endif