OpenSSL 1.0.2f
[tomato.git] / release / src / router / openssl / crypto / aes / asm / aes-586.pl
blob60286ecb9645db4c5b9ecd659f2bfb0003735e6e
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # Version 4.3.
12 # You might fail to appreciate this module performance from the first
13 # try. If compared to "vanilla" linux-ia32-icc target, i.e. considered
14 # to be *the* best Intel C compiler without -KPIC, performance appears
15 # to be virtually identical... But try to re-configure with shared
16 # library support... Aha! Intel compiler "suddenly" lags behind by 30%
17 # [on P4, more on others]:-) And if compared to position-independent
18 # code generated by GNU C, this code performs *more* than *twice* as
19 # fast! Yes, all this buzz about PIC means that unlike other hand-
20 # coded implementations, this one was explicitly designed to be safe
21 # to use even in shared library context... This also means that this
22 # code isn't necessarily absolutely fastest "ever," because in order
23 # to achieve position independence an extra register has to be
24 # off-loaded to stack, which affects the benchmark result.
26 # Special note about instruction choice. Do you recall RC4_INT code
27 # performing poorly on P4? It might be the time to figure out why.
28 # RC4_INT code implies effective address calculations in base+offset*4
29 # form. Trouble is that it seems that offset scaling turned to be
30 # critical path... At least eliminating scaling resulted in 2.8x RC4
31 # performance improvement [as you might recall]. As AES code is hungry
32 # for scaling too, I [try to] avoid the latter by favoring off-by-2
33 # shifts and masking the result with 0xFF<<2 instead of "boring" 0xFF.
35 # As was shown by Dean Gaudet <dean@arctic.org>, the above note turned
36 # void. Performance improvement with off-by-2 shifts was observed on
37 # intermediate implementation, which was spilling yet another register
38 # to stack... Final offset*4 code below runs just a tad faster on P4,
39 # but exhibits up to 10% improvement on other cores.
41 # Second version is "monolithic" replacement for aes_core.c, which in
42 # addition to AES_[de|en]crypt implements AES_set_[de|en]cryption_key.
43 # This made it possible to implement little-endian variant of the
44 # algorithm without modifying the base C code. Motivating factor for
45 # the undertaken effort was that it appeared that in tight IA-32
46 # register window little-endian flavor could achieve slightly higher
47 # Instruction Level Parallelism, and it indeed resulted in up to 15%
48 # better performance on most recent ยต-archs...
50 # Third version adds AES_cbc_encrypt implementation, which resulted in
51 # up to 40% performance imrovement of CBC benchmark results. 40% was
52 # observed on P4 core, where "overall" imrovement coefficient, i.e. if
53 # compared to PIC generated by GCC and in CBC mode, was observed to be
54 # as large as 4x:-) CBC performance is virtually identical to ECB now
55 # and on some platforms even better, e.g. 17.6 "small" cycles/byte on
56 # Opteron, because certain function prologues and epilogues are
57 # effectively taken out of the loop...
59 # Version 3.2 implements compressed tables and prefetch of these tables
60 # in CBC[!] mode. Former means that 3/4 of table references are now
61 # misaligned, which unfortunately has negative impact on elder IA-32
62 # implementations, Pentium suffered 30% penalty, PIII - 10%.
64 # Version 3.3 avoids L1 cache aliasing between stack frame and
65 # S-boxes, and 3.4 - L1 cache aliasing even between key schedule. The
66 # latter is achieved by copying the key schedule to controlled place in
67 # stack. This unfortunately has rather strong impact on small block CBC
68 # performance, ~2x deterioration on 16-byte block if compared to 3.3.
70 # Version 3.5 checks if there is L1 cache aliasing between user-supplied
71 # key schedule and S-boxes and abstains from copying the former if
72 # there is no. This allows end-user to consciously retain small block
73 # performance by aligning key schedule in specific manner.
75 # Version 3.6 compresses Td4 to 256 bytes and prefetches it in ECB.
77 # Current ECB performance numbers for 128-bit key in CPU cycles per
78 # processed byte [measure commonly used by AES benchmarkers] are:
80 # small footprint fully unrolled
81 # P4 24 22
82 # AMD K8 20 19
83 # PIII 25 23
84 # Pentium 81 78
86 # Version 3.7 reimplements outer rounds as "compact." Meaning that
87 # first and last rounds reference compact 256 bytes S-box. This means
88 # that first round consumes a lot more CPU cycles and that encrypt
89 # and decrypt performance becomes asymmetric. Encrypt performance
90 # drops by 10-12%, while decrypt - by 20-25%:-( 256 bytes S-box is
91 # aggressively pre-fetched.
93 # Version 4.0 effectively rolls back to 3.6 and instead implements
94 # additional set of functions, _[x86|sse]_AES_[en|de]crypt_compact,
95 # which use exclusively 256 byte S-box. These functions are to be
96 # called in modes not concealing plain text, such as ECB, or when
97 # we're asked to process smaller amount of data [or unconditionally
98 # on hyper-threading CPU]. Currently it's called unconditionally from
99 # AES_[en|de]crypt, which affects all modes, but CBC. CBC routine
100 # still needs to be modified to switch between slower and faster
101 # mode when appropriate... But in either case benchmark landscape
102 # changes dramatically and below numbers are CPU cycles per processed
103 # byte for 128-bit key.
105 # ECB encrypt ECB decrypt CBC large chunk
106 # P4 52[54] 83[95] 23
107 # AMD K8 46[41] 66[70] 18
108 # PIII 41[50] 60[77] 24
109 # Core 2 31[36] 45[64] 18.5
110 # Atom 76[100] 96[138] 60
111 # Pentium 115 150 77
113 # Version 4.1 switches to compact S-box even in key schedule setup.
115 # Version 4.2 prefetches compact S-box in every SSE round or in other
116 # words every cache-line is *guaranteed* to be accessed within ~50
117 # cycles window. Why just SSE? Because it's needed on hyper-threading
118 # CPU! Which is also why it's prefetched with 64 byte stride. Best
119 # part is that it has no negative effect on performance:-)
121 # Version 4.3 implements switch between compact and non-compact block
122 # functions in AES_cbc_encrypt depending on how much data was asked
123 # to be processed in one stroke.
125 ######################################################################
126 # Timing attacks are classified in two classes: synchronous when
127 # attacker consciously initiates cryptographic operation and collects
128 # timing data of various character afterwards, and asynchronous when
129 # malicious code is executed on same CPU simultaneously with AES,
130 # instruments itself and performs statistical analysis of this data.
132 # As far as synchronous attacks go the root to the AES timing
133 # vulnerability is twofold. Firstly, of 256 S-box elements at most 160
134 # are referred to in single 128-bit block operation. Well, in C
135 # implementation with 4 distinct tables it's actually as little as 40
136 # references per 256 elements table, but anyway... Secondly, even
137 # though S-box elements are clustered into smaller amount of cache-
138 # lines, smaller than 160 and even 40, it turned out that for certain
139 # plain-text pattern[s] or simply put chosen plain-text and given key
140 # few cache-lines remain unaccessed during block operation. Now, if
141 # attacker can figure out this access pattern, he can deduct the key
142 # [or at least part of it]. The natural way to mitigate this kind of
143 # attacks is to minimize the amount of cache-lines in S-box and/or
144 # prefetch them to ensure that every one is accessed for more uniform
145 # timing. But note that *if* plain-text was concealed in such way that
146 # input to block function is distributed *uniformly*, then attack
147 # wouldn't apply. Now note that some encryption modes, most notably
148 # CBC, do mask the plain-text in this exact way [secure cipher output
149 # is distributed uniformly]. Yes, one still might find input that
150 # would reveal the information about given key, but if amount of
151 # candidate inputs to be tried is larger than amount of possible key
152 # combinations then attack becomes infeasible. This is why revised
153 # AES_cbc_encrypt "dares" to switch to larger S-box when larger chunk
154 # of data is to be processed in one stroke. The current size limit of
155 # 512 bytes is chosen to provide same [diminishigly low] probability
156 # for cache-line to remain untouched in large chunk operation with
157 # large S-box as for single block operation with compact S-box and
158 # surely needs more careful consideration...
160 # As for asynchronous attacks. There are two flavours: attacker code
161 # being interleaved with AES on hyper-threading CPU at *instruction*
162 # level, and two processes time sharing single core. As for latter.
163 # Two vectors. 1. Given that attacker process has higher priority,
164 # yield execution to process performing AES just before timer fires
165 # off the scheduler, immediately regain control of CPU and analyze the
166 # cache state. For this attack to be efficient attacker would have to
167 # effectively slow down the operation by several *orders* of magnitute,
168 # by ratio of time slice to duration of handful of AES rounds, which
169 # unlikely to remain unnoticed. Not to mention that this also means
170 # that he would spend correspondigly more time to collect enough
171 # statistical data to mount the attack. It's probably appropriate to
172 # say that if adeversary reckons that this attack is beneficial and
173 # risks to be noticed, you probably have larger problems having him
174 # mere opportunity. In other words suggested code design expects you
175 # to preclude/mitigate this attack by overall system security design.
176 # 2. Attacker manages to make his code interrupt driven. In order for
177 # this kind of attack to be feasible, interrupt rate has to be high
178 # enough, again comparable to duration of handful of AES rounds. But
179 # is there interrupt source of such rate? Hardly, not even 1Gbps NIC
180 # generates interrupts at such raging rate...
182 # And now back to the former, hyper-threading CPU or more specifically
183 # Intel P4. Recall that asynchronous attack implies that malicious
184 # code instruments itself. And naturally instrumentation granularity
185 # has be noticeably lower than duration of codepath accessing S-box.
186 # Given that all cache-lines are accessed during that time that is.
187 # Current implementation accesses *all* cache-lines within ~50 cycles
188 # window, which is actually *less* than RDTSC latency on Intel P4!
190 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
191 push(@INC,"${dir}","${dir}../../perlasm");
192 require "x86asm.pl";
194 &asm_init($ARGV[0],"aes-586.pl",$x86only = $ARGV[$#ARGV] eq "386");
195 &static_label("AES_Te");
196 &static_label("AES_Td");
198 $s0="eax";
199 $s1="ebx";
200 $s2="ecx";
201 $s3="edx";
202 $key="edi";
203 $acc="esi";
204 $tbl="ebp";
206 # stack frame layout in _[x86|sse]_AES_* routines, frame is allocated
207 # by caller
208 $__ra=&DWP(0,"esp"); # return address
209 $__s0=&DWP(4,"esp"); # s0 backing store
210 $__s1=&DWP(8,"esp"); # s1 backing store
211 $__s2=&DWP(12,"esp"); # s2 backing store
212 $__s3=&DWP(16,"esp"); # s3 backing store
213 $__key=&DWP(20,"esp"); # pointer to key schedule
214 $__end=&DWP(24,"esp"); # pointer to end of key schedule
215 $__tbl=&DWP(28,"esp"); # %ebp backing store
217 # stack frame layout in AES_[en|crypt] routines, which differs from
218 # above by 4 and overlaps by %ebp backing store
219 $_tbl=&DWP(24,"esp");
220 $_esp=&DWP(28,"esp");
222 sub _data_word() { my $i; while(defined($i=shift)) { &data_word($i,$i); } }
224 $speed_limit=512; # chunks smaller than $speed_limit are
225 # processed with compact routine in CBC mode
226 $small_footprint=1; # $small_footprint=1 code is ~5% slower [on
227 # recent ยต-archs], but ~5 times smaller!
228 # I favor compact code to minimize cache
229 # contention and in hope to "collect" 5% back
230 # in real-life applications...
232 $vertical_spin=0; # shift "verticaly" defaults to 0, because of
233 # its proof-of-concept status...
234 # Note that there is no decvert(), as well as last encryption round is
235 # performed with "horizontal" shifts. This is because this "vertical"
236 # implementation [one which groups shifts on a given $s[i] to form a
237 # "column," unlike "horizontal" one, which groups shifts on different
238 # $s[i] to form a "row"] is work in progress. It was observed to run
239 # few percents faster on Intel cores, but not AMD. On AMD K8 core it's
240 # whole 12% slower:-( So we face a trade-off... Shall it be resolved
241 # some day? Till then the code is considered experimental and by
242 # default remains dormant...
244 sub encvert()
245 { my ($te,@s) = @_;
246 my ($v0,$v1) = ($acc,$key);
248 &mov ($v0,$s[3]); # copy s3
249 &mov (&DWP(4,"esp"),$s[2]); # save s2
250 &mov ($v1,$s[0]); # copy s0
251 &mov (&DWP(8,"esp"),$s[1]); # save s1
253 &movz ($s[2],&HB($s[0]));
254 &and ($s[0],0xFF);
255 &mov ($s[0],&DWP(0,$te,$s[0],8)); # s0>>0
256 &shr ($v1,16);
257 &mov ($s[3],&DWP(3,$te,$s[2],8)); # s0>>8
258 &movz ($s[1],&HB($v1));
259 &and ($v1,0xFF);
260 &mov ($s[2],&DWP(2,$te,$v1,8)); # s0>>16
261 &mov ($v1,$v0);
262 &mov ($s[1],&DWP(1,$te,$s[1],8)); # s0>>24
264 &and ($v0,0xFF);
265 &xor ($s[3],&DWP(0,$te,$v0,8)); # s3>>0
266 &movz ($v0,&HB($v1));
267 &shr ($v1,16);
268 &xor ($s[2],&DWP(3,$te,$v0,8)); # s3>>8
269 &movz ($v0,&HB($v1));
270 &and ($v1,0xFF);
271 &xor ($s[1],&DWP(2,$te,$v1,8)); # s3>>16
272 &mov ($v1,&DWP(4,"esp")); # restore s2
273 &xor ($s[0],&DWP(1,$te,$v0,8)); # s3>>24
275 &mov ($v0,$v1);
276 &and ($v1,0xFF);
277 &xor ($s[2],&DWP(0,$te,$v1,8)); # s2>>0
278 &movz ($v1,&HB($v0));
279 &shr ($v0,16);
280 &xor ($s[1],&DWP(3,$te,$v1,8)); # s2>>8
281 &movz ($v1,&HB($v0));
282 &and ($v0,0xFF);
283 &xor ($s[0],&DWP(2,$te,$v0,8)); # s2>>16
284 &mov ($v0,&DWP(8,"esp")); # restore s1
285 &xor ($s[3],&DWP(1,$te,$v1,8)); # s2>>24
287 &mov ($v1,$v0);
288 &and ($v0,0xFF);
289 &xor ($s[1],&DWP(0,$te,$v0,8)); # s1>>0
290 &movz ($v0,&HB($v1));
291 &shr ($v1,16);
292 &xor ($s[0],&DWP(3,$te,$v0,8)); # s1>>8
293 &movz ($v0,&HB($v1));
294 &and ($v1,0xFF);
295 &xor ($s[3],&DWP(2,$te,$v1,8)); # s1>>16
296 &mov ($key,$__key); # reincarnate v1 as key
297 &xor ($s[2],&DWP(1,$te,$v0,8)); # s1>>24
300 # Another experimental routine, which features "horizontal spin," but
301 # eliminates one reference to stack. Strangely enough runs slower...
302 sub enchoriz()
303 { my ($v0,$v1) = ($key,$acc);
305 &movz ($v0,&LB($s0)); # 3, 2, 1, 0*
306 &rotr ($s2,8); # 8,11,10, 9
307 &mov ($v1,&DWP(0,$te,$v0,8)); # 0
308 &movz ($v0,&HB($s1)); # 7, 6, 5*, 4
309 &rotr ($s3,16); # 13,12,15,14
310 &xor ($v1,&DWP(3,$te,$v0,8)); # 5
311 &movz ($v0,&HB($s2)); # 8,11,10*, 9
312 &rotr ($s0,16); # 1, 0, 3, 2
313 &xor ($v1,&DWP(2,$te,$v0,8)); # 10
314 &movz ($v0,&HB($s3)); # 13,12,15*,14
315 &xor ($v1,&DWP(1,$te,$v0,8)); # 15, t[0] collected
316 &mov ($__s0,$v1); # t[0] saved
318 &movz ($v0,&LB($s1)); # 7, 6, 5, 4*
319 &shr ($s1,16); # -, -, 7, 6
320 &mov ($v1,&DWP(0,$te,$v0,8)); # 4
321 &movz ($v0,&LB($s3)); # 13,12,15,14*
322 &xor ($v1,&DWP(2,$te,$v0,8)); # 14
323 &movz ($v0,&HB($s0)); # 1, 0, 3*, 2
324 &and ($s3,0xffff0000); # 13,12, -, -
325 &xor ($v1,&DWP(1,$te,$v0,8)); # 3
326 &movz ($v0,&LB($s2)); # 8,11,10, 9*
327 &or ($s3,$s1); # 13,12, 7, 6
328 &xor ($v1,&DWP(3,$te,$v0,8)); # 9, t[1] collected
329 &mov ($s1,$v1); # s[1]=t[1]
331 &movz ($v0,&LB($s0)); # 1, 0, 3, 2*
332 &shr ($s2,16); # -, -, 8,11
333 &mov ($v1,&DWP(2,$te,$v0,8)); # 2
334 &movz ($v0,&HB($s3)); # 13,12, 7*, 6
335 &xor ($v1,&DWP(1,$te,$v0,8)); # 7
336 &movz ($v0,&HB($s2)); # -, -, 8*,11
337 &xor ($v1,&DWP(0,$te,$v0,8)); # 8
338 &mov ($v0,$s3);
339 &shr ($v0,24); # 13
340 &xor ($v1,&DWP(3,$te,$v0,8)); # 13, t[2] collected
342 &movz ($v0,&LB($s2)); # -, -, 8,11*
343 &shr ($s0,24); # 1*
344 &mov ($s2,&DWP(1,$te,$v0,8)); # 11
345 &xor ($s2,&DWP(3,$te,$s0,8)); # 1
346 &mov ($s0,$__s0); # s[0]=t[0]
347 &movz ($v0,&LB($s3)); # 13,12, 7, 6*
348 &shr ($s3,16); # , ,13,12
349 &xor ($s2,&DWP(2,$te,$v0,8)); # 6
350 &mov ($key,$__key); # reincarnate v0 as key
351 &and ($s3,0xff); # , ,13,12*
352 &mov ($s3,&DWP(0,$te,$s3,8)); # 12
353 &xor ($s3,$s2); # s[2]=t[3] collected
354 &mov ($s2,$v1); # s[2]=t[2]
357 # More experimental code... SSE one... Even though this one eliminates
358 # *all* references to stack, it's not faster...
359 sub sse_encbody()
361 &movz ($acc,&LB("eax")); # 0
362 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 0
363 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2
364 &movz ("edx",&HB("eax")); # 1
365 &mov ("edx",&DWP(3,$tbl,"edx",8)); # 1
366 &shr ("eax",16); # 5, 4
368 &movz ($acc,&LB("ebx")); # 10
369 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 10
370 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8
371 &movz ($acc,&HB("ebx")); # 11
372 &xor ("edx",&DWP(1,$tbl,$acc,8)); # 11
373 &shr ("ebx",16); # 15,14
375 &movz ($acc,&HB("eax")); # 5
376 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 5
377 &movq ("mm3",QWP(16,$key));
378 &movz ($acc,&HB("ebx")); # 15
379 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 15
380 &movd ("mm0","ecx"); # t[0] collected
382 &movz ($acc,&LB("eax")); # 4
383 &mov ("ecx",&DWP(0,$tbl,$acc,8)); # 4
384 &movd ("eax","mm2"); # 7, 6, 3, 2
385 &movz ($acc,&LB("ebx")); # 14
386 &xor ("ecx",&DWP(2,$tbl,$acc,8)); # 14
387 &movd ("ebx","mm6"); # 13,12, 9, 8
389 &movz ($acc,&HB("eax")); # 3
390 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 3
391 &movz ($acc,&HB("ebx")); # 9
392 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 9
393 &movd ("mm1","ecx"); # t[1] collected
395 &movz ($acc,&LB("eax")); # 2
396 &mov ("ecx",&DWP(2,$tbl,$acc,8)); # 2
397 &shr ("eax",16); # 7, 6
398 &punpckldq ("mm0","mm1"); # t[0,1] collected
399 &movz ($acc,&LB("ebx")); # 8
400 &xor ("ecx",&DWP(0,$tbl,$acc,8)); # 8
401 &shr ("ebx",16); # 13,12
403 &movz ($acc,&HB("eax")); # 7
404 &xor ("ecx",&DWP(1,$tbl,$acc,8)); # 7
405 &pxor ("mm0","mm3");
406 &movz ("eax",&LB("eax")); # 6
407 &xor ("edx",&DWP(2,$tbl,"eax",8)); # 6
408 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0
409 &movz ($acc,&HB("ebx")); # 13
410 &xor ("ecx",&DWP(3,$tbl,$acc,8)); # 13
411 &xor ("ecx",&DWP(24,$key)); # t[2]
412 &movd ("mm4","ecx"); # t[2] collected
413 &movz ("ebx",&LB("ebx")); # 12
414 &xor ("edx",&DWP(0,$tbl,"ebx",8)); # 12
415 &shr ("ecx",16);
416 &movd ("eax","mm1"); # 5, 4, 1, 0
417 &mov ("ebx",&DWP(28,$key)); # t[3]
418 &xor ("ebx","edx");
419 &movd ("mm5","ebx"); # t[3] collected
420 &and ("ebx",0xffff0000);
421 &or ("ebx","ecx");
423 &punpckldq ("mm4","mm5"); # t[2,3] collected
426 ######################################################################
427 # "Compact" block function
428 ######################################################################
430 sub enccompact()
431 { my $Fn = \&mov;
432 while ($#_>5) { pop(@_); $Fn=sub{}; }
433 my ($i,$te,@s)=@_;
434 my $tmp = $key;
435 my $out = $i==3?$s[0]:$acc;
437 # $Fn is used in first compact round and its purpose is to
438 # void restoration of some values from stack, so that after
439 # 4xenccompact with extra argument $key value is left there...
440 if ($i==3) { &$Fn ($key,$__key); }##%edx
441 else { &mov ($out,$s[0]); }
442 &and ($out,0xFF);
443 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
444 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
445 &movz ($out,&BP(-128,$te,$out,1));
447 if ($i==3) { $tmp=$s[1]; }##%eax
448 &movz ($tmp,&HB($s[1]));
449 &movz ($tmp,&BP(-128,$te,$tmp,1));
450 &shl ($tmp,8);
451 &xor ($out,$tmp);
453 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
454 else { &mov ($tmp,$s[2]);
455 &shr ($tmp,16); }
456 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
457 &and ($tmp,0xFF);
458 &movz ($tmp,&BP(-128,$te,$tmp,1));
459 &shl ($tmp,16);
460 &xor ($out,$tmp);
462 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
463 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
464 else { &mov ($tmp,$s[3]);
465 &shr ($tmp,24); }
466 &movz ($tmp,&BP(-128,$te,$tmp,1));
467 &shl ($tmp,24);
468 &xor ($out,$tmp);
469 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
470 if ($i==3) { &mov ($s[3],$acc); }
471 &comment();
474 sub enctransform()
475 { my @s = ($s0,$s1,$s2,$s3);
476 my $i = shift;
477 my $tmp = $tbl;
478 my $r2 = $key ;
480 &and ($tmp,$s[$i]);
481 &lea ($r2,&DWP(0,$s[$i],$s[$i]));
482 &mov ($acc,$tmp);
483 &shr ($tmp,7);
484 &and ($r2,0xfefefefe);
485 &sub ($acc,$tmp);
486 &mov ($tmp,$s[$i]);
487 &and ($acc,0x1b1b1b1b);
488 &rotr ($tmp,16);
489 &xor ($acc,$r2); # r2
490 &mov ($r2,$s[$i]);
492 &xor ($s[$i],$acc); # r0 ^ r2
493 &rotr ($r2,16+8);
494 &xor ($acc,$tmp);
495 &rotl ($s[$i],24);
496 &xor ($acc,$r2);
497 &mov ($tmp,0x80808080) if ($i!=1);
498 &xor ($s[$i],$acc); # ROTATE(r2^r0,24) ^ r2
501 &function_begin_B("_x86_AES_encrypt_compact");
502 # note that caller is expected to allocate stack frame for me!
503 &mov ($__key,$key); # save key
505 &xor ($s0,&DWP(0,$key)); # xor with key
506 &xor ($s1,&DWP(4,$key));
507 &xor ($s2,&DWP(8,$key));
508 &xor ($s3,&DWP(12,$key));
510 &mov ($acc,&DWP(240,$key)); # load key->rounds
511 &lea ($acc,&DWP(-2,$acc,$acc));
512 &lea ($acc,&DWP(0,$key,$acc,8));
513 &mov ($__end,$acc); # end of key schedule
515 # prefetch Te4
516 &mov ($key,&DWP(0-128,$tbl));
517 &mov ($acc,&DWP(32-128,$tbl));
518 &mov ($key,&DWP(64-128,$tbl));
519 &mov ($acc,&DWP(96-128,$tbl));
520 &mov ($key,&DWP(128-128,$tbl));
521 &mov ($acc,&DWP(160-128,$tbl));
522 &mov ($key,&DWP(192-128,$tbl));
523 &mov ($acc,&DWP(224-128,$tbl));
525 &set_label("loop",16);
527 &enccompact(0,$tbl,$s0,$s1,$s2,$s3,1);
528 &enccompact(1,$tbl,$s1,$s2,$s3,$s0,1);
529 &enccompact(2,$tbl,$s2,$s3,$s0,$s1,1);
530 &enccompact(3,$tbl,$s3,$s0,$s1,$s2,1);
531 &mov ($tbl,0x80808080);
532 &enctransform(2);
533 &enctransform(3);
534 &enctransform(0);
535 &enctransform(1);
536 &mov ($key,$__key);
537 &mov ($tbl,$__tbl);
538 &add ($key,16); # advance rd_key
539 &xor ($s0,&DWP(0,$key));
540 &xor ($s1,&DWP(4,$key));
541 &xor ($s2,&DWP(8,$key));
542 &xor ($s3,&DWP(12,$key));
544 &cmp ($key,$__end);
545 &mov ($__key,$key);
546 &jb (&label("loop"));
548 &enccompact(0,$tbl,$s0,$s1,$s2,$s3);
549 &enccompact(1,$tbl,$s1,$s2,$s3,$s0);
550 &enccompact(2,$tbl,$s2,$s3,$s0,$s1);
551 &enccompact(3,$tbl,$s3,$s0,$s1,$s2);
553 &xor ($s0,&DWP(16,$key));
554 &xor ($s1,&DWP(20,$key));
555 &xor ($s2,&DWP(24,$key));
556 &xor ($s3,&DWP(28,$key));
558 &ret ();
559 &function_end_B("_x86_AES_encrypt_compact");
561 ######################################################################
562 # "Compact" SSE block function.
563 ######################################################################
565 # Performance is not actually extraordinary in comparison to pure
566 # x86 code. In particular encrypt performance is virtually the same.
567 # Decrypt performance on the other hand is 15-20% better on newer
568 # ยต-archs [but we're thankful for *any* improvement here], and ~50%
569 # better on PIII:-) And additionally on the pros side this code
570 # eliminates redundant references to stack and thus relieves/
571 # minimizes the pressure on the memory bus.
573 # MMX register layout lsb
574 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
575 # | mm4 | mm0 |
576 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
577 # | s3 | s2 | s1 | s0 |
578 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
579 # |15|14|13|12|11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0|
580 # +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
582 # Indexes translate as s[N/4]>>(8*(N%4)), e.g. 5 means s1>>8.
583 # In this terms encryption and decryption "compact" permutation
584 # matrices can be depicted as following:
586 # encryption lsb # decryption lsb
587 # +----++----+----+----+----+ # +----++----+----+----+----+
588 # | t0 || 15 | 10 | 5 | 0 | # | t0 || 7 | 10 | 13 | 0 |
589 # +----++----+----+----+----+ # +----++----+----+----+----+
590 # | t1 || 3 | 14 | 9 | 4 | # | t1 || 11 | 14 | 1 | 4 |
591 # +----++----+----+----+----+ # +----++----+----+----+----+
592 # | t2 || 7 | 2 | 13 | 8 | # | t2 || 15 | 2 | 5 | 8 |
593 # +----++----+----+----+----+ # +----++----+----+----+----+
594 # | t3 || 11 | 6 | 1 | 12 | # | t3 || 3 | 6 | 9 | 12 |
595 # +----++----+----+----+----+ # +----++----+----+----+----+
597 ######################################################################
598 # Why not xmm registers? Short answer. It was actually tested and
599 # was not any faster, but *contrary*, most notably on Intel CPUs.
600 # Longer answer. Main advantage of using mm registers is that movd
601 # latency is lower, especially on Intel P4. While arithmetic
602 # instructions are twice as many, they can be scheduled every cycle
603 # and not every second one when they are operating on xmm register,
604 # so that "arithmetic throughput" remains virtually the same. And
605 # finally the code can be executed even on elder SSE-only CPUs:-)
607 sub sse_enccompact()
609 &pshufw ("mm1","mm0",0x08); # 5, 4, 1, 0
610 &pshufw ("mm5","mm4",0x0d); # 15,14,11,10
611 &movd ("eax","mm1"); # 5, 4, 1, 0
612 &movd ("ebx","mm5"); # 15,14,11,10
613 &mov ($__key,$key);
615 &movz ($acc,&LB("eax")); # 0
616 &movz ("edx",&HB("eax")); # 1
617 &pshufw ("mm2","mm0",0x0d); # 7, 6, 3, 2
618 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0
619 &movz ($key,&LB("ebx")); # 10
620 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1
621 &shr ("eax",16); # 5, 4
622 &shl ("edx",8); # 1
624 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10
625 &movz ($key,&HB("ebx")); # 11
626 &shl ($acc,16); # 10
627 &pshufw ("mm6","mm4",0x08); # 13,12, 9, 8
628 &or ("ecx",$acc); # 10
629 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11
630 &movz ($key,&HB("eax")); # 5
631 &shl ($acc,24); # 11
632 &shr ("ebx",16); # 15,14
633 &or ("edx",$acc); # 11
635 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5
636 &movz ($key,&HB("ebx")); # 15
637 &shl ($acc,8); # 5
638 &or ("ecx",$acc); # 5
639 &movz ($acc,&BP(-128,$tbl,$key,1)); # 15
640 &movz ($key,&LB("eax")); # 4
641 &shl ($acc,24); # 15
642 &or ("ecx",$acc); # 15
644 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4
645 &movz ($key,&LB("ebx")); # 14
646 &movd ("eax","mm2"); # 7, 6, 3, 2
647 &movd ("mm0","ecx"); # t[0] collected
648 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 14
649 &movz ($key,&HB("eax")); # 3
650 &shl ("ecx",16); # 14
651 &movd ("ebx","mm6"); # 13,12, 9, 8
652 &or ("ecx",$acc); # 14
654 &movz ($acc,&BP(-128,$tbl,$key,1)); # 3
655 &movz ($key,&HB("ebx")); # 9
656 &shl ($acc,24); # 3
657 &or ("ecx",$acc); # 3
658 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9
659 &movz ($key,&LB("ebx")); # 8
660 &shl ($acc,8); # 9
661 &shr ("ebx",16); # 13,12
662 &or ("ecx",$acc); # 9
664 &movz ($acc,&BP(-128,$tbl,$key,1)); # 8
665 &movz ($key,&LB("eax")); # 2
666 &shr ("eax",16); # 7, 6
667 &movd ("mm1","ecx"); # t[1] collected
668 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 2
669 &movz ($key,&HB("eax")); # 7
670 &shl ("ecx",16); # 2
671 &and ("eax",0xff); # 6
672 &or ("ecx",$acc); # 2
674 &punpckldq ("mm0","mm1"); # t[0,1] collected
676 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7
677 &movz ($key,&HB("ebx")); # 13
678 &shl ($acc,24); # 7
679 &and ("ebx",0xff); # 12
680 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 6
681 &or ("ecx",$acc); # 7
682 &shl ("eax",16); # 6
683 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13
684 &or ("edx","eax"); # 6
685 &shl ($acc,8); # 13
686 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 12
687 &or ("ecx",$acc); # 13
688 &or ("edx","ebx"); # 12
689 &mov ($key,$__key);
690 &movd ("mm4","ecx"); # t[2] collected
691 &movd ("mm5","edx"); # t[3] collected
693 &punpckldq ("mm4","mm5"); # t[2,3] collected
696 if (!$x86only) {
697 &function_begin_B("_sse_AES_encrypt_compact");
698 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0
699 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8
701 # note that caller is expected to allocate stack frame for me!
702 &mov ($acc,&DWP(240,$key)); # load key->rounds
703 &lea ($acc,&DWP(-2,$acc,$acc));
704 &lea ($acc,&DWP(0,$key,$acc,8));
705 &mov ($__end,$acc); # end of key schedule
707 &mov ($s0,0x1b1b1b1b); # magic constant
708 &mov (&DWP(8,"esp"),$s0);
709 &mov (&DWP(12,"esp"),$s0);
711 # prefetch Te4
712 &mov ($s0,&DWP(0-128,$tbl));
713 &mov ($s1,&DWP(32-128,$tbl));
714 &mov ($s2,&DWP(64-128,$tbl));
715 &mov ($s3,&DWP(96-128,$tbl));
716 &mov ($s0,&DWP(128-128,$tbl));
717 &mov ($s1,&DWP(160-128,$tbl));
718 &mov ($s2,&DWP(192-128,$tbl));
719 &mov ($s3,&DWP(224-128,$tbl));
721 &set_label("loop",16);
722 &sse_enccompact();
723 &add ($key,16);
724 &cmp ($key,$__end);
725 &ja (&label("out"));
727 &movq ("mm2",&QWP(8,"esp"));
728 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
729 &movq ("mm1","mm0"); &movq ("mm5","mm4"); # r0
730 &pcmpgtb("mm3","mm0"); &pcmpgtb("mm7","mm4");
731 &pand ("mm3","mm2"); &pand ("mm7","mm2");
732 &pshufw ("mm2","mm0",0xb1); &pshufw ("mm6","mm4",0xb1);# ROTATE(r0,16)
733 &paddb ("mm0","mm0"); &paddb ("mm4","mm4");
734 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # = r2
735 &pshufw ("mm3","mm2",0xb1); &pshufw ("mm7","mm6",0xb1);# r0
736 &pxor ("mm1","mm0"); &pxor ("mm5","mm4"); # r0^r2
737 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(r0,16)
739 &movq ("mm2","mm3"); &movq ("mm6","mm7");
740 &pslld ("mm3",8); &pslld ("mm7",8);
741 &psrld ("mm2",24); &psrld ("mm6",24);
742 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= r0<<8
743 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= r0>>24
745 &movq ("mm3","mm1"); &movq ("mm7","mm5");
746 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key));
747 &psrld ("mm1",8); &psrld ("mm5",8);
748 &mov ($s0,&DWP(0-128,$tbl));
749 &pslld ("mm3",24); &pslld ("mm7",24);
750 &mov ($s1,&DWP(64-128,$tbl));
751 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= (r2^r0)<<8
752 &mov ($s2,&DWP(128-128,$tbl));
753 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= (r2^r0)>>24
754 &mov ($s3,&DWP(192-128,$tbl));
756 &pxor ("mm0","mm2"); &pxor ("mm4","mm6");
757 &jmp (&label("loop"));
759 &set_label("out",16);
760 &pxor ("mm0",&QWP(0,$key));
761 &pxor ("mm4",&QWP(8,$key));
763 &ret ();
764 &function_end_B("_sse_AES_encrypt_compact");
767 ######################################################################
768 # Vanilla block function.
769 ######################################################################
771 sub encstep()
772 { my ($i,$te,@s) = @_;
773 my $tmp = $key;
774 my $out = $i==3?$s[0]:$acc;
776 # lines marked with #%e?x[i] denote "reordered" instructions...
777 if ($i==3) { &mov ($key,$__key); }##%edx
778 else { &mov ($out,$s[0]);
779 &and ($out,0xFF); }
780 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
781 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
782 &mov ($out,&DWP(0,$te,$out,8));
784 if ($i==3) { $tmp=$s[1]; }##%eax
785 &movz ($tmp,&HB($s[1]));
786 &xor ($out,&DWP(3,$te,$tmp,8));
788 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
789 else { &mov ($tmp,$s[2]);
790 &shr ($tmp,16); }
791 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
792 &and ($tmp,0xFF);
793 &xor ($out,&DWP(2,$te,$tmp,8));
795 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
796 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
797 else { &mov ($tmp,$s[3]);
798 &shr ($tmp,24) }
799 &xor ($out,&DWP(1,$te,$tmp,8));
800 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
801 if ($i==3) { &mov ($s[3],$acc); }
802 &comment();
805 sub enclast()
806 { my ($i,$te,@s)=@_;
807 my $tmp = $key;
808 my $out = $i==3?$s[0]:$acc;
810 if ($i==3) { &mov ($key,$__key); }##%edx
811 else { &mov ($out,$s[0]); }
812 &and ($out,0xFF);
813 if ($i==1) { &shr ($s[0],16); }#%ebx[1]
814 if ($i==2) { &shr ($s[0],24); }#%ecx[2]
815 &mov ($out,&DWP(2,$te,$out,8));
816 &and ($out,0x000000ff);
818 if ($i==3) { $tmp=$s[1]; }##%eax
819 &movz ($tmp,&HB($s[1]));
820 &mov ($tmp,&DWP(0,$te,$tmp,8));
821 &and ($tmp,0x0000ff00);
822 &xor ($out,$tmp);
824 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$__s0); }##%ebx
825 else { &mov ($tmp,$s[2]);
826 &shr ($tmp,16); }
827 if ($i==2) { &and ($s[1],0xFF); }#%edx[2]
828 &and ($tmp,0xFF);
829 &mov ($tmp,&DWP(0,$te,$tmp,8));
830 &and ($tmp,0x00ff0000);
831 &xor ($out,$tmp);
833 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }##%ecx
834 elsif($i==2){ &movz ($tmp,&HB($s[3])); }#%ebx[2]
835 else { &mov ($tmp,$s[3]);
836 &shr ($tmp,24); }
837 &mov ($tmp,&DWP(2,$te,$tmp,8));
838 &and ($tmp,0xff000000);
839 &xor ($out,$tmp);
840 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
841 if ($i==3) { &mov ($s[3],$acc); }
844 &function_begin_B("_x86_AES_encrypt");
845 if ($vertical_spin) {
846 # I need high parts of volatile registers to be accessible...
847 &exch ($s1="edi",$key="ebx");
848 &mov ($s2="esi",$acc="ecx");
851 # note that caller is expected to allocate stack frame for me!
852 &mov ($__key,$key); # save key
854 &xor ($s0,&DWP(0,$key)); # xor with key
855 &xor ($s1,&DWP(4,$key));
856 &xor ($s2,&DWP(8,$key));
857 &xor ($s3,&DWP(12,$key));
859 &mov ($acc,&DWP(240,$key)); # load key->rounds
861 if ($small_footprint) {
862 &lea ($acc,&DWP(-2,$acc,$acc));
863 &lea ($acc,&DWP(0,$key,$acc,8));
864 &mov ($__end,$acc); # end of key schedule
866 &set_label("loop",16);
867 if ($vertical_spin) {
868 &encvert($tbl,$s0,$s1,$s2,$s3);
869 } else {
870 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
871 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
872 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
873 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
875 &add ($key,16); # advance rd_key
876 &xor ($s0,&DWP(0,$key));
877 &xor ($s1,&DWP(4,$key));
878 &xor ($s2,&DWP(8,$key));
879 &xor ($s3,&DWP(12,$key));
880 &cmp ($key,$__end);
881 &mov ($__key,$key);
882 &jb (&label("loop"));
884 else {
885 &cmp ($acc,10);
886 &jle (&label("10rounds"));
887 &cmp ($acc,12);
888 &jle (&label("12rounds"));
890 &set_label("14rounds",4);
891 for ($i=1;$i<3;$i++) {
892 if ($vertical_spin) {
893 &encvert($tbl,$s0,$s1,$s2,$s3);
894 } else {
895 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
896 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
897 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
898 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
900 &xor ($s0,&DWP(16*$i+0,$key));
901 &xor ($s1,&DWP(16*$i+4,$key));
902 &xor ($s2,&DWP(16*$i+8,$key));
903 &xor ($s3,&DWP(16*$i+12,$key));
905 &add ($key,32);
906 &mov ($__key,$key); # advance rd_key
907 &set_label("12rounds",4);
908 for ($i=1;$i<3;$i++) {
909 if ($vertical_spin) {
910 &encvert($tbl,$s0,$s1,$s2,$s3);
911 } else {
912 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
913 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
914 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
915 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
917 &xor ($s0,&DWP(16*$i+0,$key));
918 &xor ($s1,&DWP(16*$i+4,$key));
919 &xor ($s2,&DWP(16*$i+8,$key));
920 &xor ($s3,&DWP(16*$i+12,$key));
922 &add ($key,32);
923 &mov ($__key,$key); # advance rd_key
924 &set_label("10rounds",4);
925 for ($i=1;$i<10;$i++) {
926 if ($vertical_spin) {
927 &encvert($tbl,$s0,$s1,$s2,$s3);
928 } else {
929 &encstep(0,$tbl,$s0,$s1,$s2,$s3);
930 &encstep(1,$tbl,$s1,$s2,$s3,$s0);
931 &encstep(2,$tbl,$s2,$s3,$s0,$s1);
932 &encstep(3,$tbl,$s3,$s0,$s1,$s2);
934 &xor ($s0,&DWP(16*$i+0,$key));
935 &xor ($s1,&DWP(16*$i+4,$key));
936 &xor ($s2,&DWP(16*$i+8,$key));
937 &xor ($s3,&DWP(16*$i+12,$key));
941 if ($vertical_spin) {
942 # "reincarnate" some registers for "horizontal" spin...
943 &mov ($s1="ebx",$key="edi");
944 &mov ($s2="ecx",$acc="esi");
946 &enclast(0,$tbl,$s0,$s1,$s2,$s3);
947 &enclast(1,$tbl,$s1,$s2,$s3,$s0);
948 &enclast(2,$tbl,$s2,$s3,$s0,$s1);
949 &enclast(3,$tbl,$s3,$s0,$s1,$s2);
951 &add ($key,$small_footprint?16:160);
952 &xor ($s0,&DWP(0,$key));
953 &xor ($s1,&DWP(4,$key));
954 &xor ($s2,&DWP(8,$key));
955 &xor ($s3,&DWP(12,$key));
957 &ret ();
959 &set_label("AES_Te",64); # Yes! I keep it in the code segment!
960 &_data_word(0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6);
961 &_data_word(0x0df2f2ff, 0xbd6b6bd6, 0xb16f6fde, 0x54c5c591);
962 &_data_word(0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56);
963 &_data_word(0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec);
964 &_data_word(0x45caca8f, 0x9d82821f, 0x40c9c989, 0x877d7dfa);
965 &_data_word(0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb);
966 &_data_word(0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45);
967 &_data_word(0xbf9c9c23, 0xf7a4a453, 0x967272e4, 0x5bc0c09b);
968 &_data_word(0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c);
969 &_data_word(0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83);
970 &_data_word(0x5c343468, 0xf4a5a551, 0x34e5e5d1, 0x08f1f1f9);
971 &_data_word(0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a);
972 &_data_word(0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d);
973 &_data_word(0x28181830, 0xa1969637, 0x0f05050a, 0xb59a9a2f);
974 &_data_word(0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df);
975 &_data_word(0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea);
976 &_data_word(0x1b090912, 0x9e83831d, 0x742c2c58, 0x2e1a1a34);
977 &_data_word(0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b);
978 &_data_word(0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d);
979 &_data_word(0x7b292952, 0x3ee3e3dd, 0x712f2f5e, 0x97848413);
980 &_data_word(0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1);
981 &_data_word(0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6);
982 &_data_word(0xbe6a6ad4, 0x46cbcb8d, 0xd9bebe67, 0x4b393972);
983 &_data_word(0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85);
984 &_data_word(0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed);
985 &_data_word(0xc5434386, 0xd74d4d9a, 0x55333366, 0x94858511);
986 &_data_word(0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe);
987 &_data_word(0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b);
988 &_data_word(0xf35151a2, 0xfea3a35d, 0xc0404080, 0x8a8f8f05);
989 &_data_word(0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1);
990 &_data_word(0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142);
991 &_data_word(0x30101020, 0x1affffe5, 0x0ef3f3fd, 0x6dd2d2bf);
992 &_data_word(0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3);
993 &_data_word(0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e);
994 &_data_word(0x57c4c493, 0xf2a7a755, 0x827e7efc, 0x473d3d7a);
995 &_data_word(0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6);
996 &_data_word(0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3);
997 &_data_word(0x66222244, 0x7e2a2a54, 0xab90903b, 0x8388880b);
998 &_data_word(0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428);
999 &_data_word(0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad);
1000 &_data_word(0x3be0e0db, 0x56323264, 0x4e3a3a74, 0x1e0a0a14);
1001 &_data_word(0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8);
1002 &_data_word(0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4);
1003 &_data_word(0xa8919139, 0xa4959531, 0x37e4e4d3, 0x8b7979f2);
1004 &_data_word(0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda);
1005 &_data_word(0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949);
1006 &_data_word(0xb46c6cd8, 0xfa5656ac, 0x07f4f4f3, 0x25eaeacf);
1007 &_data_word(0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810);
1008 &_data_word(0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c);
1009 &_data_word(0x241c1c38, 0xf1a6a657, 0xc7b4b473, 0x51c6c697);
1010 &_data_word(0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e);
1011 &_data_word(0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f);
1012 &_data_word(0x907070e0, 0x423e3e7c, 0xc4b5b571, 0xaa6666cc);
1013 &_data_word(0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c);
1014 &_data_word(0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969);
1015 &_data_word(0x91868617, 0x58c1c199, 0x271d1d3a, 0xb99e9e27);
1016 &_data_word(0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122);
1017 &_data_word(0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433);
1018 &_data_word(0xb69b9b2d, 0x221e1e3c, 0x92878715, 0x20e9e9c9);
1019 &_data_word(0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5);
1020 &_data_word(0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a);
1021 &_data_word(0xdabfbf65, 0x31e6e6d7, 0xc6424284, 0xb86868d0);
1022 &_data_word(0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e);
1023 &_data_word(0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c);
1025 #Te4 # four copies of Te4 to choose from to avoid L1 aliasing
1026 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1027 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1028 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1029 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1030 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1031 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1032 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1033 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1034 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1035 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1036 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1037 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1038 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1039 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1040 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1041 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1042 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1043 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1044 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1045 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1046 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1047 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1048 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1049 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1050 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1051 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1052 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1053 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1054 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1055 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1056 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1057 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1059 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1060 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1061 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1062 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1063 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1064 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1065 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1066 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1067 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1068 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1069 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1070 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1071 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1072 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1073 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1074 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1075 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1076 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1077 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1078 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1079 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1080 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1081 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1082 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1083 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1084 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1085 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1086 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1087 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1088 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1089 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1090 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1092 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1093 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1094 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1095 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1096 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1097 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1098 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1099 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1100 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1101 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1102 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1103 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1104 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1105 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1106 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1107 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1108 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1109 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1110 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1111 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1112 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1113 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1114 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1115 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1116 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1117 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1118 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1119 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1120 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1121 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1122 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1123 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1125 &data_byte(0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5);
1126 &data_byte(0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76);
1127 &data_byte(0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0);
1128 &data_byte(0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0);
1129 &data_byte(0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc);
1130 &data_byte(0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15);
1131 &data_byte(0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a);
1132 &data_byte(0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75);
1133 &data_byte(0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0);
1134 &data_byte(0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84);
1135 &data_byte(0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b);
1136 &data_byte(0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf);
1137 &data_byte(0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85);
1138 &data_byte(0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8);
1139 &data_byte(0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5);
1140 &data_byte(0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2);
1141 &data_byte(0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17);
1142 &data_byte(0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73);
1143 &data_byte(0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88);
1144 &data_byte(0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb);
1145 &data_byte(0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c);
1146 &data_byte(0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79);
1147 &data_byte(0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9);
1148 &data_byte(0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08);
1149 &data_byte(0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6);
1150 &data_byte(0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a);
1151 &data_byte(0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e);
1152 &data_byte(0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e);
1153 &data_byte(0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94);
1154 &data_byte(0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf);
1155 &data_byte(0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68);
1156 &data_byte(0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16);
1157 #rcon:
1158 &data_word(0x00000001, 0x00000002, 0x00000004, 0x00000008);
1159 &data_word(0x00000010, 0x00000020, 0x00000040, 0x00000080);
1160 &data_word(0x0000001b, 0x00000036, 0x00000000, 0x00000000);
1161 &data_word(0x00000000, 0x00000000, 0x00000000, 0x00000000);
1162 &function_end_B("_x86_AES_encrypt");
1164 # void AES_encrypt (const void *inp,void *out,const AES_KEY *key);
1165 &function_begin("AES_encrypt");
1166 &mov ($acc,&wparam(0)); # load inp
1167 &mov ($key,&wparam(2)); # load key
1169 &mov ($s0,"esp");
1170 &sub ("esp",36);
1171 &and ("esp",-64); # align to cache-line
1173 # place stack frame just "above" the key schedule
1174 &lea ($s1,&DWP(-64-63,$key));
1175 &sub ($s1,"esp");
1176 &neg ($s1);
1177 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
1178 &sub ("esp",$s1);
1179 &add ("esp",4); # 4 is reserved for caller's return address
1180 &mov ($_esp,$s0); # save stack pointer
1182 &call (&label("pic_point")); # make it PIC!
1183 &set_label("pic_point");
1184 &blindpop($tbl);
1185 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if (!$x86only);
1186 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
1188 # pick Te4 copy which can't "overlap" with stack frame or key schedule
1189 &lea ($s1,&DWP(768-4,"esp"));
1190 &sub ($s1,$tbl);
1191 &and ($s1,0x300);
1192 &lea ($tbl,&DWP(2048+128,$tbl,$s1));
1194 if (!$x86only) {
1195 &bt (&DWP(0,$s0),25); # check for SSE bit
1196 &jnc (&label("x86"));
1198 &movq ("mm0",&QWP(0,$acc));
1199 &movq ("mm4",&QWP(8,$acc));
1200 &call ("_sse_AES_encrypt_compact");
1201 &mov ("esp",$_esp); # restore stack pointer
1202 &mov ($acc,&wparam(1)); # load out
1203 &movq (&QWP(0,$acc),"mm0"); # write output data
1204 &movq (&QWP(8,$acc),"mm4");
1205 &emms ();
1206 &function_end_A();
1208 &set_label("x86",16);
1209 &mov ($_tbl,$tbl);
1210 &mov ($s0,&DWP(0,$acc)); # load input data
1211 &mov ($s1,&DWP(4,$acc));
1212 &mov ($s2,&DWP(8,$acc));
1213 &mov ($s3,&DWP(12,$acc));
1214 &call ("_x86_AES_encrypt_compact");
1215 &mov ("esp",$_esp); # restore stack pointer
1216 &mov ($acc,&wparam(1)); # load out
1217 &mov (&DWP(0,$acc),$s0); # write output data
1218 &mov (&DWP(4,$acc),$s1);
1219 &mov (&DWP(8,$acc),$s2);
1220 &mov (&DWP(12,$acc),$s3);
1221 &function_end("AES_encrypt");
1223 #--------------------------------------------------------------------#
1225 ######################################################################
1226 # "Compact" block function
1227 ######################################################################
1229 sub deccompact()
1230 { my $Fn = \&mov;
1231 while ($#_>5) { pop(@_); $Fn=sub{}; }
1232 my ($i,$td,@s)=@_;
1233 my $tmp = $key;
1234 my $out = $i==3?$s[0]:$acc;
1236 # $Fn is used in first compact round and its purpose is to
1237 # void restoration of some values from stack, so that after
1238 # 4xdeccompact with extra argument $key, $s0 and $s1 values
1239 # are left there...
1240 if($i==3) { &$Fn ($key,$__key); }
1241 else { &mov ($out,$s[0]); }
1242 &and ($out,0xFF);
1243 &movz ($out,&BP(-128,$td,$out,1));
1245 if ($i==3) { $tmp=$s[1]; }
1246 &movz ($tmp,&HB($s[1]));
1247 &movz ($tmp,&BP(-128,$td,$tmp,1));
1248 &shl ($tmp,8);
1249 &xor ($out,$tmp);
1251 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1252 else { mov ($tmp,$s[2]); }
1253 &shr ($tmp,16);
1254 &and ($tmp,0xFF);
1255 &movz ($tmp,&BP(-128,$td,$tmp,1));
1256 &shl ($tmp,16);
1257 &xor ($out,$tmp);
1259 if ($i==3) { $tmp=$s[3]; &$Fn ($s[2],$__s1); }
1260 else { &mov ($tmp,$s[3]); }
1261 &shr ($tmp,24);
1262 &movz ($tmp,&BP(-128,$td,$tmp,1));
1263 &shl ($tmp,24);
1264 &xor ($out,$tmp);
1265 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1266 if ($i==3) { &$Fn ($s[3],$__s0); }
1269 # must be called with 2,3,0,1 as argument sequence!!!
1270 sub dectransform()
1271 { my @s = ($s0,$s1,$s2,$s3);
1272 my $i = shift;
1273 my $tmp = $key;
1274 my $tp2 = @s[($i+2)%4]; $tp2 = @s[2] if ($i==1);
1275 my $tp4 = @s[($i+3)%4]; $tp4 = @s[3] if ($i==1);
1276 my $tp8 = $tbl;
1278 &mov ($tmp,0x80808080);
1279 &and ($tmp,$s[$i]);
1280 &mov ($acc,$tmp);
1281 &shr ($tmp,7);
1282 &lea ($tp2,&DWP(0,$s[$i],$s[$i]));
1283 &sub ($acc,$tmp);
1284 &and ($tp2,0xfefefefe);
1285 &and ($acc,0x1b1b1b1b);
1286 &xor ($tp2,$acc);
1287 &mov ($tmp,0x80808080);
1289 &and ($tmp,$tp2);
1290 &mov ($acc,$tmp);
1291 &shr ($tmp,7);
1292 &lea ($tp4,&DWP(0,$tp2,$tp2));
1293 &sub ($acc,$tmp);
1294 &and ($tp4,0xfefefefe);
1295 &and ($acc,0x1b1b1b1b);
1296 &xor ($tp2,$s[$i]); # tp2^tp1
1297 &xor ($tp4,$acc);
1298 &mov ($tmp,0x80808080);
1300 &and ($tmp,$tp4);
1301 &mov ($acc,$tmp);
1302 &shr ($tmp,7);
1303 &lea ($tp8,&DWP(0,$tp4,$tp4));
1304 &sub ($acc,$tmp);
1305 &and ($tp8,0xfefefefe);
1306 &and ($acc,0x1b1b1b1b);
1307 &xor ($tp4,$s[$i]); # tp4^tp1
1308 &rotl ($s[$i],8); # = ROTATE(tp1,8)
1309 &xor ($tp8,$acc);
1311 &xor ($s[$i],$tp2);
1312 &xor ($tp2,$tp8);
1313 &xor ($s[$i],$tp4);
1314 &xor ($tp4,$tp8);
1315 &rotl ($tp2,24);
1316 &xor ($s[$i],$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1)
1317 &rotl ($tp4,16);
1318 &xor ($s[$i],$tp2); # ^= ROTATE(tp8^tp2^tp1,24)
1319 &rotl ($tp8,8);
1320 &xor ($s[$i],$tp4); # ^= ROTATE(tp8^tp4^tp1,16)
1321 &mov ($s[0],$__s0) if($i==2); #prefetch $s0
1322 &mov ($s[1],$__s1) if($i==3); #prefetch $s1
1323 &mov ($s[2],$__s2) if($i==1);
1324 &xor ($s[$i],$tp8); # ^= ROTATE(tp8,8)
1326 &mov ($s[3],$__s3) if($i==1);
1327 &mov (&DWP(4+4*$i,"esp"),$s[$i]) if($i>=2);
1330 &function_begin_B("_x86_AES_decrypt_compact");
1331 # note that caller is expected to allocate stack frame for me!
1332 &mov ($__key,$key); # save key
1334 &xor ($s0,&DWP(0,$key)); # xor with key
1335 &xor ($s1,&DWP(4,$key));
1336 &xor ($s2,&DWP(8,$key));
1337 &xor ($s3,&DWP(12,$key));
1339 &mov ($acc,&DWP(240,$key)); # load key->rounds
1341 &lea ($acc,&DWP(-2,$acc,$acc));
1342 &lea ($acc,&DWP(0,$key,$acc,8));
1343 &mov ($__end,$acc); # end of key schedule
1345 # prefetch Td4
1346 &mov ($key,&DWP(0-128,$tbl));
1347 &mov ($acc,&DWP(32-128,$tbl));
1348 &mov ($key,&DWP(64-128,$tbl));
1349 &mov ($acc,&DWP(96-128,$tbl));
1350 &mov ($key,&DWP(128-128,$tbl));
1351 &mov ($acc,&DWP(160-128,$tbl));
1352 &mov ($key,&DWP(192-128,$tbl));
1353 &mov ($acc,&DWP(224-128,$tbl));
1355 &set_label("loop",16);
1357 &deccompact(0,$tbl,$s0,$s3,$s2,$s1,1);
1358 &deccompact(1,$tbl,$s1,$s0,$s3,$s2,1);
1359 &deccompact(2,$tbl,$s2,$s1,$s0,$s3,1);
1360 &deccompact(3,$tbl,$s3,$s2,$s1,$s0,1);
1361 &dectransform(2);
1362 &dectransform(3);
1363 &dectransform(0);
1364 &dectransform(1);
1365 &mov ($key,$__key);
1366 &mov ($tbl,$__tbl);
1367 &add ($key,16); # advance rd_key
1368 &xor ($s0,&DWP(0,$key));
1369 &xor ($s1,&DWP(4,$key));
1370 &xor ($s2,&DWP(8,$key));
1371 &xor ($s3,&DWP(12,$key));
1373 &cmp ($key,$__end);
1374 &mov ($__key,$key);
1375 &jb (&label("loop"));
1377 &deccompact(0,$tbl,$s0,$s3,$s2,$s1);
1378 &deccompact(1,$tbl,$s1,$s0,$s3,$s2);
1379 &deccompact(2,$tbl,$s2,$s1,$s0,$s3);
1380 &deccompact(3,$tbl,$s3,$s2,$s1,$s0);
1382 &xor ($s0,&DWP(16,$key));
1383 &xor ($s1,&DWP(20,$key));
1384 &xor ($s2,&DWP(24,$key));
1385 &xor ($s3,&DWP(28,$key));
1387 &ret ();
1388 &function_end_B("_x86_AES_decrypt_compact");
1390 ######################################################################
1391 # "Compact" SSE block function.
1392 ######################################################################
1394 sub sse_deccompact()
1396 &pshufw ("mm1","mm0",0x0c); # 7, 6, 1, 0
1397 &pshufw ("mm5","mm4",0x09); # 13,12,11,10
1398 &movd ("eax","mm1"); # 7, 6, 1, 0
1399 &movd ("ebx","mm5"); # 13,12,11,10
1400 &mov ($__key,$key);
1402 &movz ($acc,&LB("eax")); # 0
1403 &movz ("edx",&HB("eax")); # 1
1404 &pshufw ("mm2","mm0",0x06); # 3, 2, 5, 4
1405 &movz ("ecx",&BP(-128,$tbl,$acc,1)); # 0
1406 &movz ($key,&LB("ebx")); # 10
1407 &movz ("edx",&BP(-128,$tbl,"edx",1)); # 1
1408 &shr ("eax",16); # 7, 6
1409 &shl ("edx",8); # 1
1411 &movz ($acc,&BP(-128,$tbl,$key,1)); # 10
1412 &movz ($key,&HB("ebx")); # 11
1413 &shl ($acc,16); # 10
1414 &pshufw ("mm6","mm4",0x03); # 9, 8,15,14
1415 &or ("ecx",$acc); # 10
1416 &movz ($acc,&BP(-128,$tbl,$key,1)); # 11
1417 &movz ($key,&HB("eax")); # 7
1418 &shl ($acc,24); # 11
1419 &shr ("ebx",16); # 13,12
1420 &or ("edx",$acc); # 11
1422 &movz ($acc,&BP(-128,$tbl,$key,1)); # 7
1423 &movz ($key,&HB("ebx")); # 13
1424 &shl ($acc,24); # 7
1425 &or ("ecx",$acc); # 7
1426 &movz ($acc,&BP(-128,$tbl,$key,1)); # 13
1427 &movz ($key,&LB("eax")); # 6
1428 &shl ($acc,8); # 13
1429 &movd ("eax","mm2"); # 3, 2, 5, 4
1430 &or ("ecx",$acc); # 13
1432 &movz ($acc,&BP(-128,$tbl,$key,1)); # 6
1433 &movz ($key,&LB("ebx")); # 12
1434 &shl ($acc,16); # 6
1435 &movd ("ebx","mm6"); # 9, 8,15,14
1436 &movd ("mm0","ecx"); # t[0] collected
1437 &movz ("ecx",&BP(-128,$tbl,$key,1)); # 12
1438 &movz ($key,&LB("eax")); # 4
1439 &or ("ecx",$acc); # 12
1441 &movz ($acc,&BP(-128,$tbl,$key,1)); # 4
1442 &movz ($key,&LB("ebx")); # 14
1443 &or ("edx",$acc); # 4
1444 &movz ($acc,&BP(-128,$tbl,$key,1)); # 14
1445 &movz ($key,&HB("eax")); # 5
1446 &shl ($acc,16); # 14
1447 &shr ("eax",16); # 3, 2
1448 &or ("edx",$acc); # 14
1450 &movz ($acc,&BP(-128,$tbl,$key,1)); # 5
1451 &movz ($key,&HB("ebx")); # 15
1452 &shr ("ebx",16); # 9, 8
1453 &shl ($acc,8); # 5
1454 &movd ("mm1","edx"); # t[1] collected
1455 &movz ("edx",&BP(-128,$tbl,$key,1)); # 15
1456 &movz ($key,&HB("ebx")); # 9
1457 &shl ("edx",24); # 15
1458 &and ("ebx",0xff); # 8
1459 &or ("edx",$acc); # 15
1461 &punpckldq ("mm0","mm1"); # t[0,1] collected
1463 &movz ($acc,&BP(-128,$tbl,$key,1)); # 9
1464 &movz ($key,&LB("eax")); # 2
1465 &shl ($acc,8); # 9
1466 &movz ("eax",&HB("eax")); # 3
1467 &movz ("ebx",&BP(-128,$tbl,"ebx",1)); # 8
1468 &or ("ecx",$acc); # 9
1469 &movz ($acc,&BP(-128,$tbl,$key,1)); # 2
1470 &or ("edx","ebx"); # 8
1471 &shl ($acc,16); # 2
1472 &movz ("eax",&BP(-128,$tbl,"eax",1)); # 3
1473 &or ("edx",$acc); # 2
1474 &shl ("eax",24); # 3
1475 &or ("ecx","eax"); # 3
1476 &mov ($key,$__key);
1477 &movd ("mm4","edx"); # t[2] collected
1478 &movd ("mm5","ecx"); # t[3] collected
1480 &punpckldq ("mm4","mm5"); # t[2,3] collected
1483 if (!$x86only) {
1484 &function_begin_B("_sse_AES_decrypt_compact");
1485 &pxor ("mm0",&QWP(0,$key)); # 7, 6, 5, 4, 3, 2, 1, 0
1486 &pxor ("mm4",&QWP(8,$key)); # 15,14,13,12,11,10, 9, 8
1488 # note that caller is expected to allocate stack frame for me!
1489 &mov ($acc,&DWP(240,$key)); # load key->rounds
1490 &lea ($acc,&DWP(-2,$acc,$acc));
1491 &lea ($acc,&DWP(0,$key,$acc,8));
1492 &mov ($__end,$acc); # end of key schedule
1494 &mov ($s0,0x1b1b1b1b); # magic constant
1495 &mov (&DWP(8,"esp"),$s0);
1496 &mov (&DWP(12,"esp"),$s0);
1498 # prefetch Td4
1499 &mov ($s0,&DWP(0-128,$tbl));
1500 &mov ($s1,&DWP(32-128,$tbl));
1501 &mov ($s2,&DWP(64-128,$tbl));
1502 &mov ($s3,&DWP(96-128,$tbl));
1503 &mov ($s0,&DWP(128-128,$tbl));
1504 &mov ($s1,&DWP(160-128,$tbl));
1505 &mov ($s2,&DWP(192-128,$tbl));
1506 &mov ($s3,&DWP(224-128,$tbl));
1508 &set_label("loop",16);
1509 &sse_deccompact();
1510 &add ($key,16);
1511 &cmp ($key,$__end);
1512 &ja (&label("out"));
1514 # ROTATE(x^y,N) == ROTATE(x,N)^ROTATE(y,N)
1515 &movq ("mm3","mm0"); &movq ("mm7","mm4");
1516 &movq ("mm2","mm0",1); &movq ("mm6","mm4",1);
1517 &movq ("mm1","mm0"); &movq ("mm5","mm4");
1518 &pshufw ("mm0","mm0",0xb1); &pshufw ("mm4","mm4",0xb1);# = ROTATE(tp0,16)
1519 &pslld ("mm2",8); &pslld ("mm6",8);
1520 &psrld ("mm3",8); &psrld ("mm7",8);
1521 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<8
1522 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>8
1523 &pslld ("mm2",16); &pslld ("mm6",16);
1524 &psrld ("mm3",16); &psrld ("mm7",16);
1525 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp0<<24
1526 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp0>>24
1528 &movq ("mm3",&QWP(8,"esp"));
1529 &pxor ("mm2","mm2"); &pxor ("mm6","mm6");
1530 &pcmpgtb("mm2","mm1"); &pcmpgtb("mm6","mm5");
1531 &pand ("mm2","mm3"); &pand ("mm6","mm3");
1532 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1533 &pxor ("mm1","mm2"); &pxor ("mm5","mm6"); # tp2
1534 &movq ("mm3","mm1"); &movq ("mm7","mm5");
1535 &movq ("mm2","mm1"); &movq ("mm6","mm5");
1536 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp2
1537 &pslld ("mm3",24); &pslld ("mm7",24);
1538 &psrld ("mm2",8); &psrld ("mm6",8);
1539 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp2<<24
1540 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= tp2>>8
1542 &movq ("mm2",&QWP(8,"esp"));
1543 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
1544 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5");
1545 &pand ("mm3","mm2"); &pand ("mm7","mm2");
1546 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1547 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp4
1548 &pshufw ("mm3","mm1",0xb1); &pshufw ("mm7","mm5",0xb1);
1549 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp4
1550 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= ROTATE(tp4,16)
1552 &pxor ("mm3","mm3"); &pxor ("mm7","mm7");
1553 &pcmpgtb("mm3","mm1"); &pcmpgtb("mm7","mm5");
1554 &pand ("mm3","mm2"); &pand ("mm7","mm2");
1555 &paddb ("mm1","mm1"); &paddb ("mm5","mm5");
1556 &pxor ("mm1","mm3"); &pxor ("mm5","mm7"); # tp8
1557 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8
1558 &movq ("mm3","mm1"); &movq ("mm7","mm5");
1559 &pshufw ("mm2","mm1",0xb1); &pshufw ("mm6","mm5",0xb1);
1560 &pxor ("mm0","mm2"); &pxor ("mm4","mm6"); # ^= ROTATE(tp8,16)
1561 &pslld ("mm1",8); &pslld ("mm5",8);
1562 &psrld ("mm3",8); &psrld ("mm7",8);
1563 &movq ("mm2",&QWP(0,$key)); &movq ("mm6",&QWP(8,$key));
1564 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<8
1565 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>8
1566 &mov ($s0,&DWP(0-128,$tbl));
1567 &pslld ("mm1",16); &pslld ("mm5",16);
1568 &mov ($s1,&DWP(64-128,$tbl));
1569 &psrld ("mm3",16); &psrld ("mm7",16);
1570 &mov ($s2,&DWP(128-128,$tbl));
1571 &pxor ("mm0","mm1"); &pxor ("mm4","mm5"); # ^= tp8<<24
1572 &mov ($s3,&DWP(192-128,$tbl));
1573 &pxor ("mm0","mm3"); &pxor ("mm4","mm7"); # ^= tp8>>24
1575 &pxor ("mm0","mm2"); &pxor ("mm4","mm6");
1576 &jmp (&label("loop"));
1578 &set_label("out",16);
1579 &pxor ("mm0",&QWP(0,$key));
1580 &pxor ("mm4",&QWP(8,$key));
1582 &ret ();
1583 &function_end_B("_sse_AES_decrypt_compact");
1586 ######################################################################
1587 # Vanilla block function.
1588 ######################################################################
1590 sub decstep()
1591 { my ($i,$td,@s) = @_;
1592 my $tmp = $key;
1593 my $out = $i==3?$s[0]:$acc;
1595 # no instructions are reordered, as performance appears
1596 # optimal... or rather that all attempts to reorder didn't
1597 # result in better performance [which by the way is not a
1598 # bit lower than ecryption].
1599 if($i==3) { &mov ($key,$__key); }
1600 else { &mov ($out,$s[0]); }
1601 &and ($out,0xFF);
1602 &mov ($out,&DWP(0,$td,$out,8));
1604 if ($i==3) { $tmp=$s[1]; }
1605 &movz ($tmp,&HB($s[1]));
1606 &xor ($out,&DWP(3,$td,$tmp,8));
1608 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1609 else { &mov ($tmp,$s[2]); }
1610 &shr ($tmp,16);
1611 &and ($tmp,0xFF);
1612 &xor ($out,&DWP(2,$td,$tmp,8));
1614 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }
1615 else { &mov ($tmp,$s[3]); }
1616 &shr ($tmp,24);
1617 &xor ($out,&DWP(1,$td,$tmp,8));
1618 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1619 if ($i==3) { &mov ($s[3],$__s0); }
1620 &comment();
1623 sub declast()
1624 { my ($i,$td,@s)=@_;
1625 my $tmp = $key;
1626 my $out = $i==3?$s[0]:$acc;
1628 if($i==0) { &lea ($td,&DWP(2048+128,$td));
1629 &mov ($tmp,&DWP(0-128,$td));
1630 &mov ($acc,&DWP(32-128,$td));
1631 &mov ($tmp,&DWP(64-128,$td));
1632 &mov ($acc,&DWP(96-128,$td));
1633 &mov ($tmp,&DWP(128-128,$td));
1634 &mov ($acc,&DWP(160-128,$td));
1635 &mov ($tmp,&DWP(192-128,$td));
1636 &mov ($acc,&DWP(224-128,$td));
1637 &lea ($td,&DWP(-128,$td)); }
1638 if($i==3) { &mov ($key,$__key); }
1639 else { &mov ($out,$s[0]); }
1640 &and ($out,0xFF);
1641 &movz ($out,&BP(0,$td,$out,1));
1643 if ($i==3) { $tmp=$s[1]; }
1644 &movz ($tmp,&HB($s[1]));
1645 &movz ($tmp,&BP(0,$td,$tmp,1));
1646 &shl ($tmp,8);
1647 &xor ($out,$tmp);
1649 if ($i==3) { $tmp=$s[2]; &mov ($s[1],$acc); }
1650 else { mov ($tmp,$s[2]); }
1651 &shr ($tmp,16);
1652 &and ($tmp,0xFF);
1653 &movz ($tmp,&BP(0,$td,$tmp,1));
1654 &shl ($tmp,16);
1655 &xor ($out,$tmp);
1657 if ($i==3) { $tmp=$s[3]; &mov ($s[2],$__s1); }
1658 else { &mov ($tmp,$s[3]); }
1659 &shr ($tmp,24);
1660 &movz ($tmp,&BP(0,$td,$tmp,1));
1661 &shl ($tmp,24);
1662 &xor ($out,$tmp);
1663 if ($i<2) { &mov (&DWP(4+4*$i,"esp"),$out); }
1664 if ($i==3) { &mov ($s[3],$__s0);
1665 &lea ($td,&DWP(-2048,$td)); }
1668 &function_begin_B("_x86_AES_decrypt");
1669 # note that caller is expected to allocate stack frame for me!
1670 &mov ($__key,$key); # save key
1672 &xor ($s0,&DWP(0,$key)); # xor with key
1673 &xor ($s1,&DWP(4,$key));
1674 &xor ($s2,&DWP(8,$key));
1675 &xor ($s3,&DWP(12,$key));
1677 &mov ($acc,&DWP(240,$key)); # load key->rounds
1679 if ($small_footprint) {
1680 &lea ($acc,&DWP(-2,$acc,$acc));
1681 &lea ($acc,&DWP(0,$key,$acc,8));
1682 &mov ($__end,$acc); # end of key schedule
1683 &set_label("loop",16);
1684 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1685 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1686 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1687 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1688 &add ($key,16); # advance rd_key
1689 &xor ($s0,&DWP(0,$key));
1690 &xor ($s1,&DWP(4,$key));
1691 &xor ($s2,&DWP(8,$key));
1692 &xor ($s3,&DWP(12,$key));
1693 &cmp ($key,$__end);
1694 &mov ($__key,$key);
1695 &jb (&label("loop"));
1697 else {
1698 &cmp ($acc,10);
1699 &jle (&label("10rounds"));
1700 &cmp ($acc,12);
1701 &jle (&label("12rounds"));
1703 &set_label("14rounds",4);
1704 for ($i=1;$i<3;$i++) {
1705 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1706 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1707 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1708 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1709 &xor ($s0,&DWP(16*$i+0,$key));
1710 &xor ($s1,&DWP(16*$i+4,$key));
1711 &xor ($s2,&DWP(16*$i+8,$key));
1712 &xor ($s3,&DWP(16*$i+12,$key));
1714 &add ($key,32);
1715 &mov ($__key,$key); # advance rd_key
1716 &set_label("12rounds",4);
1717 for ($i=1;$i<3;$i++) {
1718 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1719 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1720 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1721 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1722 &xor ($s0,&DWP(16*$i+0,$key));
1723 &xor ($s1,&DWP(16*$i+4,$key));
1724 &xor ($s2,&DWP(16*$i+8,$key));
1725 &xor ($s3,&DWP(16*$i+12,$key));
1727 &add ($key,32);
1728 &mov ($__key,$key); # advance rd_key
1729 &set_label("10rounds",4);
1730 for ($i=1;$i<10;$i++) {
1731 &decstep(0,$tbl,$s0,$s3,$s2,$s1);
1732 &decstep(1,$tbl,$s1,$s0,$s3,$s2);
1733 &decstep(2,$tbl,$s2,$s1,$s0,$s3);
1734 &decstep(3,$tbl,$s3,$s2,$s1,$s0);
1735 &xor ($s0,&DWP(16*$i+0,$key));
1736 &xor ($s1,&DWP(16*$i+4,$key));
1737 &xor ($s2,&DWP(16*$i+8,$key));
1738 &xor ($s3,&DWP(16*$i+12,$key));
1742 &declast(0,$tbl,$s0,$s3,$s2,$s1);
1743 &declast(1,$tbl,$s1,$s0,$s3,$s2);
1744 &declast(2,$tbl,$s2,$s1,$s0,$s3);
1745 &declast(3,$tbl,$s3,$s2,$s1,$s0);
1747 &add ($key,$small_footprint?16:160);
1748 &xor ($s0,&DWP(0,$key));
1749 &xor ($s1,&DWP(4,$key));
1750 &xor ($s2,&DWP(8,$key));
1751 &xor ($s3,&DWP(12,$key));
1753 &ret ();
1755 &set_label("AES_Td",64); # Yes! I keep it in the code segment!
1756 &_data_word(0x50a7f451, 0x5365417e, 0xc3a4171a, 0x965e273a);
1757 &_data_word(0xcb6bab3b, 0xf1459d1f, 0xab58faac, 0x9303e34b);
1758 &_data_word(0x55fa3020, 0xf66d76ad, 0x9176cc88, 0x254c02f5);
1759 &_data_word(0xfcd7e54f, 0xd7cb2ac5, 0x80443526, 0x8fa362b5);
1760 &_data_word(0x495ab1de, 0x671bba25, 0x980eea45, 0xe1c0fe5d);
1761 &_data_word(0x02752fc3, 0x12f04c81, 0xa397468d, 0xc6f9d36b);
1762 &_data_word(0xe75f8f03, 0x959c9215, 0xeb7a6dbf, 0xda595295);
1763 &_data_word(0x2d83bed4, 0xd3217458, 0x2969e049, 0x44c8c98e);
1764 &_data_word(0x6a89c275, 0x78798ef4, 0x6b3e5899, 0xdd71b927);
1765 &_data_word(0xb64fe1be, 0x17ad88f0, 0x66ac20c9, 0xb43ace7d);
1766 &_data_word(0x184adf63, 0x82311ae5, 0x60335197, 0x457f5362);
1767 &_data_word(0xe07764b1, 0x84ae6bbb, 0x1ca081fe, 0x942b08f9);
1768 &_data_word(0x58684870, 0x19fd458f, 0x876cde94, 0xb7f87b52);
1769 &_data_word(0x23d373ab, 0xe2024b72, 0x578f1fe3, 0x2aab5566);
1770 &_data_word(0x0728ebb2, 0x03c2b52f, 0x9a7bc586, 0xa50837d3);
1771 &_data_word(0xf2872830, 0xb2a5bf23, 0xba6a0302, 0x5c8216ed);
1772 &_data_word(0x2b1ccf8a, 0x92b479a7, 0xf0f207f3, 0xa1e2694e);
1773 &_data_word(0xcdf4da65, 0xd5be0506, 0x1f6234d1, 0x8afea6c4);
1774 &_data_word(0x9d532e34, 0xa055f3a2, 0x32e18a05, 0x75ebf6a4);
1775 &_data_word(0x39ec830b, 0xaaef6040, 0x069f715e, 0x51106ebd);
1776 &_data_word(0xf98a213e, 0x3d06dd96, 0xae053edd, 0x46bde64d);
1777 &_data_word(0xb58d5491, 0x055dc471, 0x6fd40604, 0xff155060);
1778 &_data_word(0x24fb9819, 0x97e9bdd6, 0xcc434089, 0x779ed967);
1779 &_data_word(0xbd42e8b0, 0x888b8907, 0x385b19e7, 0xdbeec879);
1780 &_data_word(0x470a7ca1, 0xe90f427c, 0xc91e84f8, 0x00000000);
1781 &_data_word(0x83868009, 0x48ed2b32, 0xac70111e, 0x4e725a6c);
1782 &_data_word(0xfbff0efd, 0x5638850f, 0x1ed5ae3d, 0x27392d36);
1783 &_data_word(0x64d90f0a, 0x21a65c68, 0xd1545b9b, 0x3a2e3624);
1784 &_data_word(0xb1670a0c, 0x0fe75793, 0xd296eeb4, 0x9e919b1b);
1785 &_data_word(0x4fc5c080, 0xa220dc61, 0x694b775a, 0x161a121c);
1786 &_data_word(0x0aba93e2, 0xe52aa0c0, 0x43e0223c, 0x1d171b12);
1787 &_data_word(0x0b0d090e, 0xadc78bf2, 0xb9a8b62d, 0xc8a91e14);
1788 &_data_word(0x8519f157, 0x4c0775af, 0xbbdd99ee, 0xfd607fa3);
1789 &_data_word(0x9f2601f7, 0xbcf5725c, 0xc53b6644, 0x347efb5b);
1790 &_data_word(0x7629438b, 0xdcc623cb, 0x68fcedb6, 0x63f1e4b8);
1791 &_data_word(0xcadc31d7, 0x10856342, 0x40229713, 0x2011c684);
1792 &_data_word(0x7d244a85, 0xf83dbbd2, 0x1132f9ae, 0x6da129c7);
1793 &_data_word(0x4b2f9e1d, 0xf330b2dc, 0xec52860d, 0xd0e3c177);
1794 &_data_word(0x6c16b32b, 0x99b970a9, 0xfa489411, 0x2264e947);
1795 &_data_word(0xc48cfca8, 0x1a3ff0a0, 0xd82c7d56, 0xef903322);
1796 &_data_word(0xc74e4987, 0xc1d138d9, 0xfea2ca8c, 0x360bd498);
1797 &_data_word(0xcf81f5a6, 0x28de7aa5, 0x268eb7da, 0xa4bfad3f);
1798 &_data_word(0xe49d3a2c, 0x0d927850, 0x9bcc5f6a, 0x62467e54);
1799 &_data_word(0xc2138df6, 0xe8b8d890, 0x5ef7392e, 0xf5afc382);
1800 &_data_word(0xbe805d9f, 0x7c93d069, 0xa92dd56f, 0xb31225cf);
1801 &_data_word(0x3b99acc8, 0xa77d1810, 0x6e639ce8, 0x7bbb3bdb);
1802 &_data_word(0x097826cd, 0xf418596e, 0x01b79aec, 0xa89a4f83);
1803 &_data_word(0x656e95e6, 0x7ee6ffaa, 0x08cfbc21, 0xe6e815ef);
1804 &_data_word(0xd99be7ba, 0xce366f4a, 0xd4099fea, 0xd67cb029);
1805 &_data_word(0xafb2a431, 0x31233f2a, 0x3094a5c6, 0xc066a235);
1806 &_data_word(0x37bc4e74, 0xa6ca82fc, 0xb0d090e0, 0x15d8a733);
1807 &_data_word(0x4a9804f1, 0xf7daec41, 0x0e50cd7f, 0x2ff69117);
1808 &_data_word(0x8dd64d76, 0x4db0ef43, 0x544daacc, 0xdf0496e4);
1809 &_data_word(0xe3b5d19e, 0x1b886a4c, 0xb81f2cc1, 0x7f516546);
1810 &_data_word(0x04ea5e9d, 0x5d358c01, 0x737487fa, 0x2e410bfb);
1811 &_data_word(0x5a1d67b3, 0x52d2db92, 0x335610e9, 0x1347d66d);
1812 &_data_word(0x8c61d79a, 0x7a0ca137, 0x8e14f859, 0x893c13eb);
1813 &_data_word(0xee27a9ce, 0x35c961b7, 0xede51ce1, 0x3cb1477a);
1814 &_data_word(0x59dfd29c, 0x3f73f255, 0x79ce1418, 0xbf37c773);
1815 &_data_word(0xeacdf753, 0x5baafd5f, 0x146f3ddf, 0x86db4478);
1816 &_data_word(0x81f3afca, 0x3ec468b9, 0x2c342438, 0x5f40a3c2);
1817 &_data_word(0x72c31d16, 0x0c25e2bc, 0x8b493c28, 0x41950dff);
1818 &_data_word(0x7101a839, 0xdeb30c08, 0x9ce4b4d8, 0x90c15664);
1819 &_data_word(0x6184cb7b, 0x70b632d5, 0x745c6c48, 0x4257b8d0);
1821 #Td4: # four copies of Td4 to choose from to avoid L1 aliasing
1822 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1823 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1824 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1825 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1826 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1827 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1828 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1829 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1830 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1831 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1832 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1833 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1834 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1835 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1836 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1837 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1838 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1839 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1840 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1841 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1842 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1843 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1844 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1845 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1846 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1847 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1848 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1849 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1850 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1851 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1852 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1853 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1855 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1856 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1857 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1858 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1859 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1860 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1861 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1862 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1863 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1864 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1865 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1866 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1867 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1868 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1869 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1870 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1871 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1872 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1873 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1874 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1875 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1876 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1877 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1878 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1879 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1880 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1881 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1882 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1883 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1884 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1885 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1886 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1888 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1889 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1890 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1891 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1892 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1893 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1894 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1895 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1896 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1897 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1898 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1899 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1900 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1901 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1902 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1903 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1904 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1905 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1906 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1907 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1908 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1909 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1910 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1911 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1912 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1913 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1914 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1915 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1916 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1917 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1918 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1919 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1921 &data_byte(0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38);
1922 &data_byte(0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb);
1923 &data_byte(0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87);
1924 &data_byte(0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb);
1925 &data_byte(0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d);
1926 &data_byte(0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e);
1927 &data_byte(0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2);
1928 &data_byte(0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25);
1929 &data_byte(0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16);
1930 &data_byte(0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92);
1931 &data_byte(0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda);
1932 &data_byte(0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84);
1933 &data_byte(0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a);
1934 &data_byte(0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06);
1935 &data_byte(0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02);
1936 &data_byte(0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b);
1937 &data_byte(0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea);
1938 &data_byte(0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73);
1939 &data_byte(0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85);
1940 &data_byte(0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e);
1941 &data_byte(0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89);
1942 &data_byte(0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b);
1943 &data_byte(0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20);
1944 &data_byte(0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4);
1945 &data_byte(0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31);
1946 &data_byte(0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f);
1947 &data_byte(0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d);
1948 &data_byte(0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef);
1949 &data_byte(0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0);
1950 &data_byte(0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61);
1951 &data_byte(0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26);
1952 &data_byte(0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d);
1953 &function_end_B("_x86_AES_decrypt");
1955 # void AES_decrypt (const void *inp,void *out,const AES_KEY *key);
1956 &function_begin("AES_decrypt");
1957 &mov ($acc,&wparam(0)); # load inp
1958 &mov ($key,&wparam(2)); # load key
1960 &mov ($s0,"esp");
1961 &sub ("esp",36);
1962 &and ("esp",-64); # align to cache-line
1964 # place stack frame just "above" the key schedule
1965 &lea ($s1,&DWP(-64-63,$key));
1966 &sub ($s1,"esp");
1967 &neg ($s1);
1968 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
1969 &sub ("esp",$s1);
1970 &add ("esp",4); # 4 is reserved for caller's return address
1971 &mov ($_esp,$s0); # save stack pointer
1973 &call (&label("pic_point")); # make it PIC!
1974 &set_label("pic_point");
1975 &blindpop($tbl);
1976 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
1977 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("pic_point"),$tbl));
1979 # pick Td4 copy which can't "overlap" with stack frame or key schedule
1980 &lea ($s1,&DWP(768-4,"esp"));
1981 &sub ($s1,$tbl);
1982 &and ($s1,0x300);
1983 &lea ($tbl,&DWP(2048+128,$tbl,$s1));
1985 if (!$x86only) {
1986 &bt (&DWP(0,$s0),25); # check for SSE bit
1987 &jnc (&label("x86"));
1989 &movq ("mm0",&QWP(0,$acc));
1990 &movq ("mm4",&QWP(8,$acc));
1991 &call ("_sse_AES_decrypt_compact");
1992 &mov ("esp",$_esp); # restore stack pointer
1993 &mov ($acc,&wparam(1)); # load out
1994 &movq (&QWP(0,$acc),"mm0"); # write output data
1995 &movq (&QWP(8,$acc),"mm4");
1996 &emms ();
1997 &function_end_A();
1999 &set_label("x86",16);
2000 &mov ($_tbl,$tbl);
2001 &mov ($s0,&DWP(0,$acc)); # load input data
2002 &mov ($s1,&DWP(4,$acc));
2003 &mov ($s2,&DWP(8,$acc));
2004 &mov ($s3,&DWP(12,$acc));
2005 &call ("_x86_AES_decrypt_compact");
2006 &mov ("esp",$_esp); # restore stack pointer
2007 &mov ($acc,&wparam(1)); # load out
2008 &mov (&DWP(0,$acc),$s0); # write output data
2009 &mov (&DWP(4,$acc),$s1);
2010 &mov (&DWP(8,$acc),$s2);
2011 &mov (&DWP(12,$acc),$s3);
2012 &function_end("AES_decrypt");
2014 # void AES_cbc_encrypt (const void char *inp, unsigned char *out,
2015 # size_t length, const AES_KEY *key,
2016 # unsigned char *ivp,const int enc);
2018 # stack frame layout
2019 # -4(%esp) # return address 0(%esp)
2020 # 0(%esp) # s0 backing store 4(%esp)
2021 # 4(%esp) # s1 backing store 8(%esp)
2022 # 8(%esp) # s2 backing store 12(%esp)
2023 # 12(%esp) # s3 backing store 16(%esp)
2024 # 16(%esp) # key backup 20(%esp)
2025 # 20(%esp) # end of key schedule 24(%esp)
2026 # 24(%esp) # %ebp backup 28(%esp)
2027 # 28(%esp) # %esp backup
2028 my $_inp=&DWP(32,"esp"); # copy of wparam(0)
2029 my $_out=&DWP(36,"esp"); # copy of wparam(1)
2030 my $_len=&DWP(40,"esp"); # copy of wparam(2)
2031 my $_key=&DWP(44,"esp"); # copy of wparam(3)
2032 my $_ivp=&DWP(48,"esp"); # copy of wparam(4)
2033 my $_tmp=&DWP(52,"esp"); # volatile variable
2035 my $ivec=&DWP(60,"esp"); # ivec[16]
2036 my $aes_key=&DWP(76,"esp"); # copy of aes_key
2037 my $mark=&DWP(76+240,"esp"); # copy of aes_key->rounds
2039 &function_begin("AES_cbc_encrypt");
2040 &mov ($s2 eq "ecx"? $s2 : "",&wparam(2)); # load len
2041 &cmp ($s2,0);
2042 &je (&label("drop_out"));
2044 &call (&label("pic_point")); # make it PIC!
2045 &set_label("pic_point");
2046 &blindpop($tbl);
2047 &picmeup($s0,"OPENSSL_ia32cap_P",$tbl,&label("pic_point")) if(!$x86only);
2049 &cmp (&wparam(5),0);
2050 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2051 &jne (&label("picked_te"));
2052 &lea ($tbl,&DWP(&label("AES_Td")."-".&label("AES_Te"),$tbl));
2053 &set_label("picked_te");
2055 # one can argue if this is required
2056 &pushf ();
2057 &cld ();
2059 &cmp ($s2,$speed_limit);
2060 &jb (&label("slow_way"));
2061 &test ($s2,15);
2062 &jnz (&label("slow_way"));
2063 if (!$x86only) {
2064 &bt (&DWP(0,$s0),28); # check for hyper-threading bit
2065 &jc (&label("slow_way"));
2067 # pre-allocate aligned stack frame...
2068 &lea ($acc,&DWP(-80-244,"esp"));
2069 &and ($acc,-64);
2071 # ... and make sure it doesn't alias with $tbl modulo 4096
2072 &mov ($s0,$tbl);
2073 &lea ($s1,&DWP(2048+256,$tbl));
2074 &mov ($s3,$acc);
2075 &and ($s0,0xfff); # s = %ebp&0xfff
2076 &and ($s1,0xfff); # e = (%ebp+2048+256)&0xfff
2077 &and ($s3,0xfff); # p = %esp&0xfff
2079 &cmp ($s3,$s1); # if (p>=e) %esp =- (p-e);
2080 &jb (&label("tbl_break_out"));
2081 &sub ($s3,$s1);
2082 &sub ($acc,$s3);
2083 &jmp (&label("tbl_ok"));
2084 &set_label("tbl_break_out",4); # else %esp -= (p-s)&0xfff + framesz;
2085 &sub ($s3,$s0);
2086 &and ($s3,0xfff);
2087 &add ($s3,384);
2088 &sub ($acc,$s3);
2089 &set_label("tbl_ok",4);
2091 &lea ($s3,&wparam(0)); # obtain pointer to parameter block
2092 &exch ("esp",$acc); # allocate stack frame
2093 &add ("esp",4); # reserve for return address!
2094 &mov ($_tbl,$tbl); # save %ebp
2095 &mov ($_esp,$acc); # save %esp
2097 &mov ($s0,&DWP(0,$s3)); # load inp
2098 &mov ($s1,&DWP(4,$s3)); # load out
2099 #&mov ($s2,&DWP(8,$s3)); # load len
2100 &mov ($key,&DWP(12,$s3)); # load key
2101 &mov ($acc,&DWP(16,$s3)); # load ivp
2102 &mov ($s3,&DWP(20,$s3)); # load enc flag
2104 &mov ($_inp,$s0); # save copy of inp
2105 &mov ($_out,$s1); # save copy of out
2106 &mov ($_len,$s2); # save copy of len
2107 &mov ($_key,$key); # save copy of key
2108 &mov ($_ivp,$acc); # save copy of ivp
2110 &mov ($mark,0); # copy of aes_key->rounds = 0;
2111 # do we copy key schedule to stack?
2112 &mov ($s1 eq "ebx" ? $s1 : "",$key);
2113 &mov ($s2 eq "ecx" ? $s2 : "",244/4);
2114 &sub ($s1,$tbl);
2115 &mov ("esi",$key);
2116 &and ($s1,0xfff);
2117 &lea ("edi",$aes_key);
2118 &cmp ($s1,2048+256);
2119 &jb (&label("do_copy"));
2120 &cmp ($s1,4096-244);
2121 &jb (&label("skip_copy"));
2122 &set_label("do_copy",4);
2123 &mov ($_key,"edi");
2124 &data_word(0xA5F3F689); # rep movsd
2125 &set_label("skip_copy");
2127 &mov ($key,16);
2128 &set_label("prefetch_tbl",4);
2129 &mov ($s0,&DWP(0,$tbl));
2130 &mov ($s1,&DWP(32,$tbl));
2131 &mov ($s2,&DWP(64,$tbl));
2132 &mov ($acc,&DWP(96,$tbl));
2133 &lea ($tbl,&DWP(128,$tbl));
2134 &sub ($key,1);
2135 &jnz (&label("prefetch_tbl"));
2136 &sub ($tbl,2048);
2138 &mov ($acc,$_inp);
2139 &mov ($key,$_ivp);
2141 &cmp ($s3,0);
2142 &je (&label("fast_decrypt"));
2144 #----------------------------- ENCRYPT -----------------------------#
2145 &mov ($s0,&DWP(0,$key)); # load iv
2146 &mov ($s1,&DWP(4,$key));
2148 &set_label("fast_enc_loop",16);
2149 &mov ($s2,&DWP(8,$key));
2150 &mov ($s3,&DWP(12,$key));
2152 &xor ($s0,&DWP(0,$acc)); # xor input data
2153 &xor ($s1,&DWP(4,$acc));
2154 &xor ($s2,&DWP(8,$acc));
2155 &xor ($s3,&DWP(12,$acc));
2157 &mov ($key,$_key); # load key
2158 &call ("_x86_AES_encrypt");
2160 &mov ($acc,$_inp); # load inp
2161 &mov ($key,$_out); # load out
2163 &mov (&DWP(0,$key),$s0); # save output data
2164 &mov (&DWP(4,$key),$s1);
2165 &mov (&DWP(8,$key),$s2);
2166 &mov (&DWP(12,$key),$s3);
2168 &lea ($acc,&DWP(16,$acc)); # advance inp
2169 &mov ($s2,$_len); # load len
2170 &mov ($_inp,$acc); # save inp
2171 &lea ($s3,&DWP(16,$key)); # advance out
2172 &mov ($_out,$s3); # save out
2173 &sub ($s2,16); # decrease len
2174 &mov ($_len,$s2); # save len
2175 &jnz (&label("fast_enc_loop"));
2176 &mov ($acc,$_ivp); # load ivp
2177 &mov ($s2,&DWP(8,$key)); # restore last 2 dwords
2178 &mov ($s3,&DWP(12,$key));
2179 &mov (&DWP(0,$acc),$s0); # save ivec
2180 &mov (&DWP(4,$acc),$s1);
2181 &mov (&DWP(8,$acc),$s2);
2182 &mov (&DWP(12,$acc),$s3);
2184 &cmp ($mark,0); # was the key schedule copied?
2185 &mov ("edi",$_key);
2186 &je (&label("skip_ezero"));
2187 # zero copy of key schedule
2188 &mov ("ecx",240/4);
2189 &xor ("eax","eax");
2190 &align (4);
2191 &data_word(0xABF3F689); # rep stosd
2192 &set_label("skip_ezero");
2193 &mov ("esp",$_esp);
2194 &popf ();
2195 &set_label("drop_out");
2196 &function_end_A();
2197 &pushf (); # kludge, never executed
2199 #----------------------------- DECRYPT -----------------------------#
2200 &set_label("fast_decrypt",16);
2202 &cmp ($acc,$_out);
2203 &je (&label("fast_dec_in_place")); # in-place processing...
2205 &mov ($_tmp,$key);
2207 &align (4);
2208 &set_label("fast_dec_loop",16);
2209 &mov ($s0,&DWP(0,$acc)); # read input
2210 &mov ($s1,&DWP(4,$acc));
2211 &mov ($s2,&DWP(8,$acc));
2212 &mov ($s3,&DWP(12,$acc));
2214 &mov ($key,$_key); # load key
2215 &call ("_x86_AES_decrypt");
2217 &mov ($key,$_tmp); # load ivp
2218 &mov ($acc,$_len); # load len
2219 &xor ($s0,&DWP(0,$key)); # xor iv
2220 &xor ($s1,&DWP(4,$key));
2221 &xor ($s2,&DWP(8,$key));
2222 &xor ($s3,&DWP(12,$key));
2224 &mov ($key,$_out); # load out
2225 &mov ($acc,$_inp); # load inp
2227 &mov (&DWP(0,$key),$s0); # write output
2228 &mov (&DWP(4,$key),$s1);
2229 &mov (&DWP(8,$key),$s2);
2230 &mov (&DWP(12,$key),$s3);
2232 &mov ($s2,$_len); # load len
2233 &mov ($_tmp,$acc); # save ivp
2234 &lea ($acc,&DWP(16,$acc)); # advance inp
2235 &mov ($_inp,$acc); # save inp
2236 &lea ($key,&DWP(16,$key)); # advance out
2237 &mov ($_out,$key); # save out
2238 &sub ($s2,16); # decrease len
2239 &mov ($_len,$s2); # save len
2240 &jnz (&label("fast_dec_loop"));
2241 &mov ($key,$_tmp); # load temp ivp
2242 &mov ($acc,$_ivp); # load user ivp
2243 &mov ($s0,&DWP(0,$key)); # load iv
2244 &mov ($s1,&DWP(4,$key));
2245 &mov ($s2,&DWP(8,$key));
2246 &mov ($s3,&DWP(12,$key));
2247 &mov (&DWP(0,$acc),$s0); # copy back to user
2248 &mov (&DWP(4,$acc),$s1);
2249 &mov (&DWP(8,$acc),$s2);
2250 &mov (&DWP(12,$acc),$s3);
2251 &jmp (&label("fast_dec_out"));
2253 &set_label("fast_dec_in_place",16);
2254 &set_label("fast_dec_in_place_loop");
2255 &mov ($s0,&DWP(0,$acc)); # read input
2256 &mov ($s1,&DWP(4,$acc));
2257 &mov ($s2,&DWP(8,$acc));
2258 &mov ($s3,&DWP(12,$acc));
2260 &lea ($key,$ivec);
2261 &mov (&DWP(0,$key),$s0); # copy to temp
2262 &mov (&DWP(4,$key),$s1);
2263 &mov (&DWP(8,$key),$s2);
2264 &mov (&DWP(12,$key),$s3);
2266 &mov ($key,$_key); # load key
2267 &call ("_x86_AES_decrypt");
2269 &mov ($key,$_ivp); # load ivp
2270 &mov ($acc,$_out); # load out
2271 &xor ($s0,&DWP(0,$key)); # xor iv
2272 &xor ($s1,&DWP(4,$key));
2273 &xor ($s2,&DWP(8,$key));
2274 &xor ($s3,&DWP(12,$key));
2276 &mov (&DWP(0,$acc),$s0); # write output
2277 &mov (&DWP(4,$acc),$s1);
2278 &mov (&DWP(8,$acc),$s2);
2279 &mov (&DWP(12,$acc),$s3);
2281 &lea ($acc,&DWP(16,$acc)); # advance out
2282 &mov ($_out,$acc); # save out
2284 &lea ($acc,$ivec);
2285 &mov ($s0,&DWP(0,$acc)); # read temp
2286 &mov ($s1,&DWP(4,$acc));
2287 &mov ($s2,&DWP(8,$acc));
2288 &mov ($s3,&DWP(12,$acc));
2290 &mov (&DWP(0,$key),$s0); # copy iv
2291 &mov (&DWP(4,$key),$s1);
2292 &mov (&DWP(8,$key),$s2);
2293 &mov (&DWP(12,$key),$s3);
2295 &mov ($acc,$_inp); # load inp
2296 &mov ($s2,$_len); # load len
2297 &lea ($acc,&DWP(16,$acc)); # advance inp
2298 &mov ($_inp,$acc); # save inp
2299 &sub ($s2,16); # decrease len
2300 &mov ($_len,$s2); # save len
2301 &jnz (&label("fast_dec_in_place_loop"));
2303 &set_label("fast_dec_out",4);
2304 &cmp ($mark,0); # was the key schedule copied?
2305 &mov ("edi",$_key);
2306 &je (&label("skip_dzero"));
2307 # zero copy of key schedule
2308 &mov ("ecx",240/4);
2309 &xor ("eax","eax");
2310 &align (4);
2311 &data_word(0xABF3F689); # rep stosd
2312 &set_label("skip_dzero");
2313 &mov ("esp",$_esp);
2314 &popf ();
2315 &function_end_A();
2316 &pushf (); # kludge, never executed
2318 #--------------------------- SLOW ROUTINE ---------------------------#
2319 &set_label("slow_way",16);
2321 &mov ($s0,&DWP(0,$s0)) if (!$x86only);# load OPENSSL_ia32cap
2322 &mov ($key,&wparam(3)); # load key
2324 # pre-allocate aligned stack frame...
2325 &lea ($acc,&DWP(-80,"esp"));
2326 &and ($acc,-64);
2328 # ... and make sure it doesn't alias with $key modulo 1024
2329 &lea ($s1,&DWP(-80-63,$key));
2330 &sub ($s1,$acc);
2331 &neg ($s1);
2332 &and ($s1,0x3C0); # modulo 1024, but aligned to cache-line
2333 &sub ($acc,$s1);
2335 # pick S-box copy which can't overlap with stack frame or $key
2336 &lea ($s1,&DWP(768,$acc));
2337 &sub ($s1,$tbl);
2338 &and ($s1,0x300);
2339 &lea ($tbl,&DWP(2048+128,$tbl,$s1));
2341 &lea ($s3,&wparam(0)); # pointer to parameter block
2343 &exch ("esp",$acc);
2344 &add ("esp",4); # reserve for return address!
2345 &mov ($_tbl,$tbl); # save %ebp
2346 &mov ($_esp,$acc); # save %esp
2347 &mov ($_tmp,$s0); # save OPENSSL_ia32cap
2349 &mov ($s0,&DWP(0,$s3)); # load inp
2350 &mov ($s1,&DWP(4,$s3)); # load out
2351 #&mov ($s2,&DWP(8,$s3)); # load len
2352 #&mov ($key,&DWP(12,$s3)); # load key
2353 &mov ($acc,&DWP(16,$s3)); # load ivp
2354 &mov ($s3,&DWP(20,$s3)); # load enc flag
2356 &mov ($_inp,$s0); # save copy of inp
2357 &mov ($_out,$s1); # save copy of out
2358 &mov ($_len,$s2); # save copy of len
2359 &mov ($_key,$key); # save copy of key
2360 &mov ($_ivp,$acc); # save copy of ivp
2362 &mov ($key,$acc);
2363 &mov ($acc,$s0);
2365 &cmp ($s3,0);
2366 &je (&label("slow_decrypt"));
2368 #--------------------------- SLOW ENCRYPT ---------------------------#
2369 &cmp ($s2,16);
2370 &mov ($s3,$s1);
2371 &jb (&label("slow_enc_tail"));
2373 if (!$x86only) {
2374 &bt ($_tmp,25); # check for SSE bit
2375 &jnc (&label("slow_enc_x86"));
2377 &movq ("mm0",&QWP(0,$key)); # load iv
2378 &movq ("mm4",&QWP(8,$key));
2380 &set_label("slow_enc_loop_sse",16);
2381 &pxor ("mm0",&QWP(0,$acc)); # xor input data
2382 &pxor ("mm4",&QWP(8,$acc));
2384 &mov ($key,$_key);
2385 &call ("_sse_AES_encrypt_compact");
2387 &mov ($acc,$_inp); # load inp
2388 &mov ($key,$_out); # load out
2389 &mov ($s2,$_len); # load len
2391 &movq (&QWP(0,$key),"mm0"); # save output data
2392 &movq (&QWP(8,$key),"mm4");
2394 &lea ($acc,&DWP(16,$acc)); # advance inp
2395 &mov ($_inp,$acc); # save inp
2396 &lea ($s3,&DWP(16,$key)); # advance out
2397 &mov ($_out,$s3); # save out
2398 &sub ($s2,16); # decrease len
2399 &cmp ($s2,16);
2400 &mov ($_len,$s2); # save len
2401 &jae (&label("slow_enc_loop_sse"));
2402 &test ($s2,15);
2403 &jnz (&label("slow_enc_tail"));
2404 &mov ($acc,$_ivp); # load ivp
2405 &movq (&QWP(0,$acc),"mm0"); # save ivec
2406 &movq (&QWP(8,$acc),"mm4");
2407 &emms ();
2408 &mov ("esp",$_esp);
2409 &popf ();
2410 &function_end_A();
2411 &pushf (); # kludge, never executed
2413 &set_label("slow_enc_x86",16);
2414 &mov ($s0,&DWP(0,$key)); # load iv
2415 &mov ($s1,&DWP(4,$key));
2417 &set_label("slow_enc_loop_x86",4);
2418 &mov ($s2,&DWP(8,$key));
2419 &mov ($s3,&DWP(12,$key));
2421 &xor ($s0,&DWP(0,$acc)); # xor input data
2422 &xor ($s1,&DWP(4,$acc));
2423 &xor ($s2,&DWP(8,$acc));
2424 &xor ($s3,&DWP(12,$acc));
2426 &mov ($key,$_key); # load key
2427 &call ("_x86_AES_encrypt_compact");
2429 &mov ($acc,$_inp); # load inp
2430 &mov ($key,$_out); # load out
2432 &mov (&DWP(0,$key),$s0); # save output data
2433 &mov (&DWP(4,$key),$s1);
2434 &mov (&DWP(8,$key),$s2);
2435 &mov (&DWP(12,$key),$s3);
2437 &mov ($s2,$_len); # load len
2438 &lea ($acc,&DWP(16,$acc)); # advance inp
2439 &mov ($_inp,$acc); # save inp
2440 &lea ($s3,&DWP(16,$key)); # advance out
2441 &mov ($_out,$s3); # save out
2442 &sub ($s2,16); # decrease len
2443 &cmp ($s2,16);
2444 &mov ($_len,$s2); # save len
2445 &jae (&label("slow_enc_loop_x86"));
2446 &test ($s2,15);
2447 &jnz (&label("slow_enc_tail"));
2448 &mov ($acc,$_ivp); # load ivp
2449 &mov ($s2,&DWP(8,$key)); # restore last dwords
2450 &mov ($s3,&DWP(12,$key));
2451 &mov (&DWP(0,$acc),$s0); # save ivec
2452 &mov (&DWP(4,$acc),$s1);
2453 &mov (&DWP(8,$acc),$s2);
2454 &mov (&DWP(12,$acc),$s3);
2456 &mov ("esp",$_esp);
2457 &popf ();
2458 &function_end_A();
2459 &pushf (); # kludge, never executed
2461 &set_label("slow_enc_tail",16);
2462 &emms () if (!$x86only);
2463 &mov ($key eq "edi"? $key:"",$s3); # load out to edi
2464 &mov ($s1,16);
2465 &sub ($s1,$s2);
2466 &cmp ($key,$acc eq "esi"? $acc:""); # compare with inp
2467 &je (&label("enc_in_place"));
2468 &align (4);
2469 &data_word(0xA4F3F689); # rep movsb # copy input
2470 &jmp (&label("enc_skip_in_place"));
2471 &set_label("enc_in_place");
2472 &lea ($key,&DWP(0,$key,$s2));
2473 &set_label("enc_skip_in_place");
2474 &mov ($s2,$s1);
2475 &xor ($s0,$s0);
2476 &align (4);
2477 &data_word(0xAAF3F689); # rep stosb # zero tail
2479 &mov ($key,$_ivp); # restore ivp
2480 &mov ($acc,$s3); # output as input
2481 &mov ($s0,&DWP(0,$key));
2482 &mov ($s1,&DWP(4,$key));
2483 &mov ($_len,16); # len=16
2484 &jmp (&label("slow_enc_loop_x86")); # one more spin...
2486 #--------------------------- SLOW DECRYPT ---------------------------#
2487 &set_label("slow_decrypt",16);
2488 if (!$x86only) {
2489 &bt ($_tmp,25); # check for SSE bit
2490 &jnc (&label("slow_dec_loop_x86"));
2492 &set_label("slow_dec_loop_sse",4);
2493 &movq ("mm0",&QWP(0,$acc)); # read input
2494 &movq ("mm4",&QWP(8,$acc));
2496 &mov ($key,$_key);
2497 &call ("_sse_AES_decrypt_compact");
2499 &mov ($acc,$_inp); # load inp
2500 &lea ($s0,$ivec);
2501 &mov ($s1,$_out); # load out
2502 &mov ($s2,$_len); # load len
2503 &mov ($key,$_ivp); # load ivp
2505 &movq ("mm1",&QWP(0,$acc)); # re-read input
2506 &movq ("mm5",&QWP(8,$acc));
2508 &pxor ("mm0",&QWP(0,$key)); # xor iv
2509 &pxor ("mm4",&QWP(8,$key));
2511 &movq (&QWP(0,$key),"mm1"); # copy input to iv
2512 &movq (&QWP(8,$key),"mm5");
2514 &sub ($s2,16); # decrease len
2515 &jc (&label("slow_dec_partial_sse"));
2517 &movq (&QWP(0,$s1),"mm0"); # write output
2518 &movq (&QWP(8,$s1),"mm4");
2520 &lea ($s1,&DWP(16,$s1)); # advance out
2521 &mov ($_out,$s1); # save out
2522 &lea ($acc,&DWP(16,$acc)); # advance inp
2523 &mov ($_inp,$acc); # save inp
2524 &mov ($_len,$s2); # save len
2525 &jnz (&label("slow_dec_loop_sse"));
2526 &emms ();
2527 &mov ("esp",$_esp);
2528 &popf ();
2529 &function_end_A();
2530 &pushf (); # kludge, never executed
2532 &set_label("slow_dec_partial_sse",16);
2533 &movq (&QWP(0,$s0),"mm0"); # save output to temp
2534 &movq (&QWP(8,$s0),"mm4");
2535 &emms ();
2537 &add ($s2 eq "ecx" ? "ecx":"",16);
2538 &mov ("edi",$s1); # out
2539 &mov ("esi",$s0); # temp
2540 &align (4);
2541 &data_word(0xA4F3F689); # rep movsb # copy partial output
2543 &mov ("esp",$_esp);
2544 &popf ();
2545 &function_end_A();
2546 &pushf (); # kludge, never executed
2548 &set_label("slow_dec_loop_x86",16);
2549 &mov ($s0,&DWP(0,$acc)); # read input
2550 &mov ($s1,&DWP(4,$acc));
2551 &mov ($s2,&DWP(8,$acc));
2552 &mov ($s3,&DWP(12,$acc));
2554 &lea ($key,$ivec);
2555 &mov (&DWP(0,$key),$s0); # copy to temp
2556 &mov (&DWP(4,$key),$s1);
2557 &mov (&DWP(8,$key),$s2);
2558 &mov (&DWP(12,$key),$s3);
2560 &mov ($key,$_key); # load key
2561 &call ("_x86_AES_decrypt_compact");
2563 &mov ($key,$_ivp); # load ivp
2564 &mov ($acc,$_len); # load len
2565 &xor ($s0,&DWP(0,$key)); # xor iv
2566 &xor ($s1,&DWP(4,$key));
2567 &xor ($s2,&DWP(8,$key));
2568 &xor ($s3,&DWP(12,$key));
2570 &sub ($acc,16);
2571 &jc (&label("slow_dec_partial_x86"));
2573 &mov ($_len,$acc); # save len
2574 &mov ($acc,$_out); # load out
2576 &mov (&DWP(0,$acc),$s0); # write output
2577 &mov (&DWP(4,$acc),$s1);
2578 &mov (&DWP(8,$acc),$s2);
2579 &mov (&DWP(12,$acc),$s3);
2581 &lea ($acc,&DWP(16,$acc)); # advance out
2582 &mov ($_out,$acc); # save out
2584 &lea ($acc,$ivec);
2585 &mov ($s0,&DWP(0,$acc)); # read temp
2586 &mov ($s1,&DWP(4,$acc));
2587 &mov ($s2,&DWP(8,$acc));
2588 &mov ($s3,&DWP(12,$acc));
2590 &mov (&DWP(0,$key),$s0); # copy it to iv
2591 &mov (&DWP(4,$key),$s1);
2592 &mov (&DWP(8,$key),$s2);
2593 &mov (&DWP(12,$key),$s3);
2595 &mov ($acc,$_inp); # load inp
2596 &lea ($acc,&DWP(16,$acc)); # advance inp
2597 &mov ($_inp,$acc); # save inp
2598 &jnz (&label("slow_dec_loop_x86"));
2599 &mov ("esp",$_esp);
2600 &popf ();
2601 &function_end_A();
2602 &pushf (); # kludge, never executed
2604 &set_label("slow_dec_partial_x86",16);
2605 &lea ($acc,$ivec);
2606 &mov (&DWP(0,$acc),$s0); # save output to temp
2607 &mov (&DWP(4,$acc),$s1);
2608 &mov (&DWP(8,$acc),$s2);
2609 &mov (&DWP(12,$acc),$s3);
2611 &mov ($acc,$_inp);
2612 &mov ($s0,&DWP(0,$acc)); # re-read input
2613 &mov ($s1,&DWP(4,$acc));
2614 &mov ($s2,&DWP(8,$acc));
2615 &mov ($s3,&DWP(12,$acc));
2617 &mov (&DWP(0,$key),$s0); # copy it to iv
2618 &mov (&DWP(4,$key),$s1);
2619 &mov (&DWP(8,$key),$s2);
2620 &mov (&DWP(12,$key),$s3);
2622 &mov ("ecx",$_len);
2623 &mov ("edi",$_out);
2624 &lea ("esi",$ivec);
2625 &align (4);
2626 &data_word(0xA4F3F689); # rep movsb # copy partial output
2628 &mov ("esp",$_esp);
2629 &popf ();
2630 &function_end("AES_cbc_encrypt");
2633 #------------------------------------------------------------------#
2635 sub enckey()
2637 &movz ("esi",&LB("edx")); # rk[i]>>0
2638 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2639 &movz ("esi",&HB("edx")); # rk[i]>>8
2640 &shl ("ebx",24);
2641 &xor ("eax","ebx");
2643 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2644 &shr ("edx",16);
2645 &movz ("esi",&LB("edx")); # rk[i]>>16
2646 &xor ("eax","ebx");
2648 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2649 &movz ("esi",&HB("edx")); # rk[i]>>24
2650 &shl ("ebx",8);
2651 &xor ("eax","ebx");
2653 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2654 &shl ("ebx",16);
2655 &xor ("eax","ebx");
2657 &xor ("eax",&DWP(1024-128,$tbl,"ecx",4)); # rcon
2660 &function_begin("_x86_AES_set_encrypt_key");
2661 &mov ("esi",&wparam(1)); # user supplied key
2662 &mov ("edi",&wparam(3)); # private key schedule
2664 &test ("esi",-1);
2665 &jz (&label("badpointer"));
2666 &test ("edi",-1);
2667 &jz (&label("badpointer"));
2669 &call (&label("pic_point"));
2670 &set_label("pic_point");
2671 &blindpop($tbl);
2672 &lea ($tbl,&DWP(&label("AES_Te")."-".&label("pic_point"),$tbl));
2673 &lea ($tbl,&DWP(2048+128,$tbl));
2675 # prefetch Te4
2676 &mov ("eax",&DWP(0-128,$tbl));
2677 &mov ("ebx",&DWP(32-128,$tbl));
2678 &mov ("ecx",&DWP(64-128,$tbl));
2679 &mov ("edx",&DWP(96-128,$tbl));
2680 &mov ("eax",&DWP(128-128,$tbl));
2681 &mov ("ebx",&DWP(160-128,$tbl));
2682 &mov ("ecx",&DWP(192-128,$tbl));
2683 &mov ("edx",&DWP(224-128,$tbl));
2685 &mov ("ecx",&wparam(2)); # number of bits in key
2686 &cmp ("ecx",128);
2687 &je (&label("10rounds"));
2688 &cmp ("ecx",192);
2689 &je (&label("12rounds"));
2690 &cmp ("ecx",256);
2691 &je (&label("14rounds"));
2692 &mov ("eax",-2); # invalid number of bits
2693 &jmp (&label("exit"));
2695 &set_label("10rounds");
2696 &mov ("eax",&DWP(0,"esi")); # copy first 4 dwords
2697 &mov ("ebx",&DWP(4,"esi"));
2698 &mov ("ecx",&DWP(8,"esi"));
2699 &mov ("edx",&DWP(12,"esi"));
2700 &mov (&DWP(0,"edi"),"eax");
2701 &mov (&DWP(4,"edi"),"ebx");
2702 &mov (&DWP(8,"edi"),"ecx");
2703 &mov (&DWP(12,"edi"),"edx");
2705 &xor ("ecx","ecx");
2706 &jmp (&label("10shortcut"));
2708 &align (4);
2709 &set_label("10loop");
2710 &mov ("eax",&DWP(0,"edi")); # rk[0]
2711 &mov ("edx",&DWP(12,"edi")); # rk[3]
2712 &set_label("10shortcut");
2713 &enckey ();
2715 &mov (&DWP(16,"edi"),"eax"); # rk[4]
2716 &xor ("eax",&DWP(4,"edi"));
2717 &mov (&DWP(20,"edi"),"eax"); # rk[5]
2718 &xor ("eax",&DWP(8,"edi"));
2719 &mov (&DWP(24,"edi"),"eax"); # rk[6]
2720 &xor ("eax",&DWP(12,"edi"));
2721 &mov (&DWP(28,"edi"),"eax"); # rk[7]
2722 &inc ("ecx");
2723 &add ("edi",16);
2724 &cmp ("ecx",10);
2725 &jl (&label("10loop"));
2727 &mov (&DWP(80,"edi"),10); # setup number of rounds
2728 &xor ("eax","eax");
2729 &jmp (&label("exit"));
2731 &set_label("12rounds");
2732 &mov ("eax",&DWP(0,"esi")); # copy first 6 dwords
2733 &mov ("ebx",&DWP(4,"esi"));
2734 &mov ("ecx",&DWP(8,"esi"));
2735 &mov ("edx",&DWP(12,"esi"));
2736 &mov (&DWP(0,"edi"),"eax");
2737 &mov (&DWP(4,"edi"),"ebx");
2738 &mov (&DWP(8,"edi"),"ecx");
2739 &mov (&DWP(12,"edi"),"edx");
2740 &mov ("ecx",&DWP(16,"esi"));
2741 &mov ("edx",&DWP(20,"esi"));
2742 &mov (&DWP(16,"edi"),"ecx");
2743 &mov (&DWP(20,"edi"),"edx");
2745 &xor ("ecx","ecx");
2746 &jmp (&label("12shortcut"));
2748 &align (4);
2749 &set_label("12loop");
2750 &mov ("eax",&DWP(0,"edi")); # rk[0]
2751 &mov ("edx",&DWP(20,"edi")); # rk[5]
2752 &set_label("12shortcut");
2753 &enckey ();
2755 &mov (&DWP(24,"edi"),"eax"); # rk[6]
2756 &xor ("eax",&DWP(4,"edi"));
2757 &mov (&DWP(28,"edi"),"eax"); # rk[7]
2758 &xor ("eax",&DWP(8,"edi"));
2759 &mov (&DWP(32,"edi"),"eax"); # rk[8]
2760 &xor ("eax",&DWP(12,"edi"));
2761 &mov (&DWP(36,"edi"),"eax"); # rk[9]
2763 &cmp ("ecx",7);
2764 &je (&label("12break"));
2765 &inc ("ecx");
2767 &xor ("eax",&DWP(16,"edi"));
2768 &mov (&DWP(40,"edi"),"eax"); # rk[10]
2769 &xor ("eax",&DWP(20,"edi"));
2770 &mov (&DWP(44,"edi"),"eax"); # rk[11]
2772 &add ("edi",24);
2773 &jmp (&label("12loop"));
2775 &set_label("12break");
2776 &mov (&DWP(72,"edi"),12); # setup number of rounds
2777 &xor ("eax","eax");
2778 &jmp (&label("exit"));
2780 &set_label("14rounds");
2781 &mov ("eax",&DWP(0,"esi")); # copy first 8 dwords
2782 &mov ("ebx",&DWP(4,"esi"));
2783 &mov ("ecx",&DWP(8,"esi"));
2784 &mov ("edx",&DWP(12,"esi"));
2785 &mov (&DWP(0,"edi"),"eax");
2786 &mov (&DWP(4,"edi"),"ebx");
2787 &mov (&DWP(8,"edi"),"ecx");
2788 &mov (&DWP(12,"edi"),"edx");
2789 &mov ("eax",&DWP(16,"esi"));
2790 &mov ("ebx",&DWP(20,"esi"));
2791 &mov ("ecx",&DWP(24,"esi"));
2792 &mov ("edx",&DWP(28,"esi"));
2793 &mov (&DWP(16,"edi"),"eax");
2794 &mov (&DWP(20,"edi"),"ebx");
2795 &mov (&DWP(24,"edi"),"ecx");
2796 &mov (&DWP(28,"edi"),"edx");
2798 &xor ("ecx","ecx");
2799 &jmp (&label("14shortcut"));
2801 &align (4);
2802 &set_label("14loop");
2803 &mov ("edx",&DWP(28,"edi")); # rk[7]
2804 &set_label("14shortcut");
2805 &mov ("eax",&DWP(0,"edi")); # rk[0]
2807 &enckey ();
2809 &mov (&DWP(32,"edi"),"eax"); # rk[8]
2810 &xor ("eax",&DWP(4,"edi"));
2811 &mov (&DWP(36,"edi"),"eax"); # rk[9]
2812 &xor ("eax",&DWP(8,"edi"));
2813 &mov (&DWP(40,"edi"),"eax"); # rk[10]
2814 &xor ("eax",&DWP(12,"edi"));
2815 &mov (&DWP(44,"edi"),"eax"); # rk[11]
2817 &cmp ("ecx",6);
2818 &je (&label("14break"));
2819 &inc ("ecx");
2821 &mov ("edx","eax");
2822 &mov ("eax",&DWP(16,"edi")); # rk[4]
2823 &movz ("esi",&LB("edx")); # rk[11]>>0
2824 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2825 &movz ("esi",&HB("edx")); # rk[11]>>8
2826 &xor ("eax","ebx");
2828 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2829 &shr ("edx",16);
2830 &shl ("ebx",8);
2831 &movz ("esi",&LB("edx")); # rk[11]>>16
2832 &xor ("eax","ebx");
2834 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2835 &movz ("esi",&HB("edx")); # rk[11]>>24
2836 &shl ("ebx",16);
2837 &xor ("eax","ebx");
2839 &movz ("ebx",&BP(-128,$tbl,"esi",1));
2840 &shl ("ebx",24);
2841 &xor ("eax","ebx");
2843 &mov (&DWP(48,"edi"),"eax"); # rk[12]
2844 &xor ("eax",&DWP(20,"edi"));
2845 &mov (&DWP(52,"edi"),"eax"); # rk[13]
2846 &xor ("eax",&DWP(24,"edi"));
2847 &mov (&DWP(56,"edi"),"eax"); # rk[14]
2848 &xor ("eax",&DWP(28,"edi"));
2849 &mov (&DWP(60,"edi"),"eax"); # rk[15]
2851 &add ("edi",32);
2852 &jmp (&label("14loop"));
2854 &set_label("14break");
2855 &mov (&DWP(48,"edi"),14); # setup number of rounds
2856 &xor ("eax","eax");
2857 &jmp (&label("exit"));
2859 &set_label("badpointer");
2860 &mov ("eax",-1);
2861 &set_label("exit");
2862 &function_end("_x86_AES_set_encrypt_key");
2864 # int private_AES_set_encrypt_key(const unsigned char *userKey, const int bits,
2865 # AES_KEY *key)
2866 &function_begin_B("private_AES_set_encrypt_key");
2867 &call ("_x86_AES_set_encrypt_key");
2868 &ret ();
2869 &function_end_B("private_AES_set_encrypt_key");
2871 sub deckey()
2872 { my ($i,$key,$tp1,$tp2,$tp4,$tp8) = @_;
2873 my $tmp = $tbl;
2875 &mov ($tmp,0x80808080);
2876 &and ($tmp,$tp1);
2877 &lea ($tp2,&DWP(0,$tp1,$tp1));
2878 &mov ($acc,$tmp);
2879 &shr ($tmp,7);
2880 &sub ($acc,$tmp);
2881 &and ($tp2,0xfefefefe);
2882 &and ($acc,0x1b1b1b1b);
2883 &xor ($tp2,$acc);
2884 &mov ($tmp,0x80808080);
2886 &and ($tmp,$tp2);
2887 &lea ($tp4,&DWP(0,$tp2,$tp2));
2888 &mov ($acc,$tmp);
2889 &shr ($tmp,7);
2890 &sub ($acc,$tmp);
2891 &and ($tp4,0xfefefefe);
2892 &and ($acc,0x1b1b1b1b);
2893 &xor ($tp2,$tp1); # tp2^tp1
2894 &xor ($tp4,$acc);
2895 &mov ($tmp,0x80808080);
2897 &and ($tmp,$tp4);
2898 &lea ($tp8,&DWP(0,$tp4,$tp4));
2899 &mov ($acc,$tmp);
2900 &shr ($tmp,7);
2901 &xor ($tp4,$tp1); # tp4^tp1
2902 &sub ($acc,$tmp);
2903 &and ($tp8,0xfefefefe);
2904 &and ($acc,0x1b1b1b1b);
2905 &rotl ($tp1,8); # = ROTATE(tp1,8)
2906 &xor ($tp8,$acc);
2908 &mov ($tmp,&DWP(4*($i+1),$key)); # modulo-scheduled load
2910 &xor ($tp1,$tp2);
2911 &xor ($tp2,$tp8);
2912 &xor ($tp1,$tp4);
2913 &rotl ($tp2,24);
2914 &xor ($tp4,$tp8);
2915 &xor ($tp1,$tp8); # ^= tp8^(tp4^tp1)^(tp2^tp1)
2916 &rotl ($tp4,16);
2917 &xor ($tp1,$tp2); # ^= ROTATE(tp8^tp2^tp1,24)
2918 &rotl ($tp8,8);
2919 &xor ($tp1,$tp4); # ^= ROTATE(tp8^tp4^tp1,16)
2920 &mov ($tp2,$tmp);
2921 &xor ($tp1,$tp8); # ^= ROTATE(tp8,8)
2923 &mov (&DWP(4*$i,$key),$tp1);
2926 # int private_AES_set_decrypt_key(const unsigned char *userKey, const int bits,
2927 # AES_KEY *key)
2928 &function_begin_B("private_AES_set_decrypt_key");
2929 &call ("_x86_AES_set_encrypt_key");
2930 &cmp ("eax",0);
2931 &je (&label("proceed"));
2932 &ret ();
2934 &set_label("proceed");
2935 &push ("ebp");
2936 &push ("ebx");
2937 &push ("esi");
2938 &push ("edi");
2940 &mov ("esi",&wparam(2));
2941 &mov ("ecx",&DWP(240,"esi")); # pull number of rounds
2942 &lea ("ecx",&DWP(0,"","ecx",4));
2943 &lea ("edi",&DWP(0,"esi","ecx",4)); # pointer to last chunk
2945 &set_label("invert",4); # invert order of chunks
2946 &mov ("eax",&DWP(0,"esi"));
2947 &mov ("ebx",&DWP(4,"esi"));
2948 &mov ("ecx",&DWP(0,"edi"));
2949 &mov ("edx",&DWP(4,"edi"));
2950 &mov (&DWP(0,"edi"),"eax");
2951 &mov (&DWP(4,"edi"),"ebx");
2952 &mov (&DWP(0,"esi"),"ecx");
2953 &mov (&DWP(4,"esi"),"edx");
2954 &mov ("eax",&DWP(8,"esi"));
2955 &mov ("ebx",&DWP(12,"esi"));
2956 &mov ("ecx",&DWP(8,"edi"));
2957 &mov ("edx",&DWP(12,"edi"));
2958 &mov (&DWP(8,"edi"),"eax");
2959 &mov (&DWP(12,"edi"),"ebx");
2960 &mov (&DWP(8,"esi"),"ecx");
2961 &mov (&DWP(12,"esi"),"edx");
2962 &add ("esi",16);
2963 &sub ("edi",16);
2964 &cmp ("esi","edi");
2965 &jne (&label("invert"));
2967 &mov ($key,&wparam(2));
2968 &mov ($acc,&DWP(240,$key)); # pull number of rounds
2969 &lea ($acc,&DWP(-2,$acc,$acc));
2970 &lea ($acc,&DWP(0,$key,$acc,8));
2971 &mov (&wparam(2),$acc);
2973 &mov ($s0,&DWP(16,$key)); # modulo-scheduled load
2974 &set_label("permute",4); # permute the key schedule
2975 &add ($key,16);
2976 &deckey (0,$key,$s0,$s1,$s2,$s3);
2977 &deckey (1,$key,$s1,$s2,$s3,$s0);
2978 &deckey (2,$key,$s2,$s3,$s0,$s1);
2979 &deckey (3,$key,$s3,$s0,$s1,$s2);
2980 &cmp ($key,&wparam(2));
2981 &jb (&label("permute"));
2983 &xor ("eax","eax"); # return success
2984 &function_end("private_AES_set_decrypt_key");
2985 &asciz("AES for x86, CRYPTOGAMS by <appro\@openssl.org>");
2987 &asm_finish();