OpenSSL: Update to version 1.0.1e
[tomato.git] / release / src / router / openssl / crypto / modes / asm / ghash-x86_64.pl
blob38d779edbcfde5fd0b4ae67126a0f944de47cdd7
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # March, June 2010
12 # The module implements "4-bit" GCM GHASH function and underlying
13 # single multiplication operation in GF(2^128). "4-bit" means that
14 # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
15 # function features so called "528B" variant utilizing additional
16 # 256+16 bytes of per-key storage [+512 bytes shared table].
17 # Performance results are for this streamed GHASH subroutine and are
18 # expressed in cycles per processed byte, less is better:
20 # gcc 3.4.x(*) assembler
22 # P4 28.6 14.0 +100%
23 # Opteron 19.3 7.7 +150%
24 # Core2 17.8 8.1(**) +120%
26 # (*) comparison is not completely fair, because C results are
27 # for vanilla "256B" implementation, while assembler results
28 # are for "528B";-)
29 # (**) it's mystery [to me] why Core2 result is not same as for
30 # Opteron;
32 # May 2010
34 # Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
35 # See ghash-x86.pl for background information and details about coding
36 # techniques.
38 # Special thanks to David Woodhouse <dwmw2@infradead.org> for
39 # providing access to a Westmere-based system on behalf of Intel
40 # Open Source Technology Centre.
42 $flavour = shift;
43 $output = shift;
44 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
46 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
48 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
49 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
50 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
51 die "can't locate x86_64-xlate.pl";
53 open OUT,"| \"$^X\" $xlate $flavour $output";
54 *STDOUT=*OUT;
56 # common register layout
57 $nlo="%rax";
58 $nhi="%rbx";
59 $Zlo="%r8";
60 $Zhi="%r9";
61 $tmp="%r10";
62 $rem_4bit = "%r11";
64 $Xi="%rdi";
65 $Htbl="%rsi";
67 # per-function register layout
68 $cnt="%rcx";
69 $rem="%rdx";
71 sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or
72 $r =~ s/%[er]([sd]i)/%\1l/ or
73 $r =~ s/%[er](bp)/%\1l/ or
74 $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; }
76 sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
77 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
78 my $arg = pop;
79 $arg = "\$$arg" if ($arg*1 eq $arg);
80 $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
83 { my $N;
84 sub loop() {
85 my $inp = shift;
87 $N++;
88 $code.=<<___;
89 xor $nlo,$nlo
90 xor $nhi,$nhi
91 mov `&LB("$Zlo")`,`&LB("$nlo")`
92 mov `&LB("$Zlo")`,`&LB("$nhi")`
93 shl \$4,`&LB("$nlo")`
94 mov \$14,$cnt
95 mov 8($Htbl,$nlo),$Zlo
96 mov ($Htbl,$nlo),$Zhi
97 and \$0xf0,`&LB("$nhi")`
98 mov $Zlo,$rem
99 jmp .Loop$N
101 .align 16
102 .Loop$N:
103 shr \$4,$Zlo
104 and \$0xf,$rem
105 mov $Zhi,$tmp
106 mov ($inp,$cnt),`&LB("$nlo")`
107 shr \$4,$Zhi
108 xor 8($Htbl,$nhi),$Zlo
109 shl \$60,$tmp
110 xor ($Htbl,$nhi),$Zhi
111 mov `&LB("$nlo")`,`&LB("$nhi")`
112 xor ($rem_4bit,$rem,8),$Zhi
113 mov $Zlo,$rem
114 shl \$4,`&LB("$nlo")`
115 xor $tmp,$Zlo
116 dec $cnt
117 js .Lbreak$N
119 shr \$4,$Zlo
120 and \$0xf,$rem
121 mov $Zhi,$tmp
122 shr \$4,$Zhi
123 xor 8($Htbl,$nlo),$Zlo
124 shl \$60,$tmp
125 xor ($Htbl,$nlo),$Zhi
126 and \$0xf0,`&LB("$nhi")`
127 xor ($rem_4bit,$rem,8),$Zhi
128 mov $Zlo,$rem
129 xor $tmp,$Zlo
130 jmp .Loop$N
132 .align 16
133 .Lbreak$N:
134 shr \$4,$Zlo
135 and \$0xf,$rem
136 mov $Zhi,$tmp
137 shr \$4,$Zhi
138 xor 8($Htbl,$nlo),$Zlo
139 shl \$60,$tmp
140 xor ($Htbl,$nlo),$Zhi
141 and \$0xf0,`&LB("$nhi")`
142 xor ($rem_4bit,$rem,8),$Zhi
143 mov $Zlo,$rem
144 xor $tmp,$Zlo
146 shr \$4,$Zlo
147 and \$0xf,$rem
148 mov $Zhi,$tmp
149 shr \$4,$Zhi
150 xor 8($Htbl,$nhi),$Zlo
151 shl \$60,$tmp
152 xor ($Htbl,$nhi),$Zhi
153 xor $tmp,$Zlo
154 xor ($rem_4bit,$rem,8),$Zhi
156 bswap $Zlo
157 bswap $Zhi
161 $code=<<___;
162 .text
164 .globl gcm_gmult_4bit
165 .type gcm_gmult_4bit,\@function,2
166 .align 16
167 gcm_gmult_4bit:
168 push %rbx
169 push %rbp # %rbp and %r12 are pushed exclusively in
170 push %r12 # order to reuse Win64 exception handler...
171 .Lgmult_prologue:
173 movzb 15($Xi),$Zlo
174 lea .Lrem_4bit(%rip),$rem_4bit
176 &loop ($Xi);
177 $code.=<<___;
178 mov $Zlo,8($Xi)
179 mov $Zhi,($Xi)
181 mov 16(%rsp),%rbx
182 lea 24(%rsp),%rsp
183 .Lgmult_epilogue:
185 .size gcm_gmult_4bit,.-gcm_gmult_4bit
188 # per-function register layout
189 $inp="%rdx";
190 $len="%rcx";
191 $rem_8bit=$rem_4bit;
193 $code.=<<___;
194 .globl gcm_ghash_4bit
195 .type gcm_ghash_4bit,\@function,4
196 .align 16
197 gcm_ghash_4bit:
198 push %rbx
199 push %rbp
200 push %r12
201 push %r13
202 push %r14
203 push %r15
204 sub \$280,%rsp
205 .Lghash_prologue:
206 mov $inp,%r14 # reassign couple of args
207 mov $len,%r15
209 { my $inp="%r14";
210 my $dat="%edx";
211 my $len="%r15";
212 my @nhi=("%ebx","%ecx");
213 my @rem=("%r12","%r13");
214 my $Hshr4="%rbp";
216 &sub ($Htbl,-128); # size optimization
217 &lea ($Hshr4,"16+128(%rsp)");
218 { my @lo =($nlo,$nhi);
219 my @hi =($Zlo,$Zhi);
221 &xor ($dat,$dat);
222 for ($i=0,$j=-2;$i<18;$i++,$j++) {
223 &mov ("$j(%rsp)",&LB($dat)) if ($i>1);
224 &or ($lo[0],$tmp) if ($i>1);
225 &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17);
226 &shr ($lo[1],4) if ($i>0 && $i<17);
227 &mov ($tmp,$hi[1]) if ($i>0 && $i<17);
228 &shr ($hi[1],4) if ($i>0 && $i<17);
229 &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1);
230 &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16);
231 &shl (&LB($dat),4) if ($i>0 && $i<17);
232 &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1);
233 &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16);
234 &shl ($tmp,60) if ($i>0 && $i<17);
236 push (@lo,shift(@lo));
237 push (@hi,shift(@hi));
240 &add ($Htbl,-128);
241 &mov ($Zlo,"8($Xi)");
242 &mov ($Zhi,"0($Xi)");
243 &add ($len,$inp); # pointer to the end of data
244 &lea ($rem_8bit,".Lrem_8bit(%rip)");
245 &jmp (".Louter_loop");
247 $code.=".align 16\n.Louter_loop:\n";
248 &xor ($Zhi,"($inp)");
249 &mov ("%rdx","8($inp)");
250 &lea ($inp,"16($inp)");
251 &xor ("%rdx",$Zlo);
252 &mov ("($Xi)",$Zhi);
253 &mov ("8($Xi)","%rdx");
254 &shr ("%rdx",32);
256 &xor ($nlo,$nlo);
257 &rol ($dat,8);
258 &mov (&LB($nlo),&LB($dat));
259 &movz ($nhi[0],&LB($dat));
260 &shl (&LB($nlo),4);
261 &shr ($nhi[0],4);
263 for ($j=11,$i=0;$i<15;$i++) {
264 &rol ($dat,8);
265 &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0);
266 &xor ($Zhi,"($Htbl,$nlo)") if ($i>0);
267 &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0);
268 &mov ($Zhi,"($Htbl,$nlo)") if ($i==0);
270 &mov (&LB($nlo),&LB($dat));
271 &xor ($Zlo,$tmp) if ($i>0);
272 &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0);
274 &movz ($nhi[1],&LB($dat));
275 &shl (&LB($nlo),4);
276 &movzb ($rem[0],"(%rsp,$nhi[0])");
278 &shr ($nhi[1],4) if ($i<14);
279 &and ($nhi[1],0xf0) if ($i==14);
280 &shl ($rem[1],48) if ($i>0);
281 &xor ($rem[0],$Zlo);
283 &mov ($tmp,$Zhi);
284 &xor ($Zhi,$rem[1]) if ($i>0);
285 &shr ($Zlo,8);
287 &movz ($rem[0],&LB($rem[0]));
288 &mov ($dat,"$j($Xi)") if (--$j%4==0);
289 &shr ($Zhi,8);
291 &xor ($Zlo,"-128($Hshr4,$nhi[0],8)");
292 &shl ($tmp,56);
293 &xor ($Zhi,"($Hshr4,$nhi[0],8)");
295 unshift (@nhi,pop(@nhi)); # "rotate" registers
296 unshift (@rem,pop(@rem));
298 &movzw ($rem[1],"($rem_8bit,$rem[1],2)");
299 &xor ($Zlo,"8($Htbl,$nlo)");
300 &xor ($Zhi,"($Htbl,$nlo)");
302 &shl ($rem[1],48);
303 &xor ($Zlo,$tmp);
305 &xor ($Zhi,$rem[1]);
306 &movz ($rem[0],&LB($Zlo));
307 &shr ($Zlo,4);
309 &mov ($tmp,$Zhi);
310 &shl (&LB($rem[0]),4);
311 &shr ($Zhi,4);
313 &xor ($Zlo,"8($Htbl,$nhi[0])");
314 &movzw ($rem[0],"($rem_8bit,$rem[0],2)");
315 &shl ($tmp,60);
317 &xor ($Zhi,"($Htbl,$nhi[0])");
318 &xor ($Zlo,$tmp);
319 &shl ($rem[0],48);
321 &bswap ($Zlo);
322 &xor ($Zhi,$rem[0]);
324 &bswap ($Zhi);
325 &cmp ($inp,$len);
326 &jb (".Louter_loop");
328 $code.=<<___;
329 mov $Zlo,8($Xi)
330 mov $Zhi,($Xi)
332 lea 280(%rsp),%rsi
333 mov 0(%rsi),%r15
334 mov 8(%rsi),%r14
335 mov 16(%rsi),%r13
336 mov 24(%rsi),%r12
337 mov 32(%rsi),%rbp
338 mov 40(%rsi),%rbx
339 lea 48(%rsi),%rsp
340 .Lghash_epilogue:
342 .size gcm_ghash_4bit,.-gcm_ghash_4bit
345 ######################################################################
346 # PCLMULQDQ version.
348 @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
349 ("%rdi","%rsi","%rdx","%rcx"); # Unix order
351 ($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2";
352 ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
354 sub clmul64x64_T2 { # minimal register pressure
355 my ($Xhi,$Xi,$Hkey,$modulo)=@_;
357 $code.=<<___ if (!defined($modulo));
358 movdqa $Xi,$Xhi #
359 pshufd \$0b01001110,$Xi,$T1
360 pshufd \$0b01001110,$Hkey,$T2
361 pxor $Xi,$T1 #
362 pxor $Hkey,$T2
364 $code.=<<___;
365 pclmulqdq \$0x00,$Hkey,$Xi #######
366 pclmulqdq \$0x11,$Hkey,$Xhi #######
367 pclmulqdq \$0x00,$T2,$T1 #######
368 pxor $Xi,$T1 #
369 pxor $Xhi,$T1 #
371 movdqa $T1,$T2 #
372 psrldq \$8,$T1
373 pslldq \$8,$T2 #
374 pxor $T1,$Xhi
375 pxor $T2,$Xi #
379 sub reduction_alg9 { # 17/13 times faster than Intel version
380 my ($Xhi,$Xi) = @_;
382 $code.=<<___;
383 # 1st phase
384 movdqa $Xi,$T1 #
385 psllq \$1,$Xi
386 pxor $T1,$Xi #
387 psllq \$5,$Xi #
388 pxor $T1,$Xi #
389 psllq \$57,$Xi #
390 movdqa $Xi,$T2 #
391 pslldq \$8,$Xi
392 psrldq \$8,$T2 #
393 pxor $T1,$Xi
394 pxor $T2,$Xhi #
396 # 2nd phase
397 movdqa $Xi,$T2
398 psrlq \$5,$Xi
399 pxor $T2,$Xi #
400 psrlq \$1,$Xi #
401 pxor $T2,$Xi #
402 pxor $Xhi,$T2
403 psrlq \$1,$Xi #
404 pxor $T2,$Xi #
408 { my ($Htbl,$Xip)=@_4args;
410 $code.=<<___;
411 .globl gcm_init_clmul
412 .type gcm_init_clmul,\@abi-omnipotent
413 .align 16
414 gcm_init_clmul:
415 movdqu ($Xip),$Hkey
416 pshufd \$0b01001110,$Hkey,$Hkey # dword swap
418 # <<1 twist
419 pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
420 movdqa $Hkey,$T1
421 psllq \$1,$Hkey
422 pxor $T3,$T3 #
423 psrlq \$63,$T1
424 pcmpgtd $T2,$T3 # broadcast carry bit
425 pslldq \$8,$T1
426 por $T1,$Hkey # H<<=1
428 # magic reduction
429 pand .L0x1c2_polynomial(%rip),$T3
430 pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial
432 # calculate H^2
433 movdqa $Hkey,$Xi
435 &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
436 &reduction_alg9 ($Xhi,$Xi);
437 $code.=<<___;
438 movdqu $Hkey,($Htbl) # save H
439 movdqu $Xi,16($Htbl) # save H^2
441 .size gcm_init_clmul,.-gcm_init_clmul
445 { my ($Xip,$Htbl)=@_4args;
447 $code.=<<___;
448 .globl gcm_gmult_clmul
449 .type gcm_gmult_clmul,\@abi-omnipotent
450 .align 16
451 gcm_gmult_clmul:
452 movdqu ($Xip),$Xi
453 movdqa .Lbswap_mask(%rip),$T3
454 movdqu ($Htbl),$Hkey
455 pshufb $T3,$Xi
457 &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
458 &reduction_alg9 ($Xhi,$Xi);
459 $code.=<<___;
460 pshufb $T3,$Xi
461 movdqu $Xi,($Xip)
463 .size gcm_gmult_clmul,.-gcm_gmult_clmul
467 { my ($Xip,$Htbl,$inp,$len)=@_4args;
468 my $Xn="%xmm6";
469 my $Xhn="%xmm7";
470 my $Hkey2="%xmm8";
471 my $T1n="%xmm9";
472 my $T2n="%xmm10";
474 $code.=<<___;
475 .globl gcm_ghash_clmul
476 .type gcm_ghash_clmul,\@abi-omnipotent
477 .align 16
478 gcm_ghash_clmul:
480 $code.=<<___ if ($win64);
481 .LSEH_begin_gcm_ghash_clmul:
482 # I can't trust assembler to use specific encoding:-(
483 .byte 0x48,0x83,0xec,0x58 #sub \$0x58,%rsp
484 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
485 .byte 0x0f,0x29,0x7c,0x24,0x10 #movdqa %xmm7,0x10(%rsp)
486 .byte 0x44,0x0f,0x29,0x44,0x24,0x20 #movaps %xmm8,0x20(%rsp)
487 .byte 0x44,0x0f,0x29,0x4c,0x24,0x30 #movaps %xmm9,0x30(%rsp)
488 .byte 0x44,0x0f,0x29,0x54,0x24,0x40 #movaps %xmm10,0x40(%rsp)
490 $code.=<<___;
491 movdqa .Lbswap_mask(%rip),$T3
493 movdqu ($Xip),$Xi
494 movdqu ($Htbl),$Hkey
495 pshufb $T3,$Xi
497 sub \$0x10,$len
498 jz .Lodd_tail
500 movdqu 16($Htbl),$Hkey2
501 #######
502 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
503 # [(H*Ii+1) + (H*Xi+1)] mod P =
504 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
506 movdqu ($inp),$T1 # Ii
507 movdqu 16($inp),$Xn # Ii+1
508 pshufb $T3,$T1
509 pshufb $T3,$Xn
510 pxor $T1,$Xi # Ii+Xi
512 &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1
513 $code.=<<___;
514 movdqa $Xi,$Xhi #
515 pshufd \$0b01001110,$Xi,$T1
516 pshufd \$0b01001110,$Hkey2,$T2
517 pxor $Xi,$T1 #
518 pxor $Hkey2,$T2
520 lea 32($inp),$inp # i+=2
521 sub \$0x20,$len
522 jbe .Leven_tail
524 .Lmod_loop:
526 &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi)
527 $code.=<<___;
528 movdqu ($inp),$T1 # Ii
529 pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
530 pxor $Xhn,$Xhi
532 movdqu 16($inp),$Xn # Ii+1
533 pshufb $T3,$T1
534 pshufb $T3,$Xn
536 movdqa $Xn,$Xhn #
537 pshufd \$0b01001110,$Xn,$T1n
538 pshufd \$0b01001110,$Hkey,$T2n
539 pxor $Xn,$T1n #
540 pxor $Hkey,$T2n
541 pxor $T1,$Xhi # "Ii+Xi", consume early
543 movdqa $Xi,$T1 # 1st phase
544 psllq \$1,$Xi
545 pxor $T1,$Xi #
546 psllq \$5,$Xi #
547 pxor $T1,$Xi #
548 pclmulqdq \$0x00,$Hkey,$Xn #######
549 psllq \$57,$Xi #
550 movdqa $Xi,$T2 #
551 pslldq \$8,$Xi
552 psrldq \$8,$T2 #
553 pxor $T1,$Xi
554 pxor $T2,$Xhi #
556 pclmulqdq \$0x11,$Hkey,$Xhn #######
557 movdqa $Xi,$T2 # 2nd phase
558 psrlq \$5,$Xi
559 pxor $T2,$Xi #
560 psrlq \$1,$Xi #
561 pxor $T2,$Xi #
562 pxor $Xhi,$T2
563 psrlq \$1,$Xi #
564 pxor $T2,$Xi #
566 pclmulqdq \$0x00,$T2n,$T1n #######
567 movdqa $Xi,$Xhi #
568 pshufd \$0b01001110,$Xi,$T1
569 pshufd \$0b01001110,$Hkey2,$T2
570 pxor $Xi,$T1 #
571 pxor $Hkey2,$T2
573 pxor $Xn,$T1n #
574 pxor $Xhn,$T1n #
575 movdqa $T1n,$T2n #
576 psrldq \$8,$T1n
577 pslldq \$8,$T2n #
578 pxor $T1n,$Xhn
579 pxor $T2n,$Xn #
581 lea 32($inp),$inp
582 sub \$0x20,$len
583 ja .Lmod_loop
585 .Leven_tail:
587 &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi)
588 $code.=<<___;
589 pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
590 pxor $Xhn,$Xhi
592 &reduction_alg9 ($Xhi,$Xi);
593 $code.=<<___;
594 test $len,$len
595 jnz .Ldone
597 .Lodd_tail:
598 movdqu ($inp),$T1 # Ii
599 pshufb $T3,$T1
600 pxor $T1,$Xi # Ii+Xi
602 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
603 &reduction_alg9 ($Xhi,$Xi);
604 $code.=<<___;
605 .Ldone:
606 pshufb $T3,$Xi
607 movdqu $Xi,($Xip)
609 $code.=<<___ if ($win64);
610 movaps (%rsp),%xmm6
611 movaps 0x10(%rsp),%xmm7
612 movaps 0x20(%rsp),%xmm8
613 movaps 0x30(%rsp),%xmm9
614 movaps 0x40(%rsp),%xmm10
615 add \$0x58,%rsp
617 $code.=<<___;
619 .LSEH_end_gcm_ghash_clmul:
620 .size gcm_ghash_clmul,.-gcm_ghash_clmul
624 $code.=<<___;
625 .align 64
626 .Lbswap_mask:
627 .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
628 .L0x1c2_polynomial:
629 .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
630 .align 64
631 .type .Lrem_4bit,\@object
632 .Lrem_4bit:
633 .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
634 .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
635 .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
636 .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
637 .type .Lrem_8bit,\@object
638 .Lrem_8bit:
639 .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
640 .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
641 .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
642 .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
643 .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
644 .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
645 .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
646 .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
647 .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
648 .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
649 .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
650 .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
651 .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
652 .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
653 .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
654 .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
655 .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
656 .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
657 .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
658 .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
659 .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
660 .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
661 .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
662 .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
663 .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
664 .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
665 .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
666 .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
667 .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
668 .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
669 .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
670 .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
672 .asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
673 .align 64
676 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
677 # CONTEXT *context,DISPATCHER_CONTEXT *disp)
678 if ($win64) {
679 $rec="%rcx";
680 $frame="%rdx";
681 $context="%r8";
682 $disp="%r9";
684 $code.=<<___;
685 .extern __imp_RtlVirtualUnwind
686 .type se_handler,\@abi-omnipotent
687 .align 16
688 se_handler:
689 push %rsi
690 push %rdi
691 push %rbx
692 push %rbp
693 push %r12
694 push %r13
695 push %r14
696 push %r15
697 pushfq
698 sub \$64,%rsp
700 mov 120($context),%rax # pull context->Rax
701 mov 248($context),%rbx # pull context->Rip
703 mov 8($disp),%rsi # disp->ImageBase
704 mov 56($disp),%r11 # disp->HandlerData
706 mov 0(%r11),%r10d # HandlerData[0]
707 lea (%rsi,%r10),%r10 # prologue label
708 cmp %r10,%rbx # context->Rip<prologue label
709 jb .Lin_prologue
711 mov 152($context),%rax # pull context->Rsp
713 mov 4(%r11),%r10d # HandlerData[1]
714 lea (%rsi,%r10),%r10 # epilogue label
715 cmp %r10,%rbx # context->Rip>=epilogue label
716 jae .Lin_prologue
718 lea 24(%rax),%rax # adjust "rsp"
720 mov -8(%rax),%rbx
721 mov -16(%rax),%rbp
722 mov -24(%rax),%r12
723 mov %rbx,144($context) # restore context->Rbx
724 mov %rbp,160($context) # restore context->Rbp
725 mov %r12,216($context) # restore context->R12
727 .Lin_prologue:
728 mov 8(%rax),%rdi
729 mov 16(%rax),%rsi
730 mov %rax,152($context) # restore context->Rsp
731 mov %rsi,168($context) # restore context->Rsi
732 mov %rdi,176($context) # restore context->Rdi
734 mov 40($disp),%rdi # disp->ContextRecord
735 mov $context,%rsi # context
736 mov \$`1232/8`,%ecx # sizeof(CONTEXT)
737 .long 0xa548f3fc # cld; rep movsq
739 mov $disp,%rsi
740 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
741 mov 8(%rsi),%rdx # arg2, disp->ImageBase
742 mov 0(%rsi),%r8 # arg3, disp->ControlPc
743 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
744 mov 40(%rsi),%r10 # disp->ContextRecord
745 lea 56(%rsi),%r11 # &disp->HandlerData
746 lea 24(%rsi),%r12 # &disp->EstablisherFrame
747 mov %r10,32(%rsp) # arg5
748 mov %r11,40(%rsp) # arg6
749 mov %r12,48(%rsp) # arg7
750 mov %rcx,56(%rsp) # arg8, (NULL)
751 call *__imp_RtlVirtualUnwind(%rip)
753 mov \$1,%eax # ExceptionContinueSearch
754 add \$64,%rsp
755 popfq
756 pop %r15
757 pop %r14
758 pop %r13
759 pop %r12
760 pop %rbp
761 pop %rbx
762 pop %rdi
763 pop %rsi
765 .size se_handler,.-se_handler
767 .section .pdata
768 .align 4
769 .rva .LSEH_begin_gcm_gmult_4bit
770 .rva .LSEH_end_gcm_gmult_4bit
771 .rva .LSEH_info_gcm_gmult_4bit
773 .rva .LSEH_begin_gcm_ghash_4bit
774 .rva .LSEH_end_gcm_ghash_4bit
775 .rva .LSEH_info_gcm_ghash_4bit
777 .rva .LSEH_begin_gcm_ghash_clmul
778 .rva .LSEH_end_gcm_ghash_clmul
779 .rva .LSEH_info_gcm_ghash_clmul
781 .section .xdata
782 .align 8
783 .LSEH_info_gcm_gmult_4bit:
784 .byte 9,0,0,0
785 .rva se_handler
786 .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData
787 .LSEH_info_gcm_ghash_4bit:
788 .byte 9,0,0,0
789 .rva se_handler
790 .rva .Lghash_prologue,.Lghash_epilogue # HandlerData
791 .LSEH_info_gcm_ghash_clmul:
792 .byte 0x01,0x1f,0x0b,0x00
793 .byte 0x1f,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10
794 .byte 0x19,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9
795 .byte 0x13,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8
796 .byte 0x0d,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7
797 .byte 0x08,0x68,0x00,0x00 #movaps (rsp),xmm6
798 .byte 0x04,0xa2,0x00,0x00 #sub rsp,0x58
802 $code =~ s/\`([^\`]*)\`/eval($1)/gem;
804 print $code;
806 close STDOUT;