OpenSSL: update to 1.0.2a
[tomato.git] / release / src / router / openssl / crypto / jpake / jpake.c
blob8c38727e20fd31cafa97b94390f87d943f3e9a5a
1 #include "jpake.h"
3 #include <openssl/crypto.h>
4 #include <openssl/sha.h>
5 #include <openssl/err.h>
6 #include <memory.h>
7 #include <string.h>
9 /*
10 * In the definition, (xa, xb, xc, xd) are Alice's (x1, x2, x3, x4) or
11 * Bob's (x3, x4, x1, x2). If you see what I mean.
14 typedef struct {
15 char *name; /* Must be unique */
16 char *peer_name;
17 BIGNUM *p;
18 BIGNUM *g;
19 BIGNUM *q;
20 BIGNUM *gxc; /* Alice's g^{x3} or Bob's g^{x1} */
21 BIGNUM *gxd; /* Alice's g^{x4} or Bob's g^{x2} */
22 } JPAKE_CTX_PUBLIC;
24 struct JPAKE_CTX {
25 JPAKE_CTX_PUBLIC p;
26 BIGNUM *secret; /* The shared secret */
27 BN_CTX *ctx;
28 BIGNUM *xa; /* Alice's x1 or Bob's x3 */
29 BIGNUM *xb; /* Alice's x2 or Bob's x4 */
30 BIGNUM *key; /* The calculated (shared) key */
33 static void JPAKE_ZKP_init(JPAKE_ZKP *zkp)
35 zkp->gr = BN_new();
36 zkp->b = BN_new();
39 static void JPAKE_ZKP_release(JPAKE_ZKP *zkp)
41 BN_free(zkp->b);
42 BN_free(zkp->gr);
45 /* Two birds with one stone - make the global name as expected */
46 #define JPAKE_STEP_PART_init JPAKE_STEP2_init
47 #define JPAKE_STEP_PART_release JPAKE_STEP2_release
49 void JPAKE_STEP_PART_init(JPAKE_STEP_PART *p)
51 p->gx = BN_new();
52 JPAKE_ZKP_init(&p->zkpx);
55 void JPAKE_STEP_PART_release(JPAKE_STEP_PART *p)
57 JPAKE_ZKP_release(&p->zkpx);
58 BN_free(p->gx);
61 void JPAKE_STEP1_init(JPAKE_STEP1 *s1)
63 JPAKE_STEP_PART_init(&s1->p1);
64 JPAKE_STEP_PART_init(&s1->p2);
67 void JPAKE_STEP1_release(JPAKE_STEP1 *s1)
69 JPAKE_STEP_PART_release(&s1->p2);
70 JPAKE_STEP_PART_release(&s1->p1);
73 static void JPAKE_CTX_init(JPAKE_CTX *ctx, const char *name,
74 const char *peer_name, const BIGNUM *p,
75 const BIGNUM *g, const BIGNUM *q,
76 const BIGNUM *secret)
78 ctx->p.name = OPENSSL_strdup(name);
79 ctx->p.peer_name = OPENSSL_strdup(peer_name);
80 ctx->p.p = BN_dup(p);
81 ctx->p.g = BN_dup(g);
82 ctx->p.q = BN_dup(q);
83 ctx->secret = BN_dup(secret);
85 ctx->p.gxc = BN_new();
86 ctx->p.gxd = BN_new();
88 ctx->xa = BN_new();
89 ctx->xb = BN_new();
90 ctx->key = BN_new();
91 ctx->ctx = BN_CTX_new();
94 static void JPAKE_CTX_release(JPAKE_CTX *ctx)
96 BN_CTX_free(ctx->ctx);
97 BN_clear_free(ctx->key);
98 BN_clear_free(ctx->xb);
99 BN_clear_free(ctx->xa);
101 BN_free(ctx->p.gxd);
102 BN_free(ctx->p.gxc);
104 BN_clear_free(ctx->secret);
105 BN_free(ctx->p.q);
106 BN_free(ctx->p.g);
107 BN_free(ctx->p.p);
108 OPENSSL_free(ctx->p.peer_name);
109 OPENSSL_free(ctx->p.name);
111 memset(ctx, '\0', sizeof *ctx);
114 JPAKE_CTX *JPAKE_CTX_new(const char *name, const char *peer_name,
115 const BIGNUM *p, const BIGNUM *g, const BIGNUM *q,
116 const BIGNUM *secret)
118 JPAKE_CTX *ctx = OPENSSL_malloc(sizeof *ctx);
120 JPAKE_CTX_init(ctx, name, peer_name, p, g, q, secret);
122 return ctx;
125 void JPAKE_CTX_free(JPAKE_CTX *ctx)
127 JPAKE_CTX_release(ctx);
128 OPENSSL_free(ctx);
131 static void hashlength(SHA_CTX *sha, size_t l)
133 unsigned char b[2];
135 OPENSSL_assert(l <= 0xffff);
136 b[0] = l >> 8;
137 b[1] = l & 0xff;
138 SHA1_Update(sha, b, 2);
141 static void hashstring(SHA_CTX *sha, const char *string)
143 size_t l = strlen(string);
145 hashlength(sha, l);
146 SHA1_Update(sha, string, l);
149 static void hashbn(SHA_CTX *sha, const BIGNUM *bn)
151 size_t l = BN_num_bytes(bn);
152 unsigned char *bin = OPENSSL_malloc(l);
154 hashlength(sha, l);
155 BN_bn2bin(bn, bin);
156 SHA1_Update(sha, bin, l);
157 OPENSSL_free(bin);
160 /* h=hash(g, g^r, g^x, name) */
161 static void zkp_hash(BIGNUM *h, const BIGNUM *zkpg, const JPAKE_STEP_PART *p,
162 const char *proof_name)
164 unsigned char md[SHA_DIGEST_LENGTH];
165 SHA_CTX sha;
168 * XXX: hash should not allow moving of the boundaries - Java code
169 * is flawed in this respect. Length encoding seems simplest.
171 SHA1_Init(&sha);
172 hashbn(&sha, zkpg);
173 OPENSSL_assert(!BN_is_zero(p->zkpx.gr));
174 hashbn(&sha, p->zkpx.gr);
175 hashbn(&sha, p->gx);
176 hashstring(&sha, proof_name);
177 SHA1_Final(md, &sha);
178 BN_bin2bn(md, SHA_DIGEST_LENGTH, h);
182 * Prove knowledge of x
183 * Note that p->gx has already been calculated
185 static void generate_zkp(JPAKE_STEP_PART *p, const BIGNUM *x,
186 const BIGNUM *zkpg, JPAKE_CTX *ctx)
188 BIGNUM *r = BN_new();
189 BIGNUM *h = BN_new();
190 BIGNUM *t = BN_new();
193 * r in [0,q)
194 * XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform
196 BN_rand_range(r, ctx->p.q);
197 /* g^r */
198 BN_mod_exp(p->zkpx.gr, zkpg, r, ctx->p.p, ctx->ctx);
200 /* h=hash... */
201 zkp_hash(h, zkpg, p, ctx->p.name);
203 /* b = r - x*h */
204 BN_mod_mul(t, x, h, ctx->p.q, ctx->ctx);
205 BN_mod_sub(p->zkpx.b, r, t, ctx->p.q, ctx->ctx);
207 /* cleanup */
208 BN_free(t);
209 BN_free(h);
210 BN_free(r);
213 static int verify_zkp(const JPAKE_STEP_PART *p, const BIGNUM *zkpg,
214 JPAKE_CTX *ctx)
216 BIGNUM *h = BN_new();
217 BIGNUM *t1 = BN_new();
218 BIGNUM *t2 = BN_new();
219 BIGNUM *t3 = BN_new();
220 int ret = 0;
222 zkp_hash(h, zkpg, p, ctx->p.peer_name);
224 /* t1 = g^b */
225 BN_mod_exp(t1, zkpg, p->zkpx.b, ctx->p.p, ctx->ctx);
226 /* t2 = (g^x)^h = g^{hx} */
227 BN_mod_exp(t2, p->gx, h, ctx->p.p, ctx->ctx);
228 /* t3 = t1 * t2 = g^{hx} * g^b = g^{hx+b} = g^r (allegedly) */
229 BN_mod_mul(t3, t1, t2, ctx->p.p, ctx->ctx);
231 /* verify t3 == g^r */
232 if (BN_cmp(t3, p->zkpx.gr) == 0)
233 ret = 1;
234 else
235 JPAKEerr(JPAKE_F_VERIFY_ZKP, JPAKE_R_ZKP_VERIFY_FAILED);
237 /* cleanup */
238 BN_free(t3);
239 BN_free(t2);
240 BN_free(t1);
241 BN_free(h);
243 return ret;
246 static void generate_step_part(JPAKE_STEP_PART *p, const BIGNUM *x,
247 const BIGNUM *g, JPAKE_CTX *ctx)
249 BN_mod_exp(p->gx, g, x, ctx->p.p, ctx->ctx);
250 generate_zkp(p, x, g, ctx);
253 /* Generate each party's random numbers. xa is in [0, q), xb is in [1, q). */
254 static void genrand(JPAKE_CTX *ctx)
256 BIGNUM *qm1;
258 /* xa in [0, q) */
259 BN_rand_range(ctx->xa, ctx->p.q);
261 /* q-1 */
262 qm1 = BN_new();
263 BN_copy(qm1, ctx->p.q);
264 BN_sub_word(qm1, 1);
266 /* ... and xb in [0, q-1) */
267 BN_rand_range(ctx->xb, qm1);
268 /* [1, q) */
269 BN_add_word(ctx->xb, 1);
271 /* cleanup */
272 BN_free(qm1);
275 int JPAKE_STEP1_generate(JPAKE_STEP1 *send, JPAKE_CTX *ctx)
277 genrand(ctx);
278 generate_step_part(&send->p1, ctx->xa, ctx->p.g, ctx);
279 generate_step_part(&send->p2, ctx->xb, ctx->p.g, ctx);
281 return 1;
284 /* g^x is a legal value */
285 static int is_legal(const BIGNUM *gx, const JPAKE_CTX *ctx)
287 BIGNUM *t;
288 int res;
290 if (BN_is_negative(gx) || BN_is_zero(gx) || BN_cmp(gx, ctx->p.p) >= 0)
291 return 0;
293 t = BN_new();
294 BN_mod_exp(t, gx, ctx->p.q, ctx->p.p, ctx->ctx);
295 res = BN_is_one(t);
296 BN_free(t);
298 return res;
301 int JPAKE_STEP1_process(JPAKE_CTX *ctx, const JPAKE_STEP1 *received)
303 if (!is_legal(received->p1.gx, ctx)) {
304 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS,
305 JPAKE_R_G_TO_THE_X3_IS_NOT_LEGAL);
306 return 0;
309 if (!is_legal(received->p2.gx, ctx)) {
310 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS,
311 JPAKE_R_G_TO_THE_X4_IS_NOT_LEGAL);
312 return 0;
315 /* verify their ZKP(xc) */
316 if (!verify_zkp(&received->p1, ctx->p.g, ctx)) {
317 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X3_FAILED);
318 return 0;
321 /* verify their ZKP(xd) */
322 if (!verify_zkp(&received->p2, ctx->p.g, ctx)) {
323 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X4_FAILED);
324 return 0;
327 /* g^xd != 1 */
328 if (BN_is_one(received->p2.gx)) {
329 JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X4_IS_ONE);
330 return 0;
333 /* Save the bits we need for later */
334 BN_copy(ctx->p.gxc, received->p1.gx);
335 BN_copy(ctx->p.gxd, received->p2.gx);
337 return 1;
340 int JPAKE_STEP2_generate(JPAKE_STEP2 *send, JPAKE_CTX *ctx)
342 BIGNUM *t1 = BN_new();
343 BIGNUM *t2 = BN_new();
346 * X = g^{(xa + xc + xd) * xb * s}
347 * t1 = g^xa
349 BN_mod_exp(t1, ctx->p.g, ctx->xa, ctx->p.p, ctx->ctx);
350 /* t2 = t1 * g^{xc} = g^{xa} * g^{xc} = g^{xa + xc} */
351 BN_mod_mul(t2, t1, ctx->p.gxc, ctx->p.p, ctx->ctx);
352 /* t1 = t2 * g^{xd} = g^{xa + xc + xd} */
353 BN_mod_mul(t1, t2, ctx->p.gxd, ctx->p.p, ctx->ctx);
354 /* t2 = xb * s */
355 BN_mod_mul(t2, ctx->xb, ctx->secret, ctx->p.q, ctx->ctx);
358 * ZKP(xb * s)
359 * XXX: this is kinda funky, because we're using
361 * g' = g^{xa + xc + xd}
363 * as the generator, which means X is g'^{xb * s}
364 * X = t1^{t2} = t1^{xb * s} = g^{(xa + xc + xd) * xb * s}
366 generate_step_part(send, t2, t1, ctx);
368 /* cleanup */
369 BN_free(t1);
370 BN_free(t2);
372 return 1;
375 /* gx = g^{xc + xa + xb} * xd * s */
376 static int compute_key(JPAKE_CTX *ctx, const BIGNUM *gx)
378 BIGNUM *t1 = BN_new();
379 BIGNUM *t2 = BN_new();
380 BIGNUM *t3 = BN_new();
383 * K = (gx/g^{xb * xd * s})^{xb}
384 * = (g^{(xc + xa + xb) * xd * s - xb * xd *s})^{xb}
385 * = (g^{(xa + xc) * xd * s})^{xb}
386 * = g^{(xa + xc) * xb * xd * s}
387 * [which is the same regardless of who calculates it]
390 /* t1 = (g^{xd})^{xb} = g^{xb * xd} */
391 BN_mod_exp(t1, ctx->p.gxd, ctx->xb, ctx->p.p, ctx->ctx);
392 /* t2 = -s = q-s */
393 BN_sub(t2, ctx->p.q, ctx->secret);
394 /* t3 = t1^t2 = g^{-xb * xd * s} */
395 BN_mod_exp(t3, t1, t2, ctx->p.p, ctx->ctx);
396 /* t1 = gx * t3 = X/g^{xb * xd * s} */
397 BN_mod_mul(t1, gx, t3, ctx->p.p, ctx->ctx);
398 /* K = t1^{xb} */
399 BN_mod_exp(ctx->key, t1, ctx->xb, ctx->p.p, ctx->ctx);
401 /* cleanup */
402 BN_free(t3);
403 BN_free(t2);
404 BN_free(t1);
406 return 1;
409 int JPAKE_STEP2_process(JPAKE_CTX *ctx, const JPAKE_STEP2 *received)
411 BIGNUM *t1 = BN_new();
412 BIGNUM *t2 = BN_new();
413 int ret = 0;
416 * g' = g^{xc + xa + xb} [from our POV]
417 * t1 = xa + xb
419 BN_mod_add(t1, ctx->xa, ctx->xb, ctx->p.q, ctx->ctx);
420 /* t2 = g^{t1} = g^{xa+xb} */
421 BN_mod_exp(t2, ctx->p.g, t1, ctx->p.p, ctx->ctx);
422 /* t1 = g^{xc} * t2 = g^{xc + xa + xb} */
423 BN_mod_mul(t1, ctx->p.gxc, t2, ctx->p.p, ctx->ctx);
425 if (verify_zkp(received, t1, ctx))
426 ret = 1;
427 else
428 JPAKEerr(JPAKE_F_JPAKE_STEP2_PROCESS, JPAKE_R_VERIFY_B_FAILED);
430 compute_key(ctx, received->gx);
432 /* cleanup */
433 BN_free(t2);
434 BN_free(t1);
436 return ret;
439 static void quickhashbn(unsigned char *md, const BIGNUM *bn)
441 SHA_CTX sha;
443 SHA1_Init(&sha);
444 hashbn(&sha, bn);
445 SHA1_Final(md, &sha);
448 void JPAKE_STEP3A_init(JPAKE_STEP3A *s3a)
452 int JPAKE_STEP3A_generate(JPAKE_STEP3A *send, JPAKE_CTX *ctx)
454 quickhashbn(send->hhk, ctx->key);
455 SHA1(send->hhk, sizeof send->hhk, send->hhk);
457 return 1;
460 int JPAKE_STEP3A_process(JPAKE_CTX *ctx, const JPAKE_STEP3A *received)
462 unsigned char hhk[SHA_DIGEST_LENGTH];
464 quickhashbn(hhk, ctx->key);
465 SHA1(hhk, sizeof hhk, hhk);
466 if (memcmp(hhk, received->hhk, sizeof hhk)) {
467 JPAKEerr(JPAKE_F_JPAKE_STEP3A_PROCESS,
468 JPAKE_R_HASH_OF_HASH_OF_KEY_MISMATCH);
469 return 0;
471 return 1;
474 void JPAKE_STEP3A_release(JPAKE_STEP3A *s3a)
478 void JPAKE_STEP3B_init(JPAKE_STEP3B *s3b)
482 int JPAKE_STEP3B_generate(JPAKE_STEP3B *send, JPAKE_CTX *ctx)
484 quickhashbn(send->hk, ctx->key);
486 return 1;
489 int JPAKE_STEP3B_process(JPAKE_CTX *ctx, const JPAKE_STEP3B *received)
491 unsigned char hk[SHA_DIGEST_LENGTH];
493 quickhashbn(hk, ctx->key);
494 if (memcmp(hk, received->hk, sizeof hk)) {
495 JPAKEerr(JPAKE_F_JPAKE_STEP3B_PROCESS, JPAKE_R_HASH_OF_KEY_MISMATCH);
496 return 0;
498 return 1;
501 void JPAKE_STEP3B_release(JPAKE_STEP3B *s3b)
505 const BIGNUM *JPAKE_get_shared_key(JPAKE_CTX *ctx)
507 return ctx->key;