3 * Copyright (c) 2008 Loren Merritt
4 * Copyright (c) 2002 Fabrice Bellard
5 * Partly based on libdjbfft by D. J. Bernstein
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 * FFT/IFFT transforms.
31 #include "libavutil/mathematics.h"
34 /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
35 #if !CONFIG_HARDCODED_TABLES
50 COSTABLE_CONST FFTSample
* const ff_cos_tabs
[] = {
51 NULL
, NULL
, NULL
, NULL
,
52 ff_cos_16
, ff_cos_32
, ff_cos_64
, ff_cos_128
, ff_cos_256
, ff_cos_512
, ff_cos_1024
,
53 ff_cos_2048
, ff_cos_4096
, ff_cos_8192
, ff_cos_16384
, ff_cos_32768
, ff_cos_65536
,
56 static int split_radix_permutation(int i
, int n
, int inverse
)
59 if(n
<= 2) return i
&1;
61 if(!(i
&m
)) return split_radix_permutation(i
, m
, inverse
)*2;
63 if(inverse
== !(i
&m
)) return split_radix_permutation(i
, m
, inverse
)*4 + 1;
64 else return split_radix_permutation(i
, m
, inverse
)*4 - 1;
67 av_cold
void ff_init_ff_cos_tabs(int index
)
69 #if !CONFIG_HARDCODED_TABLES
72 double freq
= 2*M_PI
/m
;
73 FFTSample
*tab
= ff_cos_tabs
[index
];
81 av_cold
int ff_fft_init(FFTContext
*s
, int nbits
, int inverse
)
84 float alpha
, c1
, s1
, s2
;
85 int av_unused has_vectors
;
87 if (nbits
< 2 || nbits
> 16)
93 s
->exptab
= av_malloc((n
/ 2) * sizeof(FFTComplex
));
96 s
->revtab
= av_malloc(n
* sizeof(uint16_t));
101 s2
= inverse
? 1.0 : -1.0;
103 s
->fft_permute
= ff_fft_permute_c
;
104 s
->fft_calc
= ff_fft_calc_c
;
106 s
->imdct_calc
= ff_imdct_calc_c
;
107 s
->imdct_half
= ff_imdct_half_c
;
108 s
->mdct_calc
= ff_mdct_calc_c
;
113 if (ARCH_ARM
) ff_fft_init_arm(s
);
114 if (HAVE_ALTIVEC
) ff_fft_init_altivec(s
);
115 if (HAVE_MMX
) ff_fft_init_mmx(s
);
117 if (s
->split_radix
) {
118 for(j
=4; j
<=nbits
; j
++) {
119 ff_init_ff_cos_tabs(j
);
122 s
->revtab
[-split_radix_permutation(i
, n
, s
->inverse
) & (n
-1)] = i
;
123 s
->tmp_buf
= av_malloc(n
* sizeof(FFTComplex
));
125 int np
, nblocks
, np2
, l
;
128 for(i
=0; i
<(n
/2); i
++) {
129 alpha
= 2 * M_PI
* (float)i
/ (float)n
;
131 s1
= sin(alpha
) * s2
;
132 s
->exptab
[i
].re
= c1
;
133 s
->exptab
[i
].im
= s1
;
139 s
->exptab1
= av_malloc(np
* 2 * sizeof(FFTComplex
));
144 for(l
= 0; l
< np2
; l
+= 2 * nblocks
) {
146 *q
++ = s
->exptab
[l
+ nblocks
];
148 q
->re
= -s
->exptab
[l
].im
;
149 q
->im
= s
->exptab
[l
].re
;
151 q
->re
= -s
->exptab
[l
+ nblocks
].im
;
152 q
->im
= s
->exptab
[l
+ nblocks
].re
;
155 nblocks
= nblocks
>> 1;
156 } while (nblocks
!= 0);
157 av_freep(&s
->exptab
);
159 /* compute bit reverse table */
162 for(j
=0;j
<nbits
;j
++) {
163 m
|= ((i
>> j
) & 1) << (nbits
-j
-1);
171 av_freep(&s
->revtab
);
172 av_freep(&s
->exptab
);
173 av_freep(&s
->exptab1
);
174 av_freep(&s
->tmp_buf
);
178 void ff_fft_permute_c(FFTContext
*s
, FFTComplex
*z
)
182 const uint16_t *revtab
= s
->revtab
;
186 /* TODO: handle split-radix permute in a more optimal way, probably in-place */
187 for(j
=0;j
<np
;j
++) s
->tmp_buf
[revtab
[j
]] = z
[j
];
188 memcpy(z
, s
->tmp_buf
, np
* sizeof(FFTComplex
));
203 av_cold
void ff_fft_end(FFTContext
*s
)
205 av_freep(&s
->revtab
);
206 av_freep(&s
->exptab
);
207 av_freep(&s
->exptab1
);
208 av_freep(&s
->tmp_buf
);
211 #define sqrthalf (float)M_SQRT1_2
213 #define BF(x,y,a,b) {\
218 #define BUTTERFLIES(a0,a1,a2,a3) {\
220 BF(a2.re, a0.re, a0.re, t5);\
221 BF(a3.im, a1.im, a1.im, t3);\
223 BF(a3.re, a1.re, a1.re, t4);\
224 BF(a2.im, a0.im, a0.im, t6);\
227 // force loading all the inputs before storing any.
228 // this is slightly slower for small data, but avoids store->load aliasing
229 // for addresses separated by large powers of 2.
230 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
231 FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
233 BF(a2.re, a0.re, r0, t5);\
234 BF(a3.im, a1.im, i1, t3);\
236 BF(a3.re, a1.re, r1, t4);\
237 BF(a2.im, a0.im, i0, t6);\
240 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
241 t1 = a2.re * wre + a2.im * wim;\
242 t2 = a2.im * wre - a2.re * wim;\
243 t5 = a3.re * wre - a3.im * wim;\
244 t6 = a3.im * wre + a3.re * wim;\
245 BUTTERFLIES(a0,a1,a2,a3)\
248 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
253 BUTTERFLIES(a0,a1,a2,a3)\
256 /* z[0...8n-1], w[1...2n-1] */
258 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
260 FFTSample t1, t2, t3, t4, t5, t6;\
264 const FFTSample *wim = wre+o1;\
267 TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
268 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
273 TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
274 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
280 #define BUTTERFLIES BUTTERFLIES_BIG
283 #define DECL_FFT(n,n2,n4)\
284 static void fft##n(FFTComplex *z)\
289 pass(z,ff_cos_##n,n4/2);\
292 static void fft4(FFTComplex
*z
)
294 FFTSample t1
, t2
, t3
, t4
, t5
, t6
, t7
, t8
;
296 BF(t3
, t1
, z
[0].re
, z
[1].re
);
297 BF(t8
, t6
, z
[3].re
, z
[2].re
);
298 BF(z
[2].re
, z
[0].re
, t1
, t6
);
299 BF(t4
, t2
, z
[0].im
, z
[1].im
);
300 BF(t7
, t5
, z
[2].im
, z
[3].im
);
301 BF(z
[3].im
, z
[1].im
, t4
, t8
);
302 BF(z
[3].re
, z
[1].re
, t3
, t7
);
303 BF(z
[2].im
, z
[0].im
, t2
, t5
);
306 static void fft8(FFTComplex
*z
)
308 FFTSample t1
, t2
, t3
, t4
, t5
, t6
, t7
, t8
;
312 BF(t1
, z
[5].re
, z
[4].re
, -z
[5].re
);
313 BF(t2
, z
[5].im
, z
[4].im
, -z
[5].im
);
314 BF(t3
, z
[7].re
, z
[6].re
, -z
[7].re
);
315 BF(t4
, z
[7].im
, z
[6].im
, -z
[7].im
);
318 BF(z
[4].re
, z
[0].re
, z
[0].re
, t1
);
319 BF(z
[4].im
, z
[0].im
, z
[0].im
, t2
);
320 BF(z
[6].re
, z
[2].re
, z
[2].re
, t7
);
321 BF(z
[6].im
, z
[2].im
, z
[2].im
, t8
);
323 TRANSFORM(z
[1],z
[3],z
[5],z
[7],sqrthalf
,sqrthalf
);
327 static void fft16(FFTComplex
*z
)
329 FFTSample t1
, t2
, t3
, t4
, t5
, t6
;
335 TRANSFORM_ZERO(z
[0],z
[4],z
[8],z
[12]);
336 TRANSFORM(z
[2],z
[6],z
[10],z
[14],sqrthalf
,sqrthalf
);
337 TRANSFORM(z
[1],z
[5],z
[9],z
[13],ff_cos_16
[1],ff_cos_16
[3]);
338 TRANSFORM(z
[3],z
[7],z
[11],z
[15],ff_cos_16
[3],ff_cos_16
[1]);
347 DECL_FFT(512,256,128)
349 #define pass pass_big
351 DECL_FFT(1024,512,256)
352 DECL_FFT(2048,1024,512)
353 DECL_FFT(4096,2048,1024)
354 DECL_FFT(8192,4096,2048)
355 DECL_FFT(16384,8192,4096)
356 DECL_FFT(32768,16384,8192)
357 DECL_FFT(65536,32768,16384)
359 static void (* const fft_dispatch
[])(FFTComplex
*) = {
360 fft4
, fft8
, fft16
, fft32
, fft64
, fft128
, fft256
, fft512
, fft1024
,
361 fft2048
, fft4096
, fft8192
, fft16384
, fft32768
, fft65536
,
364 void ff_fft_calc_c(FFTContext
*s
, FFTComplex
*z
)
366 fft_dispatch
[s
->nbits
-2](z
);