4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
52 bh
->b_end_io
= handler
;
53 bh
->b_private
= private;
56 static int sync_buffer(void *word
)
58 struct block_device
*bd
;
59 struct buffer_head
*bh
60 = container_of(word
, struct buffer_head
, b_state
);
65 blk_run_address_space(bd
->bd_inode
->i_mapping
);
70 void fastcall
__lock_buffer(struct buffer_head
*bh
)
72 wait_on_bit_lock(&bh
->b_state
, BH_Lock
, sync_buffer
,
73 TASK_UNINTERRUPTIBLE
);
75 EXPORT_SYMBOL(__lock_buffer
);
77 void fastcall
unlock_buffer(struct buffer_head
*bh
)
79 smp_mb__before_clear_bit();
80 clear_buffer_locked(bh
);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh
->b_state
, BH_Lock
);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head
* bh
)
92 wait_on_bit(&bh
->b_state
, BH_Lock
, sync_buffer
, TASK_UNINTERRUPTIBLE
);
96 __clear_page_buffers(struct page
*page
)
98 ClearPagePrivate(page
);
99 set_page_private(page
, 0);
100 page_cache_release(page
);
103 static void buffer_io_error(struct buffer_head
*bh
)
105 char b
[BDEVNAME_SIZE
];
107 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh
->b_bdev
, b
),
109 (unsigned long long)bh
->b_blocknr
);
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
116 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
119 set_buffer_uptodate(bh
);
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh
);
128 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
130 char b
[BDEVNAME_SIZE
];
133 set_buffer_uptodate(bh
);
135 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
137 printk(KERN_WARNING
"lost page write due to "
139 bdevname(bh
->b_bdev
, b
));
141 set_buffer_write_io_error(bh
);
142 clear_buffer_uptodate(bh
);
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
152 int sync_blockdev(struct block_device
*bdev
)
157 ret
= filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
160 EXPORT_SYMBOL(sync_blockdev
);
163 * Write out and wait upon all dirty data associated with this
164 * device. Filesystem data as well as the underlying block
165 * device. Takes the superblock lock.
167 int fsync_bdev(struct block_device
*bdev
)
169 struct super_block
*sb
= get_super(bdev
);
171 int res
= fsync_super(sb
);
175 return sync_blockdev(bdev
);
179 * freeze_bdev -- lock a filesystem and force it into a consistent state
180 * @bdev: blockdevice to lock
182 * This takes the block device bd_mount_sem to make sure no new mounts
183 * happen on bdev until thaw_bdev() is called.
184 * If a superblock is found on this device, we take the s_umount semaphore
185 * on it to make sure nobody unmounts until the snapshot creation is done.
187 struct super_block
*freeze_bdev(struct block_device
*bdev
)
189 struct super_block
*sb
;
191 down(&bdev
->bd_mount_sem
);
192 sb
= get_super(bdev
);
193 if (sb
&& !(sb
->s_flags
& MS_RDONLY
)) {
194 sb
->s_frozen
= SB_FREEZE_WRITE
;
199 sb
->s_frozen
= SB_FREEZE_TRANS
;
202 sync_blockdev(sb
->s_bdev
);
204 if (sb
->s_op
->write_super_lockfs
)
205 sb
->s_op
->write_super_lockfs(sb
);
209 return sb
; /* thaw_bdev releases s->s_umount and bd_mount_sem */
211 EXPORT_SYMBOL(freeze_bdev
);
214 * thaw_bdev -- unlock filesystem
215 * @bdev: blockdevice to unlock
216 * @sb: associated superblock
218 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
220 void thaw_bdev(struct block_device
*bdev
, struct super_block
*sb
)
223 BUG_ON(sb
->s_bdev
!= bdev
);
225 if (sb
->s_op
->unlockfs
)
226 sb
->s_op
->unlockfs(sb
);
227 sb
->s_frozen
= SB_UNFROZEN
;
229 wake_up(&sb
->s_wait_unfrozen
);
233 up(&bdev
->bd_mount_sem
);
235 EXPORT_SYMBOL(thaw_bdev
);
238 * Various filesystems appear to want __find_get_block to be non-blocking.
239 * But it's the page lock which protects the buffers. To get around this,
240 * we get exclusion from try_to_free_buffers with the blockdev mapping's
243 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244 * may be quite high. This code could TryLock the page, and if that
245 * succeeds, there is no need to take private_lock. (But if
246 * private_lock is contended then so is mapping->tree_lock).
248 static struct buffer_head
*
249 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
251 struct inode
*bd_inode
= bdev
->bd_inode
;
252 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
253 struct buffer_head
*ret
= NULL
;
255 struct buffer_head
*bh
;
256 struct buffer_head
*head
;
260 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
261 page
= find_get_page(bd_mapping
, index
);
265 spin_lock(&bd_mapping
->private_lock
);
266 if (!page_has_buffers(page
))
268 head
= page_buffers(page
);
271 if (bh
->b_blocknr
== block
) {
276 if (!buffer_mapped(bh
))
278 bh
= bh
->b_this_page
;
279 } while (bh
!= head
);
281 /* we might be here because some of the buffers on this page are
282 * not mapped. This is due to various races between
283 * file io on the block device and getblk. It gets dealt with
284 * elsewhere, don't buffer_error if we had some unmapped buffers
287 printk("__find_get_block_slow() failed. "
288 "block=%llu, b_blocknr=%llu\n",
289 (unsigned long long)block
,
290 (unsigned long long)bh
->b_blocknr
);
291 printk("b_state=0x%08lx, b_size=%zu\n",
292 bh
->b_state
, bh
->b_size
);
293 printk("device blocksize: %d\n", 1 << bd_inode
->i_blkbits
);
296 spin_unlock(&bd_mapping
->private_lock
);
297 page_cache_release(page
);
302 /* If invalidate_buffers() will trash dirty buffers, it means some kind
303 of fs corruption is going on. Trashing dirty data always imply losing
304 information that was supposed to be just stored on the physical layer
307 Thus invalidate_buffers in general usage is not allwowed to trash
308 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309 be preserved. These buffers are simply skipped.
311 We also skip buffers which are still in use. For example this can
312 happen if a userspace program is reading the block device.
314 NOTE: In the case where the user removed a removable-media-disk even if
315 there's still dirty data not synced on disk (due a bug in the device driver
316 or due an error of the user), by not destroying the dirty buffers we could
317 generate corruption also on the next media inserted, thus a parameter is
318 necessary to handle this case in the most safe way possible (trying
319 to not corrupt also the new disk inserted with the data belonging to
320 the old now corrupted disk). Also for the ramdisk the natural thing
321 to do in order to release the ramdisk memory is to destroy dirty buffers.
323 These are two special cases. Normal usage imply the device driver
324 to issue a sync on the device (without waiting I/O completion) and
325 then an invalidate_buffers call that doesn't trash dirty buffers.
327 For handling cache coherency with the blkdev pagecache the 'update' case
328 is been introduced. It is needed to re-read from disk any pinned
329 buffer. NOTE: re-reading from disk is destructive so we can do it only
330 when we assume nobody is changing the buffercache under our I/O and when
331 we think the disk contains more recent information than the buffercache.
332 The update == 1 pass marks the buffers we need to update, the update == 2
333 pass does the actual I/O. */
334 void invalidate_bdev(struct block_device
*bdev
)
336 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
338 if (mapping
->nrpages
== 0)
341 invalidate_bh_lrus();
342 invalidate_mapping_pages(mapping
, 0, -1);
346 * Kick pdflush then try to free up some ZONE_NORMAL memory.
348 static void free_more_memory(void)
353 wakeup_pdflush(1024);
356 for_each_online_pgdat(pgdat
) {
357 zones
= pgdat
->node_zonelists
[gfp_zone(GFP_NOFS
)].zones
;
359 try_to_free_pages(zones
, GFP_NOFS
);
364 * I/O completion handler for block_read_full_page() - pages
365 * which come unlocked at the end of I/O.
367 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
370 struct buffer_head
*first
;
371 struct buffer_head
*tmp
;
373 int page_uptodate
= 1;
375 BUG_ON(!buffer_async_read(bh
));
379 set_buffer_uptodate(bh
);
381 clear_buffer_uptodate(bh
);
382 if (printk_ratelimit())
388 * Be _very_ careful from here on. Bad things can happen if
389 * two buffer heads end IO at almost the same time and both
390 * decide that the page is now completely done.
392 first
= page_buffers(page
);
393 local_irq_save(flags
);
394 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
395 clear_buffer_async_read(bh
);
399 if (!buffer_uptodate(tmp
))
401 if (buffer_async_read(tmp
)) {
402 BUG_ON(!buffer_locked(tmp
));
405 tmp
= tmp
->b_this_page
;
407 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
408 local_irq_restore(flags
);
411 * If none of the buffers had errors and they are all
412 * uptodate then we can set the page uptodate.
414 if (page_uptodate
&& !PageError(page
))
415 SetPageUptodate(page
);
420 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
421 local_irq_restore(flags
);
426 * Completion handler for block_write_full_page() - pages which are unlocked
427 * during I/O, and which have PageWriteback cleared upon I/O completion.
429 static void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
431 char b
[BDEVNAME_SIZE
];
433 struct buffer_head
*first
;
434 struct buffer_head
*tmp
;
437 BUG_ON(!buffer_async_write(bh
));
441 set_buffer_uptodate(bh
);
443 if (printk_ratelimit()) {
445 printk(KERN_WARNING
"lost page write due to "
447 bdevname(bh
->b_bdev
, b
));
449 set_bit(AS_EIO
, &page
->mapping
->flags
);
450 set_buffer_write_io_error(bh
);
451 clear_buffer_uptodate(bh
);
455 first
= page_buffers(page
);
456 local_irq_save(flags
);
457 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
459 clear_buffer_async_write(bh
);
461 tmp
= bh
->b_this_page
;
463 if (buffer_async_write(tmp
)) {
464 BUG_ON(!buffer_locked(tmp
));
467 tmp
= tmp
->b_this_page
;
469 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
470 local_irq_restore(flags
);
471 end_page_writeback(page
);
475 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
476 local_irq_restore(flags
);
481 * If a page's buffers are under async readin (end_buffer_async_read
482 * completion) then there is a possibility that another thread of
483 * control could lock one of the buffers after it has completed
484 * but while some of the other buffers have not completed. This
485 * locked buffer would confuse end_buffer_async_read() into not unlocking
486 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
487 * that this buffer is not under async I/O.
489 * The page comes unlocked when it has no locked buffer_async buffers
492 * PageLocked prevents anyone starting new async I/O reads any of
495 * PageWriteback is used to prevent simultaneous writeout of the same
498 * PageLocked prevents anyone from starting writeback of a page which is
499 * under read I/O (PageWriteback is only ever set against a locked page).
501 static void mark_buffer_async_read(struct buffer_head
*bh
)
503 bh
->b_end_io
= end_buffer_async_read
;
504 set_buffer_async_read(bh
);
507 void mark_buffer_async_write(struct buffer_head
*bh
)
509 bh
->b_end_io
= end_buffer_async_write
;
510 set_buffer_async_write(bh
);
512 EXPORT_SYMBOL(mark_buffer_async_write
);
516 * fs/buffer.c contains helper functions for buffer-backed address space's
517 * fsync functions. A common requirement for buffer-based filesystems is
518 * that certain data from the backing blockdev needs to be written out for
519 * a successful fsync(). For example, ext2 indirect blocks need to be
520 * written back and waited upon before fsync() returns.
522 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
523 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
524 * management of a list of dependent buffers at ->i_mapping->private_list.
526 * Locking is a little subtle: try_to_free_buffers() will remove buffers
527 * from their controlling inode's queue when they are being freed. But
528 * try_to_free_buffers() will be operating against the *blockdev* mapping
529 * at the time, not against the S_ISREG file which depends on those buffers.
530 * So the locking for private_list is via the private_lock in the address_space
531 * which backs the buffers. Which is different from the address_space
532 * against which the buffers are listed. So for a particular address_space,
533 * mapping->private_lock does *not* protect mapping->private_list! In fact,
534 * mapping->private_list will always be protected by the backing blockdev's
537 * Which introduces a requirement: all buffers on an address_space's
538 * ->private_list must be from the same address_space: the blockdev's.
540 * address_spaces which do not place buffers at ->private_list via these
541 * utility functions are free to use private_lock and private_list for
542 * whatever they want. The only requirement is that list_empty(private_list)
543 * be true at clear_inode() time.
545 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
546 * filesystems should do that. invalidate_inode_buffers() should just go
547 * BUG_ON(!list_empty).
549 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
550 * take an address_space, not an inode. And it should be called
551 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
554 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
555 * list if it is already on a list. Because if the buffer is on a list,
556 * it *must* already be on the right one. If not, the filesystem is being
557 * silly. This will save a ton of locking. But first we have to ensure
558 * that buffers are taken *off* the old inode's list when they are freed
559 * (presumably in truncate). That requires careful auditing of all
560 * filesystems (do it inside bforget()). It could also be done by bringing
565 * The buffer's backing address_space's private_lock must be held
567 static inline void __remove_assoc_queue(struct buffer_head
*bh
)
569 list_del_init(&bh
->b_assoc_buffers
);
570 WARN_ON(!bh
->b_assoc_map
);
571 if (buffer_write_io_error(bh
))
572 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
573 bh
->b_assoc_map
= NULL
;
576 int inode_has_buffers(struct inode
*inode
)
578 return !list_empty(&inode
->i_data
.private_list
);
582 * osync is designed to support O_SYNC io. It waits synchronously for
583 * all already-submitted IO to complete, but does not queue any new
584 * writes to the disk.
586 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
587 * you dirty the buffers, and then use osync_inode_buffers to wait for
588 * completion. Any other dirty buffers which are not yet queued for
589 * write will not be flushed to disk by the osync.
591 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
593 struct buffer_head
*bh
;
599 list_for_each_prev(p
, list
) {
601 if (buffer_locked(bh
)) {
605 if (!buffer_uptodate(bh
))
617 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
619 * @mapping: the mapping which wants those buffers written
621 * Starts I/O against the buffers at mapping->private_list, and waits upon
624 * Basically, this is a convenience function for fsync().
625 * @mapping is a file or directory which needs those buffers to be written for
626 * a successful fsync().
628 int sync_mapping_buffers(struct address_space
*mapping
)
630 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
632 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
635 return fsync_buffers_list(&buffer_mapping
->private_lock
,
636 &mapping
->private_list
);
638 EXPORT_SYMBOL(sync_mapping_buffers
);
641 * Called when we've recently written block `bblock', and it is known that
642 * `bblock' was for a buffer_boundary() buffer. This means that the block at
643 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
644 * dirty, schedule it for IO. So that indirects merge nicely with their data.
646 void write_boundary_block(struct block_device
*bdev
,
647 sector_t bblock
, unsigned blocksize
)
649 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
651 if (buffer_dirty(bh
))
652 ll_rw_block(WRITE
, 1, &bh
);
657 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
659 struct address_space
*mapping
= inode
->i_mapping
;
660 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
662 mark_buffer_dirty(bh
);
663 if (!mapping
->assoc_mapping
) {
664 mapping
->assoc_mapping
= buffer_mapping
;
666 BUG_ON(mapping
->assoc_mapping
!= buffer_mapping
);
668 if (list_empty(&bh
->b_assoc_buffers
)) {
669 spin_lock(&buffer_mapping
->private_lock
);
670 list_move_tail(&bh
->b_assoc_buffers
,
671 &mapping
->private_list
);
672 bh
->b_assoc_map
= mapping
;
673 spin_unlock(&buffer_mapping
->private_lock
);
676 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
679 * Add a page to the dirty page list.
681 * It is a sad fact of life that this function is called from several places
682 * deeply under spinlocking. It may not sleep.
684 * If the page has buffers, the uptodate buffers are set dirty, to preserve
685 * dirty-state coherency between the page and the buffers. It the page does
686 * not have buffers then when they are later attached they will all be set
689 * The buffers are dirtied before the page is dirtied. There's a small race
690 * window in which a writepage caller may see the page cleanness but not the
691 * buffer dirtiness. That's fine. If this code were to set the page dirty
692 * before the buffers, a concurrent writepage caller could clear the page dirty
693 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
694 * page on the dirty page list.
696 * We use private_lock to lock against try_to_free_buffers while using the
697 * page's buffer list. Also use this to protect against clean buffers being
698 * added to the page after it was set dirty.
700 * FIXME: may need to call ->reservepage here as well. That's rather up to the
701 * address_space though.
703 int __set_page_dirty_buffers(struct page
*page
)
705 struct address_space
* const mapping
= page_mapping(page
);
707 if (unlikely(!mapping
))
708 return !TestSetPageDirty(page
);
710 spin_lock(&mapping
->private_lock
);
711 if (page_has_buffers(page
)) {
712 struct buffer_head
*head
= page_buffers(page
);
713 struct buffer_head
*bh
= head
;
716 set_buffer_dirty(bh
);
717 bh
= bh
->b_this_page
;
718 } while (bh
!= head
);
720 spin_unlock(&mapping
->private_lock
);
722 if (TestSetPageDirty(page
))
725 write_lock_irq(&mapping
->tree_lock
);
726 if (page
->mapping
) { /* Race with truncate? */
727 if (mapping_cap_account_dirty(mapping
)) {
728 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
729 __inc_bdi_stat(mapping
->backing_dev_info
,
731 task_io_account_write(PAGE_CACHE_SIZE
);
733 radix_tree_tag_set(&mapping
->page_tree
,
734 page_index(page
), PAGECACHE_TAG_DIRTY
);
736 write_unlock_irq(&mapping
->tree_lock
);
737 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
740 EXPORT_SYMBOL(__set_page_dirty_buffers
);
743 * Write out and wait upon a list of buffers.
745 * We have conflicting pressures: we want to make sure that all
746 * initially dirty buffers get waited on, but that any subsequently
747 * dirtied buffers don't. After all, we don't want fsync to last
748 * forever if somebody is actively writing to the file.
750 * Do this in two main stages: first we copy dirty buffers to a
751 * temporary inode list, queueing the writes as we go. Then we clean
752 * up, waiting for those writes to complete.
754 * During this second stage, any subsequent updates to the file may end
755 * up refiling the buffer on the original inode's dirty list again, so
756 * there is a chance we will end up with a buffer queued for write but
757 * not yet completed on that list. So, as a final cleanup we go through
758 * the osync code to catch these locked, dirty buffers without requeuing
759 * any newly dirty buffers for write.
761 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
763 struct buffer_head
*bh
;
764 struct list_head tmp
;
767 INIT_LIST_HEAD(&tmp
);
770 while (!list_empty(list
)) {
771 bh
= BH_ENTRY(list
->next
);
772 __remove_assoc_queue(bh
);
773 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
774 list_add(&bh
->b_assoc_buffers
, &tmp
);
775 if (buffer_dirty(bh
)) {
779 * Ensure any pending I/O completes so that
780 * ll_rw_block() actually writes the current
781 * contents - it is a noop if I/O is still in
782 * flight on potentially older contents.
784 ll_rw_block(SWRITE
, 1, &bh
);
791 while (!list_empty(&tmp
)) {
792 bh
= BH_ENTRY(tmp
.prev
);
793 list_del_init(&bh
->b_assoc_buffers
);
797 if (!buffer_uptodate(bh
))
804 err2
= osync_buffers_list(lock
, list
);
812 * Invalidate any and all dirty buffers on a given inode. We are
813 * probably unmounting the fs, but that doesn't mean we have already
814 * done a sync(). Just drop the buffers from the inode list.
816 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
817 * assumes that all the buffers are against the blockdev. Not true
820 void invalidate_inode_buffers(struct inode
*inode
)
822 if (inode_has_buffers(inode
)) {
823 struct address_space
*mapping
= &inode
->i_data
;
824 struct list_head
*list
= &mapping
->private_list
;
825 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
827 spin_lock(&buffer_mapping
->private_lock
);
828 while (!list_empty(list
))
829 __remove_assoc_queue(BH_ENTRY(list
->next
));
830 spin_unlock(&buffer_mapping
->private_lock
);
835 * Remove any clean buffers from the inode's buffer list. This is called
836 * when we're trying to free the inode itself. Those buffers can pin it.
838 * Returns true if all buffers were removed.
840 int remove_inode_buffers(struct inode
*inode
)
844 if (inode_has_buffers(inode
)) {
845 struct address_space
*mapping
= &inode
->i_data
;
846 struct list_head
*list
= &mapping
->private_list
;
847 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
849 spin_lock(&buffer_mapping
->private_lock
);
850 while (!list_empty(list
)) {
851 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
852 if (buffer_dirty(bh
)) {
856 __remove_assoc_queue(bh
);
858 spin_unlock(&buffer_mapping
->private_lock
);
864 * Create the appropriate buffers when given a page for data area and
865 * the size of each buffer.. Use the bh->b_this_page linked list to
866 * follow the buffers created. Return NULL if unable to create more
869 * The retry flag is used to differentiate async IO (paging, swapping)
870 * which may not fail from ordinary buffer allocations.
872 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
875 struct buffer_head
*bh
, *head
;
881 while ((offset
-= size
) >= 0) {
882 bh
= alloc_buffer_head(GFP_NOFS
);
887 bh
->b_this_page
= head
;
892 atomic_set(&bh
->b_count
, 0);
893 bh
->b_private
= NULL
;
896 /* Link the buffer to its page */
897 set_bh_page(bh
, page
, offset
);
899 init_buffer(bh
, NULL
, NULL
);
903 * In case anything failed, we just free everything we got.
909 head
= head
->b_this_page
;
910 free_buffer_head(bh
);
915 * Return failure for non-async IO requests. Async IO requests
916 * are not allowed to fail, so we have to wait until buffer heads
917 * become available. But we don't want tasks sleeping with
918 * partially complete buffers, so all were released above.
923 /* We're _really_ low on memory. Now we just
924 * wait for old buffer heads to become free due to
925 * finishing IO. Since this is an async request and
926 * the reserve list is empty, we're sure there are
927 * async buffer heads in use.
932 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
935 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
937 struct buffer_head
*bh
, *tail
;
942 bh
= bh
->b_this_page
;
944 tail
->b_this_page
= head
;
945 attach_page_buffers(page
, head
);
949 * Initialise the state of a blockdev page's buffers.
952 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
953 sector_t block
, int size
)
955 struct buffer_head
*head
= page_buffers(page
);
956 struct buffer_head
*bh
= head
;
957 int uptodate
= PageUptodate(page
);
960 if (!buffer_mapped(bh
)) {
961 init_buffer(bh
, NULL
, NULL
);
963 bh
->b_blocknr
= block
;
965 set_buffer_uptodate(bh
);
966 set_buffer_mapped(bh
);
969 bh
= bh
->b_this_page
;
970 } while (bh
!= head
);
974 * Create the page-cache page that contains the requested block.
976 * This is user purely for blockdev mappings.
979 grow_dev_page(struct block_device
*bdev
, sector_t block
,
980 pgoff_t index
, int size
)
982 struct inode
*inode
= bdev
->bd_inode
;
984 struct buffer_head
*bh
;
986 page
= find_or_create_page(inode
->i_mapping
, index
,
987 (mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
)|__GFP_MOVABLE
);
991 BUG_ON(!PageLocked(page
));
993 if (page_has_buffers(page
)) {
994 bh
= page_buffers(page
);
995 if (bh
->b_size
== size
) {
996 init_page_buffers(page
, bdev
, block
, size
);
999 if (!try_to_free_buffers(page
))
1004 * Allocate some buffers for this page
1006 bh
= alloc_page_buffers(page
, size
, 0);
1011 * Link the page to the buffers and initialise them. Take the
1012 * lock to be atomic wrt __find_get_block(), which does not
1013 * run under the page lock.
1015 spin_lock(&inode
->i_mapping
->private_lock
);
1016 link_dev_buffers(page
, bh
);
1017 init_page_buffers(page
, bdev
, block
, size
);
1018 spin_unlock(&inode
->i_mapping
->private_lock
);
1024 page_cache_release(page
);
1029 * Create buffers for the specified block device block's page. If
1030 * that page was dirty, the buffers are set dirty also.
1032 * Except that's a bug. Attaching dirty buffers to a dirty
1033 * blockdev's page can result in filesystem corruption, because
1034 * some of those buffers may be aliases of filesystem data.
1035 * grow_dev_page() will go BUG() if this happens.
1038 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
)
1047 } while ((size
<< sizebits
) < PAGE_SIZE
);
1049 index
= block
>> sizebits
;
1052 * Check for a block which wants to lie outside our maximum possible
1053 * pagecache index. (this comparison is done using sector_t types).
1055 if (unlikely(index
!= block
>> sizebits
)) {
1056 char b
[BDEVNAME_SIZE
];
1058 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1060 __FUNCTION__
, (unsigned long long)block
,
1064 block
= index
<< sizebits
;
1065 /* Create a page with the proper size buffers.. */
1066 page
= grow_dev_page(bdev
, block
, index
, size
);
1070 page_cache_release(page
);
1074 static struct buffer_head
*
1075 __getblk_slow(struct block_device
*bdev
, sector_t block
, int size
)
1077 /* Size must be multiple of hard sectorsize */
1078 if (unlikely(size
& (bdev_hardsect_size(bdev
)-1) ||
1079 (size
< 512 || size
> PAGE_SIZE
))) {
1080 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1082 printk(KERN_ERR
"hardsect size: %d\n",
1083 bdev_hardsect_size(bdev
));
1090 struct buffer_head
* bh
;
1093 bh
= __find_get_block(bdev
, block
, size
);
1097 ret
= grow_buffers(bdev
, block
, size
);
1106 * The relationship between dirty buffers and dirty pages:
1108 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1109 * the page is tagged dirty in its radix tree.
1111 * At all times, the dirtiness of the buffers represents the dirtiness of
1112 * subsections of the page. If the page has buffers, the page dirty bit is
1113 * merely a hint about the true dirty state.
1115 * When a page is set dirty in its entirety, all its buffers are marked dirty
1116 * (if the page has buffers).
1118 * When a buffer is marked dirty, its page is dirtied, but the page's other
1121 * Also. When blockdev buffers are explicitly read with bread(), they
1122 * individually become uptodate. But their backing page remains not
1123 * uptodate - even if all of its buffers are uptodate. A subsequent
1124 * block_read_full_page() against that page will discover all the uptodate
1125 * buffers, will set the page uptodate and will perform no I/O.
1129 * mark_buffer_dirty - mark a buffer_head as needing writeout
1130 * @bh: the buffer_head to mark dirty
1132 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1133 * backing page dirty, then tag the page as dirty in its address_space's radix
1134 * tree and then attach the address_space's inode to its superblock's dirty
1137 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1138 * mapping->tree_lock and the global inode_lock.
1140 void fastcall
mark_buffer_dirty(struct buffer_head
*bh
)
1142 if (!buffer_dirty(bh
) && !test_set_buffer_dirty(bh
))
1143 __set_page_dirty_nobuffers(bh
->b_page
);
1147 * Decrement a buffer_head's reference count. If all buffers against a page
1148 * have zero reference count, are clean and unlocked, and if the page is clean
1149 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1150 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1151 * a page but it ends up not being freed, and buffers may later be reattached).
1153 void __brelse(struct buffer_head
* buf
)
1155 if (atomic_read(&buf
->b_count
)) {
1159 printk(KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1164 * bforget() is like brelse(), except it discards any
1165 * potentially dirty data.
1167 void __bforget(struct buffer_head
*bh
)
1169 clear_buffer_dirty(bh
);
1170 if (!list_empty(&bh
->b_assoc_buffers
)) {
1171 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1173 spin_lock(&buffer_mapping
->private_lock
);
1174 list_del_init(&bh
->b_assoc_buffers
);
1175 bh
->b_assoc_map
= NULL
;
1176 spin_unlock(&buffer_mapping
->private_lock
);
1181 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1184 if (buffer_uptodate(bh
)) {
1189 bh
->b_end_io
= end_buffer_read_sync
;
1190 submit_bh(READ
, bh
);
1192 if (buffer_uptodate(bh
))
1200 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1201 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1202 * refcount elevated by one when they're in an LRU. A buffer can only appear
1203 * once in a particular CPU's LRU. A single buffer can be present in multiple
1204 * CPU's LRUs at the same time.
1206 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1207 * sb_find_get_block().
1209 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1210 * a local interrupt disable for that.
1213 #define BH_LRU_SIZE 8
1216 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1219 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1222 #define bh_lru_lock() local_irq_disable()
1223 #define bh_lru_unlock() local_irq_enable()
1225 #define bh_lru_lock() preempt_disable()
1226 #define bh_lru_unlock() preempt_enable()
1229 static inline void check_irqs_on(void)
1231 #ifdef irqs_disabled
1232 BUG_ON(irqs_disabled());
1237 * The LRU management algorithm is dopey-but-simple. Sorry.
1239 static void bh_lru_install(struct buffer_head
*bh
)
1241 struct buffer_head
*evictee
= NULL
;
1246 lru
= &__get_cpu_var(bh_lrus
);
1247 if (lru
->bhs
[0] != bh
) {
1248 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1254 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1255 struct buffer_head
*bh2
= lru
->bhs
[in
];
1260 if (out
>= BH_LRU_SIZE
) {
1261 BUG_ON(evictee
!= NULL
);
1268 while (out
< BH_LRU_SIZE
)
1270 memcpy(lru
->bhs
, bhs
, sizeof(bhs
));
1279 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1281 static struct buffer_head
*
1282 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1284 struct buffer_head
*ret
= NULL
;
1290 lru
= &__get_cpu_var(bh_lrus
);
1291 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1292 struct buffer_head
*bh
= lru
->bhs
[i
];
1294 if (bh
&& bh
->b_bdev
== bdev
&&
1295 bh
->b_blocknr
== block
&& bh
->b_size
== size
) {
1298 lru
->bhs
[i
] = lru
->bhs
[i
- 1];
1313 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1314 * it in the LRU and mark it as accessed. If it is not present then return
1317 struct buffer_head
*
1318 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1320 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1323 bh
= __find_get_block_slow(bdev
, block
);
1331 EXPORT_SYMBOL(__find_get_block
);
1334 * __getblk will locate (and, if necessary, create) the buffer_head
1335 * which corresponds to the passed block_device, block and size. The
1336 * returned buffer has its reference count incremented.
1338 * __getblk() cannot fail - it just keeps trying. If you pass it an
1339 * illegal block number, __getblk() will happily return a buffer_head
1340 * which represents the non-existent block. Very weird.
1342 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1343 * attempt is failing. FIXME, perhaps?
1345 struct buffer_head
*
1346 __getblk(struct block_device
*bdev
, sector_t block
, unsigned size
)
1348 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1352 bh
= __getblk_slow(bdev
, block
, size
);
1355 EXPORT_SYMBOL(__getblk
);
1358 * Do async read-ahead on a buffer..
1360 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1362 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1364 ll_rw_block(READA
, 1, &bh
);
1368 EXPORT_SYMBOL(__breadahead
);
1371 * __bread() - reads a specified block and returns the bh
1372 * @bdev: the block_device to read from
1373 * @block: number of block
1374 * @size: size (in bytes) to read
1376 * Reads a specified block, and returns buffer head that contains it.
1377 * It returns NULL if the block was unreadable.
1379 struct buffer_head
*
1380 __bread(struct block_device
*bdev
, sector_t block
, unsigned size
)
1382 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1384 if (likely(bh
) && !buffer_uptodate(bh
))
1385 bh
= __bread_slow(bh
);
1388 EXPORT_SYMBOL(__bread
);
1391 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1392 * This doesn't race because it runs in each cpu either in irq
1393 * or with preempt disabled.
1395 static void invalidate_bh_lru(void *arg
)
1397 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1400 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1404 put_cpu_var(bh_lrus
);
1407 void invalidate_bh_lrus(void)
1409 on_each_cpu(invalidate_bh_lru
, NULL
, 1, 1);
1412 void set_bh_page(struct buffer_head
*bh
,
1413 struct page
*page
, unsigned long offset
)
1416 BUG_ON(offset
>= PAGE_SIZE
);
1417 if (PageHighMem(page
))
1419 * This catches illegal uses and preserves the offset:
1421 bh
->b_data
= (char *)(0 + offset
);
1423 bh
->b_data
= page_address(page
) + offset
;
1425 EXPORT_SYMBOL(set_bh_page
);
1428 * Called when truncating a buffer on a page completely.
1430 static void discard_buffer(struct buffer_head
* bh
)
1433 clear_buffer_dirty(bh
);
1435 clear_buffer_mapped(bh
);
1436 clear_buffer_req(bh
);
1437 clear_buffer_new(bh
);
1438 clear_buffer_delay(bh
);
1439 clear_buffer_unwritten(bh
);
1444 * block_invalidatepage - invalidate part of all of a buffer-backed page
1446 * @page: the page which is affected
1447 * @offset: the index of the truncation point
1449 * block_invalidatepage() is called when all or part of the page has become
1450 * invalidatedby a truncate operation.
1452 * block_invalidatepage() does not have to release all buffers, but it must
1453 * ensure that no dirty buffer is left outside @offset and that no I/O
1454 * is underway against any of the blocks which are outside the truncation
1455 * point. Because the caller is about to free (and possibly reuse) those
1458 void block_invalidatepage(struct page
*page
, unsigned long offset
)
1460 struct buffer_head
*head
, *bh
, *next
;
1461 unsigned int curr_off
= 0;
1463 BUG_ON(!PageLocked(page
));
1464 if (!page_has_buffers(page
))
1467 head
= page_buffers(page
);
1470 unsigned int next_off
= curr_off
+ bh
->b_size
;
1471 next
= bh
->b_this_page
;
1474 * is this block fully invalidated?
1476 if (offset
<= curr_off
)
1478 curr_off
= next_off
;
1480 } while (bh
!= head
);
1483 * We release buffers only if the entire page is being invalidated.
1484 * The get_block cached value has been unconditionally invalidated,
1485 * so real IO is not possible anymore.
1488 try_to_release_page(page
, 0);
1492 EXPORT_SYMBOL(block_invalidatepage
);
1495 * We attach and possibly dirty the buffers atomically wrt
1496 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1497 * is already excluded via the page lock.
1499 void create_empty_buffers(struct page
*page
,
1500 unsigned long blocksize
, unsigned long b_state
)
1502 struct buffer_head
*bh
, *head
, *tail
;
1504 head
= alloc_page_buffers(page
, blocksize
, 1);
1507 bh
->b_state
|= b_state
;
1509 bh
= bh
->b_this_page
;
1511 tail
->b_this_page
= head
;
1513 spin_lock(&page
->mapping
->private_lock
);
1514 if (PageUptodate(page
) || PageDirty(page
)) {
1517 if (PageDirty(page
))
1518 set_buffer_dirty(bh
);
1519 if (PageUptodate(page
))
1520 set_buffer_uptodate(bh
);
1521 bh
= bh
->b_this_page
;
1522 } while (bh
!= head
);
1524 attach_page_buffers(page
, head
);
1525 spin_unlock(&page
->mapping
->private_lock
);
1527 EXPORT_SYMBOL(create_empty_buffers
);
1530 * We are taking a block for data and we don't want any output from any
1531 * buffer-cache aliases starting from return from that function and
1532 * until the moment when something will explicitly mark the buffer
1533 * dirty (hopefully that will not happen until we will free that block ;-)
1534 * We don't even need to mark it not-uptodate - nobody can expect
1535 * anything from a newly allocated buffer anyway. We used to used
1536 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1537 * don't want to mark the alias unmapped, for example - it would confuse
1538 * anyone who might pick it with bread() afterwards...
1540 * Also.. Note that bforget() doesn't lock the buffer. So there can
1541 * be writeout I/O going on against recently-freed buffers. We don't
1542 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1543 * only if we really need to. That happens here.
1545 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1547 struct buffer_head
*old_bh
;
1551 old_bh
= __find_get_block_slow(bdev
, block
);
1553 clear_buffer_dirty(old_bh
);
1554 wait_on_buffer(old_bh
);
1555 clear_buffer_req(old_bh
);
1559 EXPORT_SYMBOL(unmap_underlying_metadata
);
1562 * NOTE! All mapped/uptodate combinations are valid:
1564 * Mapped Uptodate Meaning
1566 * No No "unknown" - must do get_block()
1567 * No Yes "hole" - zero-filled
1568 * Yes No "allocated" - allocated on disk, not read in
1569 * Yes Yes "valid" - allocated and up-to-date in memory.
1571 * "Dirty" is valid only with the last case (mapped+uptodate).
1575 * While block_write_full_page is writing back the dirty buffers under
1576 * the page lock, whoever dirtied the buffers may decide to clean them
1577 * again at any time. We handle that by only looking at the buffer
1578 * state inside lock_buffer().
1580 * If block_write_full_page() is called for regular writeback
1581 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1582 * locked buffer. This only can happen if someone has written the buffer
1583 * directly, with submit_bh(). At the address_space level PageWriteback
1584 * prevents this contention from occurring.
1586 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1587 get_block_t
*get_block
, struct writeback_control
*wbc
)
1591 sector_t last_block
;
1592 struct buffer_head
*bh
, *head
;
1593 const unsigned blocksize
= 1 << inode
->i_blkbits
;
1594 int nr_underway
= 0;
1596 BUG_ON(!PageLocked(page
));
1598 last_block
= (i_size_read(inode
) - 1) >> inode
->i_blkbits
;
1600 if (!page_has_buffers(page
)) {
1601 create_empty_buffers(page
, blocksize
,
1602 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1606 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1607 * here, and the (potentially unmapped) buffers may become dirty at
1608 * any time. If a buffer becomes dirty here after we've inspected it
1609 * then we just miss that fact, and the page stays dirty.
1611 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1612 * handle that here by just cleaning them.
1615 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1616 head
= page_buffers(page
);
1620 * Get all the dirty buffers mapped to disk addresses and
1621 * handle any aliases from the underlying blockdev's mapping.
1624 if (block
> last_block
) {
1626 * mapped buffers outside i_size will occur, because
1627 * this page can be outside i_size when there is a
1628 * truncate in progress.
1631 * The buffer was zeroed by block_write_full_page()
1633 clear_buffer_dirty(bh
);
1634 set_buffer_uptodate(bh
);
1635 } else if (!buffer_mapped(bh
) && buffer_dirty(bh
)) {
1636 WARN_ON(bh
->b_size
!= blocksize
);
1637 err
= get_block(inode
, block
, bh
, 1);
1640 if (buffer_new(bh
)) {
1641 /* blockdev mappings never come here */
1642 clear_buffer_new(bh
);
1643 unmap_underlying_metadata(bh
->b_bdev
,
1647 bh
= bh
->b_this_page
;
1649 } while (bh
!= head
);
1652 if (!buffer_mapped(bh
))
1655 * If it's a fully non-blocking write attempt and we cannot
1656 * lock the buffer then redirty the page. Note that this can
1657 * potentially cause a busy-wait loop from pdflush and kswapd
1658 * activity, but those code paths have their own higher-level
1661 if (wbc
->sync_mode
!= WB_SYNC_NONE
|| !wbc
->nonblocking
) {
1663 } else if (test_set_buffer_locked(bh
)) {
1664 redirty_page_for_writepage(wbc
, page
);
1667 if (test_clear_buffer_dirty(bh
)) {
1668 mark_buffer_async_write(bh
);
1672 } while ((bh
= bh
->b_this_page
) != head
);
1675 * The page and its buffers are protected by PageWriteback(), so we can
1676 * drop the bh refcounts early.
1678 BUG_ON(PageWriteback(page
));
1679 set_page_writeback(page
);
1682 struct buffer_head
*next
= bh
->b_this_page
;
1683 if (buffer_async_write(bh
)) {
1684 submit_bh(WRITE
, bh
);
1688 } while (bh
!= head
);
1693 if (nr_underway
== 0) {
1695 * The page was marked dirty, but the buffers were
1696 * clean. Someone wrote them back by hand with
1697 * ll_rw_block/submit_bh. A rare case.
1699 end_page_writeback(page
);
1702 * The page and buffer_heads can be released at any time from
1705 wbc
->pages_skipped
++; /* We didn't write this page */
1711 * ENOSPC, or some other error. We may already have added some
1712 * blocks to the file, so we need to write these out to avoid
1713 * exposing stale data.
1714 * The page is currently locked and not marked for writeback
1717 /* Recovery: lock and submit the mapped buffers */
1719 if (buffer_mapped(bh
) && buffer_dirty(bh
)) {
1721 mark_buffer_async_write(bh
);
1724 * The buffer may have been set dirty during
1725 * attachment to a dirty page.
1727 clear_buffer_dirty(bh
);
1729 } while ((bh
= bh
->b_this_page
) != head
);
1731 BUG_ON(PageWriteback(page
));
1732 mapping_set_error(page
->mapping
, err
);
1733 set_page_writeback(page
);
1735 struct buffer_head
*next
= bh
->b_this_page
;
1736 if (buffer_async_write(bh
)) {
1737 clear_buffer_dirty(bh
);
1738 submit_bh(WRITE
, bh
);
1742 } while (bh
!= head
);
1747 static int __block_prepare_write(struct inode
*inode
, struct page
*page
,
1748 unsigned from
, unsigned to
, get_block_t
*get_block
)
1750 unsigned block_start
, block_end
;
1753 unsigned blocksize
, bbits
;
1754 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1756 BUG_ON(!PageLocked(page
));
1757 BUG_ON(from
> PAGE_CACHE_SIZE
);
1758 BUG_ON(to
> PAGE_CACHE_SIZE
);
1761 blocksize
= 1 << inode
->i_blkbits
;
1762 if (!page_has_buffers(page
))
1763 create_empty_buffers(page
, blocksize
, 0);
1764 head
= page_buffers(page
);
1766 bbits
= inode
->i_blkbits
;
1767 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1769 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1770 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1771 block_end
= block_start
+ blocksize
;
1772 if (block_end
<= from
|| block_start
>= to
) {
1773 if (PageUptodate(page
)) {
1774 if (!buffer_uptodate(bh
))
1775 set_buffer_uptodate(bh
);
1780 clear_buffer_new(bh
);
1781 if (!buffer_mapped(bh
)) {
1782 WARN_ON(bh
->b_size
!= blocksize
);
1783 err
= get_block(inode
, block
, bh
, 1);
1786 if (buffer_new(bh
)) {
1787 unmap_underlying_metadata(bh
->b_bdev
,
1789 if (PageUptodate(page
)) {
1790 set_buffer_uptodate(bh
);
1793 if (block_end
> to
|| block_start
< from
) {
1796 kaddr
= kmap_atomic(page
, KM_USER0
);
1800 if (block_start
< from
)
1801 memset(kaddr
+block_start
,
1802 0, from
-block_start
);
1803 flush_dcache_page(page
);
1804 kunmap_atomic(kaddr
, KM_USER0
);
1809 if (PageUptodate(page
)) {
1810 if (!buffer_uptodate(bh
))
1811 set_buffer_uptodate(bh
);
1814 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1815 !buffer_unwritten(bh
) &&
1816 (block_start
< from
|| block_end
> to
)) {
1817 ll_rw_block(READ
, 1, &bh
);
1822 * If we issued read requests - let them complete.
1824 while(wait_bh
> wait
) {
1825 wait_on_buffer(*--wait_bh
);
1826 if (!buffer_uptodate(*wait_bh
))
1833 clear_buffer_new(bh
);
1834 } while ((bh
= bh
->b_this_page
) != head
);
1839 * Zero out any newly allocated blocks to avoid exposing stale
1840 * data. If BH_New is set, we know that the block was newly
1841 * allocated in the above loop.
1846 block_end
= block_start
+blocksize
;
1847 if (block_end
<= from
)
1849 if (block_start
>= to
)
1851 if (buffer_new(bh
)) {
1852 clear_buffer_new(bh
);
1853 zero_user_page(page
, block_start
, bh
->b_size
, KM_USER0
);
1854 set_buffer_uptodate(bh
);
1855 mark_buffer_dirty(bh
);
1858 block_start
= block_end
;
1859 bh
= bh
->b_this_page
;
1860 } while (bh
!= head
);
1864 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1865 unsigned from
, unsigned to
)
1867 unsigned block_start
, block_end
;
1870 struct buffer_head
*bh
, *head
;
1872 blocksize
= 1 << inode
->i_blkbits
;
1874 for(bh
= head
= page_buffers(page
), block_start
= 0;
1875 bh
!= head
|| !block_start
;
1876 block_start
=block_end
, bh
= bh
->b_this_page
) {
1877 block_end
= block_start
+ blocksize
;
1878 if (block_end
<= from
|| block_start
>= to
) {
1879 if (!buffer_uptodate(bh
))
1882 set_buffer_uptodate(bh
);
1883 mark_buffer_dirty(bh
);
1888 * If this is a partial write which happened to make all buffers
1889 * uptodate then we can optimize away a bogus readpage() for
1890 * the next read(). Here we 'discover' whether the page went
1891 * uptodate as a result of this (potentially partial) write.
1894 SetPageUptodate(page
);
1899 * block_is_partially_uptodate checks whether buffers within a page are
1902 * Returns true if all buffers which correspond to a file portion
1903 * we want to read are uptodate.
1905 int block_is_partially_uptodate(struct page
*page
, read_descriptor_t
*desc
,
1908 struct inode
*inode
= page
->mapping
->host
;
1909 unsigned block_start
, block_end
, blocksize
;
1911 struct buffer_head
*bh
, *head
;
1914 if (!page_has_buffers(page
))
1917 blocksize
= 1 << inode
->i_blkbits
;
1918 to
= min_t(unsigned, PAGE_CACHE_SIZE
- from
, desc
->count
);
1920 if (from
< blocksize
&& to
> PAGE_CACHE_SIZE
- blocksize
)
1923 head
= page_buffers(page
);
1927 block_end
= block_start
+ blocksize
;
1928 if (block_end
> from
&& block_start
< to
) {
1929 if (!buffer_uptodate(bh
)) {
1933 if (block_end
>= to
)
1936 block_start
= block_end
;
1937 bh
= bh
->b_this_page
;
1938 } while (bh
!= head
);
1942 EXPORT_SYMBOL(block_is_partially_uptodate
);
1945 * Generic "read page" function for block devices that have the normal
1946 * get_block functionality. This is most of the block device filesystems.
1947 * Reads the page asynchronously --- the unlock_buffer() and
1948 * set/clear_buffer_uptodate() functions propagate buffer state into the
1949 * page struct once IO has completed.
1951 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
1953 struct inode
*inode
= page
->mapping
->host
;
1954 sector_t iblock
, lblock
;
1955 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
1956 unsigned int blocksize
;
1958 int fully_mapped
= 1;
1960 BUG_ON(!PageLocked(page
));
1961 blocksize
= 1 << inode
->i_blkbits
;
1962 if (!page_has_buffers(page
))
1963 create_empty_buffers(page
, blocksize
, 0);
1964 head
= page_buffers(page
);
1966 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1967 lblock
= (i_size_read(inode
)+blocksize
-1) >> inode
->i_blkbits
;
1973 if (buffer_uptodate(bh
))
1976 if (!buffer_mapped(bh
)) {
1980 if (iblock
< lblock
) {
1981 WARN_ON(bh
->b_size
!= blocksize
);
1982 err
= get_block(inode
, iblock
, bh
, 0);
1986 if (!buffer_mapped(bh
)) {
1987 zero_user_page(page
, i
* blocksize
, blocksize
,
1990 set_buffer_uptodate(bh
);
1994 * get_block() might have updated the buffer
1997 if (buffer_uptodate(bh
))
2001 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2004 SetPageMappedToDisk(page
);
2008 * All buffers are uptodate - we can set the page uptodate
2009 * as well. But not if get_block() returned an error.
2011 if (!PageError(page
))
2012 SetPageUptodate(page
);
2017 /* Stage two: lock the buffers */
2018 for (i
= 0; i
< nr
; i
++) {
2021 mark_buffer_async_read(bh
);
2025 * Stage 3: start the IO. Check for uptodateness
2026 * inside the buffer lock in case another process reading
2027 * the underlying blockdev brought it uptodate (the sct fix).
2029 for (i
= 0; i
< nr
; i
++) {
2031 if (buffer_uptodate(bh
))
2032 end_buffer_async_read(bh
, 1);
2034 submit_bh(READ
, bh
);
2039 /* utility function for filesystems that need to do work on expanding
2040 * truncates. Uses prepare/commit_write to allow the filesystem to
2041 * deal with the hole.
2043 static int __generic_cont_expand(struct inode
*inode
, loff_t size
,
2044 pgoff_t index
, unsigned int offset
)
2046 struct address_space
*mapping
= inode
->i_mapping
;
2048 unsigned long limit
;
2052 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2053 if (limit
!= RLIM_INFINITY
&& size
> (loff_t
)limit
) {
2054 send_sig(SIGXFSZ
, current
, 0);
2057 if (size
> inode
->i_sb
->s_maxbytes
)
2061 page
= grab_cache_page(mapping
, index
);
2064 err
= mapping
->a_ops
->prepare_write(NULL
, page
, offset
, offset
);
2067 * ->prepare_write() may have instantiated a few blocks
2068 * outside i_size. Trim these off again.
2071 page_cache_release(page
);
2072 vmtruncate(inode
, inode
->i_size
);
2076 err
= mapping
->a_ops
->commit_write(NULL
, page
, offset
, offset
);
2079 page_cache_release(page
);
2086 int generic_cont_expand(struct inode
*inode
, loff_t size
)
2089 unsigned int offset
;
2091 offset
= (size
& (PAGE_CACHE_SIZE
- 1)); /* Within page */
2093 /* ugh. in prepare/commit_write, if from==to==start of block, we
2094 ** skip the prepare. make sure we never send an offset for the start
2097 if ((offset
& (inode
->i_sb
->s_blocksize
- 1)) == 0) {
2098 /* caller must handle this extra byte. */
2101 index
= size
>> PAGE_CACHE_SHIFT
;
2103 return __generic_cont_expand(inode
, size
, index
, offset
);
2106 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2108 loff_t pos
= size
- 1;
2109 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
2110 unsigned int offset
= (pos
& (PAGE_CACHE_SIZE
- 1)) + 1;
2112 /* prepare/commit_write can handle even if from==to==start of block. */
2113 return __generic_cont_expand(inode
, size
, index
, offset
);
2117 * For moronic filesystems that do not allow holes in file.
2118 * We may have to extend the file.
2121 int cont_prepare_write(struct page
*page
, unsigned offset
,
2122 unsigned to
, get_block_t
*get_block
, loff_t
*bytes
)
2124 struct address_space
*mapping
= page
->mapping
;
2125 struct inode
*inode
= mapping
->host
;
2126 struct page
*new_page
;
2130 unsigned blocksize
= 1 << inode
->i_blkbits
;
2132 while(page
->index
> (pgpos
= *bytes
>>PAGE_CACHE_SHIFT
)) {
2134 new_page
= grab_cache_page(mapping
, pgpos
);
2137 /* we might sleep */
2138 if (*bytes
>>PAGE_CACHE_SHIFT
!= pgpos
) {
2139 unlock_page(new_page
);
2140 page_cache_release(new_page
);
2143 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2144 if (zerofrom
& (blocksize
-1)) {
2145 *bytes
|= (blocksize
-1);
2148 status
= __block_prepare_write(inode
, new_page
, zerofrom
,
2149 PAGE_CACHE_SIZE
, get_block
);
2152 zero_user_page(new_page
, zerofrom
, PAGE_CACHE_SIZE
- zerofrom
,
2154 generic_commit_write(NULL
, new_page
, zerofrom
, PAGE_CACHE_SIZE
);
2155 unlock_page(new_page
);
2156 page_cache_release(new_page
);
2158 balance_dirty_pages_ratelimited(mapping
);
2161 if (page
->index
< pgpos
) {
2162 /* completely inside the area */
2165 /* page covers the boundary, find the boundary offset */
2166 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2168 /* if we will expand the thing last block will be filled */
2169 if (to
> zerofrom
&& (zerofrom
& (blocksize
-1))) {
2170 *bytes
|= (blocksize
-1);
2174 /* starting below the boundary? Nothing to zero out */
2175 if (offset
<= zerofrom
)
2178 status
= __block_prepare_write(inode
, page
, zerofrom
, to
, get_block
);
2181 if (zerofrom
< offset
) {
2182 zero_user_page(page
, zerofrom
, offset
- zerofrom
, KM_USER0
);
2183 __block_commit_write(inode
, page
, zerofrom
, offset
);
2187 ClearPageUptodate(page
);
2191 ClearPageUptodate(new_page
);
2192 unlock_page(new_page
);
2193 page_cache_release(new_page
);
2198 int block_prepare_write(struct page
*page
, unsigned from
, unsigned to
,
2199 get_block_t
*get_block
)
2201 struct inode
*inode
= page
->mapping
->host
;
2202 int err
= __block_prepare_write(inode
, page
, from
, to
, get_block
);
2204 ClearPageUptodate(page
);
2208 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2210 struct inode
*inode
= page
->mapping
->host
;
2211 __block_commit_write(inode
,page
,from
,to
);
2215 int generic_commit_write(struct file
*file
, struct page
*page
,
2216 unsigned from
, unsigned to
)
2218 struct inode
*inode
= page
->mapping
->host
;
2219 loff_t pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2220 __block_commit_write(inode
,page
,from
,to
);
2222 * No need to use i_size_read() here, the i_size
2223 * cannot change under us because we hold i_mutex.
2225 if (pos
> inode
->i_size
) {
2226 i_size_write(inode
, pos
);
2227 mark_inode_dirty(inode
);
2234 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2235 * immediately, while under the page lock. So it needs a special end_io
2236 * handler which does not touch the bh after unlocking it.
2238 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2239 * a race there is benign: unlock_buffer() only use the bh's address for
2240 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2243 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2246 set_buffer_uptodate(bh
);
2248 /* This happens, due to failed READA attempts. */
2249 clear_buffer_uptodate(bh
);
2255 * On entry, the page is fully not uptodate.
2256 * On exit the page is fully uptodate in the areas outside (from,to)
2258 int nobh_prepare_write(struct page
*page
, unsigned from
, unsigned to
,
2259 get_block_t
*get_block
)
2261 struct inode
*inode
= page
->mapping
->host
;
2262 const unsigned blkbits
= inode
->i_blkbits
;
2263 const unsigned blocksize
= 1 << blkbits
;
2264 struct buffer_head map_bh
;
2265 struct buffer_head
*read_bh
[MAX_BUF_PER_PAGE
];
2266 unsigned block_in_page
;
2267 unsigned block_start
;
2268 sector_t block_in_file
;
2273 int is_mapped_to_disk
= 1;
2275 if (PageMappedToDisk(page
))
2278 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2279 map_bh
.b_page
= page
;
2282 * We loop across all blocks in the page, whether or not they are
2283 * part of the affected region. This is so we can discover if the
2284 * page is fully mapped-to-disk.
2286 for (block_start
= 0, block_in_page
= 0;
2287 block_start
< PAGE_CACHE_SIZE
;
2288 block_in_page
++, block_start
+= blocksize
) {
2289 unsigned block_end
= block_start
+ blocksize
;
2294 if (block_start
>= to
)
2296 map_bh
.b_size
= blocksize
;
2297 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2301 if (!buffer_mapped(&map_bh
))
2302 is_mapped_to_disk
= 0;
2303 if (buffer_new(&map_bh
))
2304 unmap_underlying_metadata(map_bh
.b_bdev
,
2306 if (PageUptodate(page
))
2308 if (buffer_new(&map_bh
) || !buffer_mapped(&map_bh
)) {
2309 kaddr
= kmap_atomic(page
, KM_USER0
);
2310 if (block_start
< from
)
2311 memset(kaddr
+block_start
, 0, from
-block_start
);
2313 memset(kaddr
+ to
, 0, block_end
- to
);
2314 flush_dcache_page(page
);
2315 kunmap_atomic(kaddr
, KM_USER0
);
2318 if (buffer_uptodate(&map_bh
))
2319 continue; /* reiserfs does this */
2320 if (block_start
< from
|| block_end
> to
) {
2321 struct buffer_head
*bh
= alloc_buffer_head(GFP_NOFS
);
2327 bh
->b_state
= map_bh
.b_state
;
2328 atomic_set(&bh
->b_count
, 0);
2329 bh
->b_this_page
= NULL
;
2331 bh
->b_blocknr
= map_bh
.b_blocknr
;
2332 bh
->b_size
= blocksize
;
2333 bh
->b_data
= (char *)(long)block_start
;
2334 bh
->b_bdev
= map_bh
.b_bdev
;
2335 bh
->b_private
= NULL
;
2336 read_bh
[nr_reads
++] = bh
;
2341 struct buffer_head
*bh
;
2344 * The page is locked, so these buffers are protected from
2345 * any VM or truncate activity. Hence we don't need to care
2346 * for the buffer_head refcounts.
2348 for (i
= 0; i
< nr_reads
; i
++) {
2351 bh
->b_end_io
= end_buffer_read_nobh
;
2352 submit_bh(READ
, bh
);
2354 for (i
= 0; i
< nr_reads
; i
++) {
2357 if (!buffer_uptodate(bh
))
2359 free_buffer_head(bh
);
2366 if (is_mapped_to_disk
)
2367 SetPageMappedToDisk(page
);
2372 for (i
= 0; i
< nr_reads
; i
++) {
2374 free_buffer_head(read_bh
[i
]);
2378 * Error recovery is pretty slack. Clear the page and mark it dirty
2379 * so we'll later zero out any blocks which _were_ allocated.
2381 zero_user_page(page
, 0, PAGE_CACHE_SIZE
, KM_USER0
);
2382 SetPageUptodate(page
);
2383 set_page_dirty(page
);
2386 EXPORT_SYMBOL(nobh_prepare_write
);
2389 * Make sure any changes to nobh_commit_write() are reflected in
2390 * nobh_truncate_page(), since it doesn't call commit_write().
2392 int nobh_commit_write(struct file
*file
, struct page
*page
,
2393 unsigned from
, unsigned to
)
2395 struct inode
*inode
= page
->mapping
->host
;
2396 loff_t pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2398 SetPageUptodate(page
);
2399 set_page_dirty(page
);
2400 if (pos
> inode
->i_size
) {
2401 i_size_write(inode
, pos
);
2402 mark_inode_dirty(inode
);
2406 EXPORT_SYMBOL(nobh_commit_write
);
2409 * nobh_writepage() - based on block_full_write_page() except
2410 * that it tries to operate without attaching bufferheads to
2413 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2414 struct writeback_control
*wbc
)
2416 struct inode
* const inode
= page
->mapping
->host
;
2417 loff_t i_size
= i_size_read(inode
);
2418 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2422 /* Is the page fully inside i_size? */
2423 if (page
->index
< end_index
)
2426 /* Is the page fully outside i_size? (truncate in progress) */
2427 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2428 if (page
->index
>= end_index
+1 || !offset
) {
2430 * The page may have dirty, unmapped buffers. For example,
2431 * they may have been added in ext3_writepage(). Make them
2432 * freeable here, so the page does not leak.
2435 /* Not really sure about this - do we need this ? */
2436 if (page
->mapping
->a_ops
->invalidatepage
)
2437 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2440 return 0; /* don't care */
2444 * The page straddles i_size. It must be zeroed out on each and every
2445 * writepage invocation because it may be mmapped. "A file is mapped
2446 * in multiples of the page size. For a file that is not a multiple of
2447 * the page size, the remaining memory is zeroed when mapped, and
2448 * writes to that region are not written out to the file."
2450 zero_user_page(page
, offset
, PAGE_CACHE_SIZE
- offset
, KM_USER0
);
2452 ret
= mpage_writepage(page
, get_block
, wbc
);
2454 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
);
2457 EXPORT_SYMBOL(nobh_writepage
);
2460 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2462 int nobh_truncate_page(struct address_space
*mapping
, loff_t from
)
2464 struct inode
*inode
= mapping
->host
;
2465 unsigned blocksize
= 1 << inode
->i_blkbits
;
2466 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2467 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2470 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2473 if ((offset
& (blocksize
- 1)) == 0)
2477 page
= grab_cache_page(mapping
, index
);
2481 to
= (offset
+ blocksize
) & ~(blocksize
- 1);
2482 ret
= a_ops
->prepare_write(NULL
, page
, offset
, to
);
2484 zero_user_page(page
, offset
, PAGE_CACHE_SIZE
- offset
,
2487 * It would be more correct to call aops->commit_write()
2488 * here, but this is more efficient.
2490 SetPageUptodate(page
);
2491 set_page_dirty(page
);
2494 page_cache_release(page
);
2498 EXPORT_SYMBOL(nobh_truncate_page
);
2500 int block_truncate_page(struct address_space
*mapping
,
2501 loff_t from
, get_block_t
*get_block
)
2503 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2504 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2507 unsigned length
, pos
;
2508 struct inode
*inode
= mapping
->host
;
2510 struct buffer_head
*bh
;
2513 blocksize
= 1 << inode
->i_blkbits
;
2514 length
= offset
& (blocksize
- 1);
2516 /* Block boundary? Nothing to do */
2520 length
= blocksize
- length
;
2521 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2523 page
= grab_cache_page(mapping
, index
);
2528 if (!page_has_buffers(page
))
2529 create_empty_buffers(page
, blocksize
, 0);
2531 /* Find the buffer that contains "offset" */
2532 bh
= page_buffers(page
);
2534 while (offset
>= pos
) {
2535 bh
= bh
->b_this_page
;
2541 if (!buffer_mapped(bh
)) {
2542 WARN_ON(bh
->b_size
!= blocksize
);
2543 err
= get_block(inode
, iblock
, bh
, 0);
2546 /* unmapped? It's a hole - nothing to do */
2547 if (!buffer_mapped(bh
))
2551 /* Ok, it's mapped. Make sure it's up-to-date */
2552 if (PageUptodate(page
))
2553 set_buffer_uptodate(bh
);
2555 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2557 ll_rw_block(READ
, 1, &bh
);
2559 /* Uhhuh. Read error. Complain and punt. */
2560 if (!buffer_uptodate(bh
))
2564 zero_user_page(page
, offset
, length
, KM_USER0
);
2565 mark_buffer_dirty(bh
);
2570 page_cache_release(page
);
2576 * The generic ->writepage function for buffer-backed address_spaces
2578 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2579 struct writeback_control
*wbc
)
2581 struct inode
* const inode
= page
->mapping
->host
;
2582 loff_t i_size
= i_size_read(inode
);
2583 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2586 /* Is the page fully inside i_size? */
2587 if (page
->index
< end_index
)
2588 return __block_write_full_page(inode
, page
, get_block
, wbc
);
2590 /* Is the page fully outside i_size? (truncate in progress) */
2591 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2592 if (page
->index
>= end_index
+1 || !offset
) {
2594 * The page may have dirty, unmapped buffers. For example,
2595 * they may have been added in ext3_writepage(). Make them
2596 * freeable here, so the page does not leak.
2598 do_invalidatepage(page
, 0);
2600 return 0; /* don't care */
2604 * The page straddles i_size. It must be zeroed out on each and every
2605 * writepage invokation because it may be mmapped. "A file is mapped
2606 * in multiples of the page size. For a file that is not a multiple of
2607 * the page size, the remaining memory is zeroed when mapped, and
2608 * writes to that region are not written out to the file."
2610 zero_user_page(page
, offset
, PAGE_CACHE_SIZE
- offset
, KM_USER0
);
2611 return __block_write_full_page(inode
, page
, get_block
, wbc
);
2614 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2615 get_block_t
*get_block
)
2617 struct buffer_head tmp
;
2618 struct inode
*inode
= mapping
->host
;
2621 tmp
.b_size
= 1 << inode
->i_blkbits
;
2622 get_block(inode
, block
, &tmp
, 0);
2623 return tmp
.b_blocknr
;
2626 static int end_bio_bh_io_sync(struct bio
*bio
, unsigned int bytes_done
, int err
)
2628 struct buffer_head
*bh
= bio
->bi_private
;
2633 if (err
== -EOPNOTSUPP
) {
2634 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2635 set_bit(BH_Eopnotsupp
, &bh
->b_state
);
2638 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2643 int submit_bh(int rw
, struct buffer_head
* bh
)
2648 BUG_ON(!buffer_locked(bh
));
2649 BUG_ON(!buffer_mapped(bh
));
2650 BUG_ON(!bh
->b_end_io
);
2652 if (buffer_ordered(bh
) && (rw
== WRITE
))
2656 * Only clear out a write error when rewriting, should this
2657 * include WRITE_SYNC as well?
2659 if (test_set_buffer_req(bh
) && (rw
== WRITE
|| rw
== WRITE_BARRIER
))
2660 clear_buffer_write_io_error(bh
);
2663 * from here on down, it's all bio -- do the initial mapping,
2664 * submit_bio -> generic_make_request may further map this bio around
2666 bio
= bio_alloc(GFP_NOIO
, 1);
2668 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
2669 bio
->bi_bdev
= bh
->b_bdev
;
2670 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
2671 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
2672 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
2676 bio
->bi_size
= bh
->b_size
;
2678 bio
->bi_end_io
= end_bio_bh_io_sync
;
2679 bio
->bi_private
= bh
;
2682 submit_bio(rw
, bio
);
2684 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2692 * ll_rw_block: low-level access to block devices (DEPRECATED)
2693 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2694 * @nr: number of &struct buffer_heads in the array
2695 * @bhs: array of pointers to &struct buffer_head
2697 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2698 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2699 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2700 * are sent to disk. The fourth %READA option is described in the documentation
2701 * for generic_make_request() which ll_rw_block() calls.
2703 * This function drops any buffer that it cannot get a lock on (with the
2704 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2705 * clean when doing a write request, and any buffer that appears to be
2706 * up-to-date when doing read request. Further it marks as clean buffers that
2707 * are processed for writing (the buffer cache won't assume that they are
2708 * actually clean until the buffer gets unlocked).
2710 * ll_rw_block sets b_end_io to simple completion handler that marks
2711 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2714 * All of the buffers must be for the same device, and must also be a
2715 * multiple of the current approved size for the device.
2717 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
2721 for (i
= 0; i
< nr
; i
++) {
2722 struct buffer_head
*bh
= bhs
[i
];
2726 else if (test_set_buffer_locked(bh
))
2729 if (rw
== WRITE
|| rw
== SWRITE
) {
2730 if (test_clear_buffer_dirty(bh
)) {
2731 bh
->b_end_io
= end_buffer_write_sync
;
2733 submit_bh(WRITE
, bh
);
2737 if (!buffer_uptodate(bh
)) {
2738 bh
->b_end_io
= end_buffer_read_sync
;
2749 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2750 * and then start new I/O and then wait upon it. The caller must have a ref on
2753 int sync_dirty_buffer(struct buffer_head
*bh
)
2757 WARN_ON(atomic_read(&bh
->b_count
) < 1);
2759 if (test_clear_buffer_dirty(bh
)) {
2761 bh
->b_end_io
= end_buffer_write_sync
;
2762 ret
= submit_bh(WRITE
, bh
);
2764 if (buffer_eopnotsupp(bh
)) {
2765 clear_buffer_eopnotsupp(bh
);
2768 if (!ret
&& !buffer_uptodate(bh
))
2777 * try_to_free_buffers() checks if all the buffers on this particular page
2778 * are unused, and releases them if so.
2780 * Exclusion against try_to_free_buffers may be obtained by either
2781 * locking the page or by holding its mapping's private_lock.
2783 * If the page is dirty but all the buffers are clean then we need to
2784 * be sure to mark the page clean as well. This is because the page
2785 * may be against a block device, and a later reattachment of buffers
2786 * to a dirty page will set *all* buffers dirty. Which would corrupt
2787 * filesystem data on the same device.
2789 * The same applies to regular filesystem pages: if all the buffers are
2790 * clean then we set the page clean and proceed. To do that, we require
2791 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2794 * try_to_free_buffers() is non-blocking.
2796 static inline int buffer_busy(struct buffer_head
*bh
)
2798 return atomic_read(&bh
->b_count
) |
2799 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
2803 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
2805 struct buffer_head
*head
= page_buffers(page
);
2806 struct buffer_head
*bh
;
2810 if (buffer_write_io_error(bh
) && page
->mapping
)
2811 set_bit(AS_EIO
, &page
->mapping
->flags
);
2812 if (buffer_busy(bh
))
2814 bh
= bh
->b_this_page
;
2815 } while (bh
!= head
);
2818 struct buffer_head
*next
= bh
->b_this_page
;
2820 if (!list_empty(&bh
->b_assoc_buffers
))
2821 __remove_assoc_queue(bh
);
2823 } while (bh
!= head
);
2824 *buffers_to_free
= head
;
2825 __clear_page_buffers(page
);
2831 int try_to_free_buffers(struct page
*page
)
2833 struct address_space
* const mapping
= page
->mapping
;
2834 struct buffer_head
*buffers_to_free
= NULL
;
2837 BUG_ON(!PageLocked(page
));
2838 if (PageWriteback(page
))
2841 if (mapping
== NULL
) { /* can this still happen? */
2842 ret
= drop_buffers(page
, &buffers_to_free
);
2846 spin_lock(&mapping
->private_lock
);
2847 ret
= drop_buffers(page
, &buffers_to_free
);
2850 * If the filesystem writes its buffers by hand (eg ext3)
2851 * then we can have clean buffers against a dirty page. We
2852 * clean the page here; otherwise the VM will never notice
2853 * that the filesystem did any IO at all.
2855 * Also, during truncate, discard_buffer will have marked all
2856 * the page's buffers clean. We discover that here and clean
2859 * private_lock must be held over this entire operation in order
2860 * to synchronise against __set_page_dirty_buffers and prevent the
2861 * dirty bit from being lost.
2864 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
2865 spin_unlock(&mapping
->private_lock
);
2867 if (buffers_to_free
) {
2868 struct buffer_head
*bh
= buffers_to_free
;
2871 struct buffer_head
*next
= bh
->b_this_page
;
2872 free_buffer_head(bh
);
2874 } while (bh
!= buffers_to_free
);
2878 EXPORT_SYMBOL(try_to_free_buffers
);
2880 void block_sync_page(struct page
*page
)
2882 struct address_space
*mapping
;
2885 mapping
= page_mapping(page
);
2887 blk_run_backing_dev(mapping
->backing_dev_info
, page
);
2891 * There are no bdflush tunables left. But distributions are
2892 * still running obsolete flush daemons, so we terminate them here.
2894 * Use of bdflush() is deprecated and will be removed in a future kernel.
2895 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2897 asmlinkage
long sys_bdflush(int func
, long data
)
2899 static int msg_count
;
2901 if (!capable(CAP_SYS_ADMIN
))
2904 if (msg_count
< 5) {
2907 "warning: process `%s' used the obsolete bdflush"
2908 " system call\n", current
->comm
);
2909 printk(KERN_INFO
"Fix your initscripts?\n");
2918 * Buffer-head allocation
2920 static struct kmem_cache
*bh_cachep
;
2923 * Once the number of bh's in the machine exceeds this level, we start
2924 * stripping them in writeback.
2926 static int max_buffer_heads
;
2928 int buffer_heads_over_limit
;
2930 struct bh_accounting
{
2931 int nr
; /* Number of live bh's */
2932 int ratelimit
; /* Limit cacheline bouncing */
2935 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
2937 static void recalc_bh_state(void)
2942 if (__get_cpu_var(bh_accounting
).ratelimit
++ < 4096)
2944 __get_cpu_var(bh_accounting
).ratelimit
= 0;
2945 for_each_online_cpu(i
)
2946 tot
+= per_cpu(bh_accounting
, i
).nr
;
2947 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
2950 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
2952 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
2954 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
2955 get_cpu_var(bh_accounting
).nr
++;
2957 put_cpu_var(bh_accounting
);
2961 EXPORT_SYMBOL(alloc_buffer_head
);
2963 void free_buffer_head(struct buffer_head
*bh
)
2965 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
2966 kmem_cache_free(bh_cachep
, bh
);
2967 get_cpu_var(bh_accounting
).nr
--;
2969 put_cpu_var(bh_accounting
);
2971 EXPORT_SYMBOL(free_buffer_head
);
2973 static void buffer_exit_cpu(int cpu
)
2976 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
2978 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
2982 get_cpu_var(bh_accounting
).nr
+= per_cpu(bh_accounting
, cpu
).nr
;
2983 per_cpu(bh_accounting
, cpu
).nr
= 0;
2984 put_cpu_var(bh_accounting
);
2987 static int buffer_cpu_notify(struct notifier_block
*self
,
2988 unsigned long action
, void *hcpu
)
2990 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
2991 buffer_exit_cpu((unsigned long)hcpu
);
2996 * bh_uptodate_or_lock: Test whether the buffer is uptodate
2997 * @bh: struct buffer_head
2999 * Return true if the buffer is up-to-date and false,
3000 * with the buffer locked, if not.
3002 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3004 if (!buffer_uptodate(bh
)) {
3006 if (!buffer_uptodate(bh
))
3012 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3015 * bh_submit_read: Submit a locked buffer for reading
3016 * @bh: struct buffer_head
3018 * Returns zero on success and -EIO on error.
3020 int bh_submit_read(struct buffer_head
*bh
)
3022 BUG_ON(!buffer_locked(bh
));
3024 if (buffer_uptodate(bh
)) {
3030 bh
->b_end_io
= end_buffer_read_sync
;
3031 submit_bh(READ
, bh
);
3033 if (buffer_uptodate(bh
))
3037 EXPORT_SYMBOL(bh_submit_read
);
3039 void __init
buffer_init(void)
3043 bh_cachep
= KMEM_CACHE(buffer_head
,
3044 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3047 * Limit the bh occupancy to 10% of ZONE_NORMAL
3049 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3050 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3051 hotcpu_notifier(buffer_cpu_notify
, 0);
3054 EXPORT_SYMBOL(__bforget
);
3055 EXPORT_SYMBOL(__brelse
);
3056 EXPORT_SYMBOL(__wait_on_buffer
);
3057 EXPORT_SYMBOL(block_commit_write
);
3058 EXPORT_SYMBOL(block_prepare_write
);
3059 EXPORT_SYMBOL(block_read_full_page
);
3060 EXPORT_SYMBOL(block_sync_page
);
3061 EXPORT_SYMBOL(block_truncate_page
);
3062 EXPORT_SYMBOL(block_write_full_page
);
3063 EXPORT_SYMBOL(cont_prepare_write
);
3064 EXPORT_SYMBOL(end_buffer_read_sync
);
3065 EXPORT_SYMBOL(end_buffer_write_sync
);
3066 EXPORT_SYMBOL(file_fsync
);
3067 EXPORT_SYMBOL(fsync_bdev
);
3068 EXPORT_SYMBOL(generic_block_bmap
);
3069 EXPORT_SYMBOL(generic_commit_write
);
3070 EXPORT_SYMBOL(generic_cont_expand
);
3071 EXPORT_SYMBOL(generic_cont_expand_simple
);
3072 EXPORT_SYMBOL(init_buffer
);
3073 EXPORT_SYMBOL(invalidate_bdev
);
3074 EXPORT_SYMBOL(ll_rw_block
);
3075 EXPORT_SYMBOL(mark_buffer_dirty
);
3076 EXPORT_SYMBOL(submit_bh
);
3077 EXPORT_SYMBOL(sync_dirty_buffer
);
3078 EXPORT_SYMBOL(unlock_buffer
);