Tomato 1.28
[tomato.git] / release / src / linux / linux / net / socket.c
blob4816eeb681296ee19536b8e529df500e49b3c496
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro, <bir7@leland.Stanford.Edu>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
60 #include <linux/config.h>
61 #include <linux/mm.h>
62 #include <linux/smp_lock.h>
63 #include <linux/socket.h>
64 #include <linux/file.h>
65 #include <linux/net.h>
66 #include <linux/interrupt.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/wanrouter.h>
70 #include <linux/netlink.h>
71 #include <linux/rtnetlink.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
78 #if defined(CONFIG_KMOD) && defined(CONFIG_NET)
79 #include <linux/kmod.h>
80 #endif
82 #include <asm/uaccess.h>
84 #include <net/sock.h>
85 #include <net/scm.h>
86 #include <linux/netfilter.h>
88 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
89 static ssize_t sock_read(struct file *file, char *buf,
90 size_t size, loff_t *ppos);
91 static ssize_t sock_write(struct file *file, const char *buf,
92 size_t size, loff_t *ppos);
93 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
95 static int sock_close(struct inode *inode, struct file *file);
96 static unsigned int sock_poll(struct file *file,
97 struct poll_table_struct *wait);
98 static int sock_ioctl(struct inode *inode, struct file *file,
99 unsigned int cmd, unsigned long arg);
100 static int sock_fasync(int fd, struct file *filp, int on);
101 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
102 unsigned long count, loff_t *ppos);
103 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
104 unsigned long count, loff_t *ppos);
105 static ssize_t sock_sendpage(struct file *file, struct page *page,
106 int offset, size_t size, loff_t *ppos, int more);
110 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
111 * in the operation structures but are done directly via the socketcall() multiplexor.
114 static struct file_operations socket_file_ops = {
115 llseek: no_llseek,
116 read: sock_read,
117 write: sock_write,
118 poll: sock_poll,
119 ioctl: sock_ioctl,
120 mmap: sock_mmap,
121 open: sock_no_open, /* special open code to disallow open via /proc */
122 release: sock_close,
123 fasync: sock_fasync,
124 readv: sock_readv,
125 writev: sock_writev,
126 sendpage: sock_sendpage
130 * The protocol list. Each protocol is registered in here.
133 static struct net_proto_family *net_families[NPROTO];
135 #ifdef CONFIG_SMP
136 static atomic_t net_family_lockct = ATOMIC_INIT(0);
137 static spinlock_t net_family_lock = SPIN_LOCK_UNLOCKED;
139 /* The strategy is: modifications net_family vector are short, do not
140 sleep and veeery rare, but read access should be free of any exclusive
141 locks.
144 static void net_family_write_lock(void)
146 spin_lock(&net_family_lock);
147 while (atomic_read(&net_family_lockct) != 0) {
148 spin_unlock(&net_family_lock);
150 yield();
152 spin_lock(&net_family_lock);
156 static __inline__ void net_family_write_unlock(void)
158 spin_unlock(&net_family_lock);
161 static __inline__ void net_family_read_lock(void)
163 atomic_inc(&net_family_lockct);
164 spin_unlock_wait(&net_family_lock);
167 static __inline__ void net_family_read_unlock(void)
169 atomic_dec(&net_family_lockct);
172 #else
173 #define net_family_write_lock() do { } while(0)
174 #define net_family_write_unlock() do { } while(0)
175 #define net_family_read_lock() do { } while(0)
176 #define net_family_read_unlock() do { } while(0)
177 #endif
181 * Statistics counters of the socket lists
184 static union {
185 int counter;
186 char __pad[SMP_CACHE_BYTES];
187 } sockets_in_use[NR_CPUS] __cacheline_aligned = {{0}};
190 * Support routines. Move socket addresses back and forth across the kernel/user
191 * divide and look after the messy bits.
194 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
195 16 for IP, 16 for IPX,
196 24 for IPv6,
197 about 80 for AX.25
198 must be at least one bigger than
199 the AF_UNIX size (see net/unix/af_unix.c
200 :unix_mkname()).
204 * move_addr_to_kernel - copy a socket address into kernel space
205 * @uaddr: Address in user space
206 * @kaddr: Address in kernel space
207 * @ulen: Length in user space
209 * The address is copied into kernel space. If the provided address is
210 * too long an error code of -EINVAL is returned. If the copy gives
211 * invalid addresses -EFAULT is returned. On a success 0 is returned.
214 int move_addr_to_kernel(void *uaddr, int ulen, void *kaddr)
216 if(ulen<0||ulen>MAX_SOCK_ADDR)
217 return -EINVAL;
218 if(ulen==0)
219 return 0;
220 if(copy_from_user(kaddr,uaddr,ulen))
221 return -EFAULT;
222 return 0;
226 * move_addr_to_user - copy an address to user space
227 * @kaddr: kernel space address
228 * @klen: length of address in kernel
229 * @uaddr: user space address
230 * @ulen: pointer to user length field
232 * The value pointed to by ulen on entry is the buffer length available.
233 * This is overwritten with the buffer space used. -EINVAL is returned
234 * if an overlong buffer is specified or a negative buffer size. -EFAULT
235 * is returned if either the buffer or the length field are not
236 * accessible.
237 * After copying the data up to the limit the user specifies, the true
238 * length of the data is written over the length limit the user
239 * specified. Zero is returned for a success.
242 int move_addr_to_user(void *kaddr, int klen, void *uaddr, int *ulen)
244 int err;
245 int len;
247 if((err=get_user(len, ulen)))
248 return err;
249 if(len>klen)
250 len=klen;
251 if(len<0 || len> MAX_SOCK_ADDR)
252 return -EINVAL;
253 if(len)
255 if(copy_to_user(uaddr,kaddr,len))
256 return -EFAULT;
259 * "fromlen shall refer to the value before truncation.."
260 * 1003.1g
262 return __put_user(klen, ulen);
265 #define SOCKFS_MAGIC 0x534F434B
266 static int sockfs_statfs(struct super_block *sb, struct statfs *buf)
268 buf->f_type = SOCKFS_MAGIC;
269 buf->f_bsize = 1024;
270 buf->f_namelen = 255;
271 return 0;
274 static struct super_operations sockfs_ops = {
275 statfs: sockfs_statfs,
278 static struct super_block * sockfs_read_super(struct super_block *sb, void *data, int silent)
280 struct inode *root = new_inode(sb);
281 if (!root)
282 return NULL;
283 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
284 root->i_uid = root->i_gid = 0;
285 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
286 sb->s_blocksize = 1024;
287 sb->s_blocksize_bits = 10;
288 sb->s_magic = SOCKFS_MAGIC;
289 sb->s_op = &sockfs_ops;
290 sb->s_root = d_alloc(NULL, &(const struct qstr) { "socket:", 7, 0 });
291 if (!sb->s_root) {
292 iput(root);
293 return NULL;
295 sb->s_root->d_sb = sb;
296 sb->s_root->d_parent = sb->s_root;
297 d_instantiate(sb->s_root, root);
298 return sb;
301 static struct vfsmount *sock_mnt;
302 static DECLARE_FSTYPE(sock_fs_type, "sockfs", sockfs_read_super, FS_NOMOUNT);
303 static int sockfs_delete_dentry(struct dentry *dentry)
305 return 1;
307 static struct dentry_operations sockfs_dentry_operations = {
308 d_delete: sockfs_delete_dentry,
312 * Obtains the first available file descriptor and sets it up for use.
314 * This functions creates file structure and maps it to fd space
315 * of current process. On success it returns file descriptor
316 * and file struct implicitly stored in sock->file.
317 * Note that another thread may close file descriptor before we return
318 * from this function. We use the fact that now we do not refer
319 * to socket after mapping. If one day we will need it, this
320 * function will inincrement ref. count on file by 1.
322 * In any case returned fd MAY BE not valid!
323 * This race condition is inavoidable
324 * with shared fd spaces, we cannot solve is inside kernel,
325 * but we take care of internal coherence yet.
328 static int sock_map_fd(struct socket *sock)
330 int fd;
331 struct qstr this;
332 char name[32];
335 * Find a file descriptor suitable for return to the user.
338 fd = get_unused_fd();
339 if (fd >= 0) {
340 struct file *file = get_empty_filp();
342 if (!file) {
343 put_unused_fd(fd);
344 fd = -ENFILE;
345 goto out;
348 sprintf(name, "[%lu]", sock->inode->i_ino);
349 this.name = name;
350 this.len = strlen(name);
351 this.hash = sock->inode->i_ino;
353 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
354 if (!file->f_dentry) {
355 put_filp(file);
356 put_unused_fd(fd);
357 fd = -ENOMEM;
358 goto out;
360 file->f_dentry->d_op = &sockfs_dentry_operations;
361 d_add(file->f_dentry, sock->inode);
362 file->f_vfsmnt = mntget(sock_mnt);
364 sock->file = file;
365 file->f_op = sock->inode->i_fop = &socket_file_ops;
366 file->f_mode = 3;
367 file->f_flags = O_RDWR;
368 file->f_pos = 0;
369 fd_install(fd, file);
372 out:
373 return fd;
376 extern __inline__ struct socket *socki_lookup(struct inode *inode)
378 return &inode->u.socket_i;
382 * sockfd_lookup - Go from a file number to its socket slot
383 * @fd: file handle
384 * @err: pointer to an error code return
386 * The file handle passed in is locked and the socket it is bound
387 * too is returned. If an error occurs the err pointer is overwritten
388 * with a negative errno code and NULL is returned. The function checks
389 * for both invalid handles and passing a handle which is not a socket.
391 * On a success the socket object pointer is returned.
394 struct socket *sockfd_lookup(int fd, int *err)
396 struct file *file;
397 struct inode *inode;
398 struct socket *sock;
400 if (!(file = fget(fd)))
402 *err = -EBADF;
403 return NULL;
406 inode = file->f_dentry->d_inode;
407 if (!inode->i_sock || !(sock = socki_lookup(inode)))
409 *err = -ENOTSOCK;
410 fput(file);
411 return NULL;
414 if (sock->file != file) {
415 printk(KERN_ERR "socki_lookup: socket file changed!\n");
416 sock->file = file;
418 return sock;
421 extern __inline__ void sockfd_put(struct socket *sock)
423 fput(sock->file);
427 * sock_alloc - allocate a socket
429 * Allocate a new inode and socket object. The two are bound together
430 * and initialised. The socket is then returned. If we are out of inodes
431 * NULL is returned.
434 struct socket *sock_alloc(void)
436 struct inode * inode;
437 struct socket * sock;
439 inode = get_empty_inode();
440 if (!inode)
441 return NULL;
443 inode->i_sb = sock_mnt->mnt_sb;
444 sock = socki_lookup(inode);
446 inode->i_mode = S_IFSOCK|S_IRWXUGO;
447 inode->i_sock = 1;
448 inode->i_uid = current->fsuid;
449 inode->i_gid = current->fsgid;
451 sock->inode = inode;
452 init_waitqueue_head(&sock->wait);
453 sock->fasync_list = NULL;
454 sock->state = SS_UNCONNECTED;
455 sock->flags = 0;
456 sock->ops = NULL;
457 sock->sk = NULL;
458 sock->file = NULL;
460 sockets_in_use[smp_processor_id()].counter++;
461 return sock;
465 * In theory you can't get an open on this inode, but /proc provides
466 * a back door. Remember to keep it shut otherwise you'll let the
467 * creepy crawlies in.
470 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
472 return -ENXIO;
476 * sock_release - close a socket
477 * @sock: socket to close
479 * The socket is released from the protocol stack if it has a release
480 * callback, and the inode is then released if the socket is bound to
481 * an inode not a file.
484 void sock_release(struct socket *sock)
486 if (sock->ops)
487 sock->ops->release(sock);
489 if (sock->fasync_list)
490 printk(KERN_ERR "sock_release: fasync list not empty!\n");
492 sockets_in_use[smp_processor_id()].counter--;
493 if (!sock->file) {
494 iput(sock->inode);
495 return;
497 sock->file=NULL;
500 int sock_sendmsg(struct socket *sock, struct msghdr *msg, int size)
502 int err;
503 struct scm_cookie scm;
505 err = scm_send(sock, msg, &scm);
506 if (err >= 0) {
507 err = sock->ops->sendmsg(sock, msg, size, &scm);
508 scm_destroy(&scm);
510 return err;
513 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags)
515 struct scm_cookie scm;
517 memset(&scm, 0, sizeof(scm));
519 size = sock->ops->recvmsg(sock, msg, size, flags, &scm);
520 if (size >= 0)
521 scm_recv(sock, msg, &scm, flags);
523 return size;
528 * Read data from a socket. ubuf is a user mode pointer. We make sure the user
529 * area ubuf...ubuf+size-1 is writable before asking the protocol.
532 static ssize_t sock_read(struct file *file, char *ubuf,
533 size_t size, loff_t *ppos)
535 struct socket *sock;
536 struct iovec iov;
537 struct msghdr msg;
538 int flags;
540 if (ppos != &file->f_pos)
541 return -ESPIPE;
542 if (size==0) /* Match SYS5 behaviour */
543 return 0;
545 sock = socki_lookup(file->f_dentry->d_inode);
547 msg.msg_name=NULL;
548 msg.msg_namelen=0;
549 msg.msg_iov=&iov;
550 msg.msg_iovlen=1;
551 msg.msg_control=NULL;
552 msg.msg_controllen=0;
553 iov.iov_base=ubuf;
554 iov.iov_len=size;
555 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
557 return sock_recvmsg(sock, &msg, size, flags);
562 * Write data to a socket. We verify that the user area ubuf..ubuf+size-1
563 * is readable by the user process.
566 static ssize_t sock_write(struct file *file, const char *ubuf,
567 size_t size, loff_t *ppos)
569 struct socket *sock;
570 struct msghdr msg;
571 struct iovec iov;
573 if (ppos != &file->f_pos)
574 return -ESPIPE;
575 if(size==0) /* Match SYS5 behaviour */
576 return 0;
578 sock = socki_lookup(file->f_dentry->d_inode);
580 msg.msg_name=NULL;
581 msg.msg_namelen=0;
582 msg.msg_iov=&iov;
583 msg.msg_iovlen=1;
584 msg.msg_control=NULL;
585 msg.msg_controllen=0;
586 msg.msg_flags=!(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
587 if (sock->type == SOCK_SEQPACKET)
588 msg.msg_flags |= MSG_EOR;
589 iov.iov_base=(void *)ubuf;
590 iov.iov_len=size;
592 return sock_sendmsg(sock, &msg, size);
595 ssize_t sock_sendpage(struct file *file, struct page *page,
596 int offset, size_t size, loff_t *ppos, int more)
598 struct socket *sock;
599 int flags;
601 if (ppos != &file->f_pos)
602 return -ESPIPE;
604 sock = socki_lookup(file->f_dentry->d_inode);
606 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
607 if (more)
608 flags |= MSG_MORE;
610 if (!sock->ops->sendpage)
611 return sock_no_sendpage(sock, page, offset, size, flags);
613 return sock->ops->sendpage(sock, page, offset, size, flags);
616 int sock_readv_writev(int type, struct inode * inode, struct file * file,
617 const struct iovec * iov, long count, long size)
619 struct msghdr msg;
620 struct socket *sock;
622 sock = socki_lookup(inode);
624 msg.msg_name = NULL;
625 msg.msg_namelen = 0;
626 msg.msg_control = NULL;
627 msg.msg_controllen = 0;
628 msg.msg_iov = (struct iovec *) iov;
629 msg.msg_iovlen = count;
630 msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
632 /* read() does a VERIFY_WRITE */
633 if (type == VERIFY_WRITE)
634 return sock_recvmsg(sock, &msg, size, msg.msg_flags);
636 if (sock->type == SOCK_SEQPACKET)
637 msg.msg_flags |= MSG_EOR;
639 return sock_sendmsg(sock, &msg, size);
642 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
643 unsigned long count, loff_t *ppos)
645 size_t tot_len = 0;
646 int i;
647 for (i = 0 ; i < count ; i++)
648 tot_len += vector[i].iov_len;
649 return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode,
650 file, vector, count, tot_len);
653 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
654 unsigned long count, loff_t *ppos)
656 size_t tot_len = 0;
657 int i;
658 for (i = 0 ; i < count ; i++)
659 tot_len += vector[i].iov_len;
660 return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode,
661 file, vector, count, tot_len);
665 * With an ioctl arg may well be a user mode pointer, but we don't know what to do
666 * with it - that's up to the protocol still.
669 int sock_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
670 unsigned long arg)
672 struct socket *sock;
673 int err;
675 unlock_kernel();
676 sock = socki_lookup(inode);
677 err = sock->ops->ioctl(sock, cmd, arg);
678 lock_kernel();
680 return err;
684 /* No kernel lock held - perfect */
685 static unsigned int sock_poll(struct file *file, poll_table * wait)
687 struct socket *sock;
690 * We can't return errors to poll, so it's either yes or no.
692 sock = socki_lookup(file->f_dentry->d_inode);
693 return sock->ops->poll(file, sock, wait);
696 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
698 struct socket *sock = socki_lookup(file->f_dentry->d_inode);
700 return sock->ops->mmap(file, sock, vma);
703 int sock_close(struct inode *inode, struct file *filp)
706 * It was possible the inode is NULL we were
707 * closing an unfinished socket.
710 if (!inode)
712 printk(KERN_DEBUG "sock_close: NULL inode\n");
713 return 0;
715 sock_fasync(-1, filp, 0);
716 sock_release(socki_lookup(inode));
717 return 0;
721 * Update the socket async list
723 * Fasync_list locking strategy.
725 * 1. fasync_list is modified only under process context socket lock
726 * i.e. under semaphore.
727 * 2. fasync_list is used under read_lock(&sk->callback_lock)
728 * or under socket lock.
729 * 3. fasync_list can be used from softirq context, so that
730 * modification under socket lock have to be enhanced with
731 * write_lock_bh(&sk->callback_lock).
732 * --ANK (990710)
735 static int sock_fasync(int fd, struct file *filp, int on)
737 struct fasync_struct *fa, *fna=NULL, **prev;
738 struct socket *sock;
739 struct sock *sk;
741 if (on)
743 fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
744 if(fna==NULL)
745 return -ENOMEM;
748 sock = socki_lookup(filp->f_dentry->d_inode);
750 if ((sk=sock->sk) == NULL) {
751 if (fna)
752 kfree(fna);
753 return -EINVAL;
756 lock_sock(sk);
758 prev=&(sock->fasync_list);
760 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
761 if (fa->fa_file==filp)
762 break;
764 if(on)
766 if(fa!=NULL)
768 write_lock_bh(&sk->callback_lock);
769 fa->fa_fd=fd;
770 write_unlock_bh(&sk->callback_lock);
772 kfree(fna);
773 goto out;
775 fna->fa_file=filp;
776 fna->fa_fd=fd;
777 fna->magic=FASYNC_MAGIC;
778 fna->fa_next=sock->fasync_list;
779 write_lock_bh(&sk->callback_lock);
780 sock->fasync_list=fna;
781 write_unlock_bh(&sk->callback_lock);
783 else
785 if (fa!=NULL)
787 write_lock_bh(&sk->callback_lock);
788 *prev=fa->fa_next;
789 write_unlock_bh(&sk->callback_lock);
790 kfree(fa);
794 out:
795 release_sock(sock->sk);
796 return 0;
799 /* This function may be called only under socket lock or callback_lock */
801 int sock_wake_async(struct socket *sock, int how, int band)
803 if (!sock || !sock->fasync_list)
804 return -1;
805 switch (how)
807 case 1:
809 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
810 break;
811 goto call_kill;
812 case 2:
813 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
814 break;
815 /* fall through */
816 case 0:
817 call_kill:
818 __kill_fasync(sock->fasync_list, SIGIO, band);
819 break;
820 case 3:
821 __kill_fasync(sock->fasync_list, SIGURG, band);
823 return 0;
827 int sock_create(int family, int type, int protocol, struct socket **res)
829 int i;
830 struct socket *sock;
833 * Check protocol is in range
835 if (family < 0 || family >= NPROTO)
836 return -EAFNOSUPPORT;
837 if (type < 0 || type >= SOCK_MAX)
838 return -EINVAL;
840 /* Compatibility.
842 This uglymoron is moved from INET layer to here to avoid
843 deadlock in module load.
845 if (family == PF_INET && type == SOCK_PACKET) {
846 static int warned;
847 if (!warned) {
848 warned = 1;
849 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
851 family = PF_PACKET;
854 #if defined(CONFIG_KMOD) && defined(CONFIG_NET)
855 /* Attempt to load a protocol module if the find failed.
857 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
858 * requested real, full-featured networking support upon configuration.
859 * Otherwise module support will break!
861 if (net_families[family]==NULL)
863 char module_name[30];
864 sprintf(module_name,"net-pf-%d",family);
865 request_module(module_name);
867 #endif
869 net_family_read_lock();
870 if (net_families[family] == NULL) {
871 i = -EAFNOSUPPORT;
872 goto out;
876 * Allocate the socket and allow the family to set things up. if
877 * the protocol is 0, the family is instructed to select an appropriate
878 * default.
881 if (!(sock = sock_alloc()))
883 printk(KERN_WARNING "socket: no more sockets\n");
884 i = -ENFILE; /* Not exactly a match, but its the
885 closest posix thing */
886 goto out;
889 sock->type = type;
891 if ((i = net_families[family]->create(sock, protocol)) < 0)
893 sock_release(sock);
894 goto out;
897 *res = sock;
899 out:
900 net_family_read_unlock();
901 return i;
904 asmlinkage long sys_socket(int family, int type, int protocol)
906 int retval;
907 struct socket *sock;
909 retval = sock_create(family, type, protocol, &sock);
910 if (retval < 0)
911 goto out;
913 retval = sock_map_fd(sock);
914 if (retval < 0)
915 goto out_release;
917 out:
918 /* It may be already another descriptor 8) Not kernel problem. */
919 return retval;
921 out_release:
922 sock_release(sock);
923 return retval;
927 * Create a pair of connected sockets.
930 asmlinkage long sys_socketpair(int family, int type, int protocol, int usockvec[2])
932 struct socket *sock1, *sock2;
933 int fd1, fd2, err;
936 * Obtain the first socket and check if the underlying protocol
937 * supports the socketpair call.
940 err = sock_create(family, type, protocol, &sock1);
941 if (err < 0)
942 goto out;
944 err = sock_create(family, type, protocol, &sock2);
945 if (err < 0)
946 goto out_release_1;
948 err = sock1->ops->socketpair(sock1, sock2);
949 if (err < 0)
950 goto out_release_both;
952 fd1 = fd2 = -1;
954 err = sock_map_fd(sock1);
955 if (err < 0)
956 goto out_release_both;
957 fd1 = err;
959 err = sock_map_fd(sock2);
960 if (err < 0)
961 goto out_close_1;
962 fd2 = err;
964 /* fd1 and fd2 may be already another descriptors.
965 * Not kernel problem.
968 err = put_user(fd1, &usockvec[0]);
969 if (!err)
970 err = put_user(fd2, &usockvec[1]);
971 if (!err)
972 return 0;
974 sys_close(fd2);
975 sys_close(fd1);
976 return err;
978 out_close_1:
979 sock_release(sock2);
980 sys_close(fd1);
981 return err;
983 out_release_both:
984 sock_release(sock2);
985 out_release_1:
986 sock_release(sock1);
987 out:
988 return err;
993 * Bind a name to a socket. Nothing much to do here since it's
994 * the protocol's responsibility to handle the local address.
996 * We move the socket address to kernel space before we call
997 * the protocol layer (having also checked the address is ok).
1000 asmlinkage long sys_bind(int fd, struct sockaddr *umyaddr, int addrlen)
1002 struct socket *sock;
1003 char address[MAX_SOCK_ADDR];
1004 int err;
1006 if((sock = sockfd_lookup(fd,&err))!=NULL)
1008 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0)
1009 err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
1010 sockfd_put(sock);
1012 return err;
1017 * Perform a listen. Basically, we allow the protocol to do anything
1018 * necessary for a listen, and if that works, we mark the socket as
1019 * ready for listening.
1022 asmlinkage long sys_listen(int fd, int backlog)
1024 struct socket *sock;
1025 int err;
1027 if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1028 if ((unsigned) backlog > SOMAXCONN)
1029 backlog = SOMAXCONN;
1030 err=sock->ops->listen(sock, backlog);
1031 sockfd_put(sock);
1033 return err;
1038 * For accept, we attempt to create a new socket, set up the link
1039 * with the client, wake up the client, then return the new
1040 * connected fd. We collect the address of the connector in kernel
1041 * space and move it to user at the very end. This is unclean because
1042 * we open the socket then return an error.
1044 * 1003.1g adds the ability to recvmsg() to query connection pending
1045 * status to recvmsg. We need to add that support in a way thats
1046 * clean when we restucture accept also.
1049 asmlinkage long sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen)
1051 struct socket *sock, *newsock;
1052 int err, len;
1053 char address[MAX_SOCK_ADDR];
1055 sock = sockfd_lookup(fd, &err);
1056 if (!sock)
1057 goto out;
1059 err = -EMFILE;
1060 if (!(newsock = sock_alloc()))
1061 goto out_put;
1063 newsock->type = sock->type;
1064 newsock->ops = sock->ops;
1066 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1067 if (err < 0)
1068 goto out_release;
1070 if (upeer_sockaddr) {
1071 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1072 err = -ECONNABORTED;
1073 goto out_release;
1075 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1076 if (err < 0)
1077 goto out_release;
1080 /* File flags are not inherited via accept() unlike another OSes. */
1082 if ((err = sock_map_fd(newsock)) < 0)
1083 goto out_release;
1085 out_put:
1086 sockfd_put(sock);
1087 out:
1088 return err;
1090 out_release:
1091 sock_release(newsock);
1092 goto out_put;
1097 * Attempt to connect to a socket with the server address. The address
1098 * is in user space so we verify it is OK and move it to kernel space.
1100 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1101 * break bindings
1103 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1104 * other SEQPACKET protocols that take time to connect() as it doesn't
1105 * include the -EINPROGRESS status for such sockets.
1108 asmlinkage long sys_connect(int fd, struct sockaddr *uservaddr, int addrlen)
1110 struct socket *sock;
1111 char address[MAX_SOCK_ADDR];
1112 int err;
1114 sock = sockfd_lookup(fd, &err);
1115 if (!sock)
1116 goto out;
1117 err = move_addr_to_kernel(uservaddr, addrlen, address);
1118 if (err < 0)
1119 goto out_put;
1120 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1121 sock->file->f_flags);
1122 out_put:
1123 sockfd_put(sock);
1124 out:
1125 return err;
1129 * Get the local address ('name') of a socket object. Move the obtained
1130 * name to user space.
1133 asmlinkage long sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len)
1135 struct socket *sock;
1136 char address[MAX_SOCK_ADDR];
1137 int len, err;
1139 sock = sockfd_lookup(fd, &err);
1140 if (!sock)
1141 goto out;
1142 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1143 if (err)
1144 goto out_put;
1145 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1147 out_put:
1148 sockfd_put(sock);
1149 out:
1150 return err;
1154 * Get the remote address ('name') of a socket object. Move the obtained
1155 * name to user space.
1158 asmlinkage long sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len)
1160 struct socket *sock;
1161 char address[MAX_SOCK_ADDR];
1162 int len, err;
1164 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1166 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1167 if (!err)
1168 err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1169 sockfd_put(sock);
1171 return err;
1175 * Send a datagram to a given address. We move the address into kernel
1176 * space and check the user space data area is readable before invoking
1177 * the protocol.
1180 asmlinkage long sys_sendto(int fd, void * buff, size_t len, unsigned flags,
1181 struct sockaddr *addr, int addr_len)
1183 struct socket *sock;
1184 char address[MAX_SOCK_ADDR];
1185 int err;
1186 struct msghdr msg;
1187 struct iovec iov;
1189 sock = sockfd_lookup(fd, &err);
1190 if (!sock)
1191 goto out;
1192 iov.iov_base=buff;
1193 iov.iov_len=len;
1194 msg.msg_name=NULL;
1195 msg.msg_iov=&iov;
1196 msg.msg_iovlen=1;
1197 msg.msg_control=NULL;
1198 msg.msg_controllen=0;
1199 msg.msg_namelen=0;
1200 if(addr)
1202 err = move_addr_to_kernel(addr, addr_len, address);
1203 if (err < 0)
1204 goto out_put;
1205 msg.msg_name=address;
1206 msg.msg_namelen=addr_len;
1208 if (sock->file->f_flags & O_NONBLOCK)
1209 flags |= MSG_DONTWAIT;
1210 msg.msg_flags = flags;
1211 err = sock_sendmsg(sock, &msg, len);
1213 out_put:
1214 sockfd_put(sock);
1215 out:
1216 return err;
1220 * Send a datagram down a socket.
1223 asmlinkage long sys_send(int fd, void * buff, size_t len, unsigned flags)
1225 return sys_sendto(fd, buff, len, flags, NULL, 0);
1229 * Receive a frame from the socket and optionally record the address of the
1230 * sender. We verify the buffers are writable and if needed move the
1231 * sender address from kernel to user space.
1234 asmlinkage long sys_recvfrom(int fd, void * ubuf, size_t size, unsigned flags,
1235 struct sockaddr *addr, int *addr_len)
1237 struct socket *sock;
1238 struct iovec iov;
1239 struct msghdr msg;
1240 char address[MAX_SOCK_ADDR];
1241 int err,err2;
1243 sock = sockfd_lookup(fd, &err);
1244 if (!sock)
1245 goto out;
1247 msg.msg_control=NULL;
1248 msg.msg_controllen=0;
1249 msg.msg_iovlen=1;
1250 msg.msg_iov=&iov;
1251 iov.iov_len=size;
1252 iov.iov_base=ubuf;
1253 msg.msg_name=address;
1254 msg.msg_namelen=MAX_SOCK_ADDR;
1255 if (sock->file->f_flags & O_NONBLOCK)
1256 flags |= MSG_DONTWAIT;
1257 err=sock_recvmsg(sock, &msg, size, flags);
1259 if(err >= 0 && addr != NULL && msg.msg_namelen)
1261 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1262 if(err2<0)
1263 err=err2;
1265 sockfd_put(sock);
1266 out:
1267 return err;
1271 * Receive a datagram from a socket.
1274 asmlinkage long sys_recv(int fd, void * ubuf, size_t size, unsigned flags)
1276 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1280 * Set a socket option. Because we don't know the option lengths we have
1281 * to pass the user mode parameter for the protocols to sort out.
1284 asmlinkage long sys_setsockopt(int fd, int level, int optname, char *optval, int optlen)
1286 int err;
1287 struct socket *sock;
1289 if (optlen < 0)
1290 return -EINVAL;
1292 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1294 if (level == SOL_SOCKET)
1295 err=sock_setsockopt(sock,level,optname,optval,optlen);
1296 else
1297 err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1298 sockfd_put(sock);
1300 return err;
1304 * Get a socket option. Because we don't know the option lengths we have
1305 * to pass a user mode parameter for the protocols to sort out.
1308 asmlinkage long sys_getsockopt(int fd, int level, int optname, char *optval, int *optlen)
1310 int err;
1311 struct socket *sock;
1313 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1315 if (level == SOL_SOCKET)
1316 err=sock_getsockopt(sock,level,optname,optval,optlen);
1317 else
1318 err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1319 sockfd_put(sock);
1321 return err;
1326 * Shutdown a socket.
1329 asmlinkage long sys_shutdown(int fd, int how)
1331 int err;
1332 struct socket *sock;
1334 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1336 err=sock->ops->shutdown(sock, how);
1337 sockfd_put(sock);
1339 return err;
1343 * BSD sendmsg interface
1346 asmlinkage long sys_sendmsg(int fd, struct msghdr *msg, unsigned flags)
1348 struct socket *sock;
1349 char address[MAX_SOCK_ADDR];
1350 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1351 unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */
1352 unsigned char *ctl_buf = ctl;
1353 struct msghdr msg_sys;
1354 int err, ctl_len, iov_size, total_len;
1356 err = -EFAULT;
1357 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1358 goto out;
1360 sock = sockfd_lookup(fd, &err);
1361 if (!sock)
1362 goto out;
1364 /* do not move before msg_sys is valid */
1365 err = -EINVAL;
1366 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1367 goto out_put;
1369 /* Check whether to allocate the iovec area*/
1370 err = -ENOMEM;
1371 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1372 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1373 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1374 if (!iov)
1375 goto out_put;
1378 /* This will also move the address data into kernel space */
1379 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1380 if (err < 0)
1381 goto out_freeiov;
1382 total_len = err;
1384 err = -ENOBUFS;
1386 if (msg_sys.msg_controllen > INT_MAX)
1387 goto out_freeiov;
1388 ctl_len = msg_sys.msg_controllen;
1389 if (ctl_len)
1391 if (ctl_len > sizeof(ctl))
1393 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1394 if (ctl_buf == NULL)
1395 goto out_freeiov;
1397 err = -EFAULT;
1398 if (copy_from_user(ctl_buf, msg_sys.msg_control, ctl_len))
1399 goto out_freectl;
1400 msg_sys.msg_control = ctl_buf;
1402 msg_sys.msg_flags = flags;
1404 if (sock->file->f_flags & O_NONBLOCK)
1405 msg_sys.msg_flags |= MSG_DONTWAIT;
1406 err = sock_sendmsg(sock, &msg_sys, total_len);
1408 out_freectl:
1409 if (ctl_buf != ctl)
1410 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1411 out_freeiov:
1412 if (iov != iovstack)
1413 sock_kfree_s(sock->sk, iov, iov_size);
1414 out_put:
1415 sockfd_put(sock);
1416 out:
1417 return err;
1421 * BSD recvmsg interface
1424 asmlinkage long sys_recvmsg(int fd, struct msghdr *msg, unsigned int flags)
1426 struct socket *sock;
1427 struct iovec iovstack[UIO_FASTIOV];
1428 struct iovec *iov=iovstack;
1429 struct msghdr msg_sys;
1430 unsigned long cmsg_ptr;
1431 int err, iov_size, total_len, len;
1433 /* kernel mode address */
1434 char addr[MAX_SOCK_ADDR];
1436 /* user mode address pointers */
1437 struct sockaddr *uaddr;
1438 int *uaddr_len;
1440 err=-EFAULT;
1441 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1442 goto out;
1444 sock = sockfd_lookup(fd, &err);
1445 if (!sock)
1446 goto out;
1448 err = -EINVAL;
1449 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1450 goto out_put;
1452 /* Check whether to allocate the iovec area*/
1453 err = -ENOMEM;
1454 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1455 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1456 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1457 if (!iov)
1458 goto out_put;
1462 * Save the user-mode address (verify_iovec will change the
1463 * kernel msghdr to use the kernel address space)
1466 uaddr = msg_sys.msg_name;
1467 uaddr_len = &msg->msg_namelen;
1468 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1469 if (err < 0)
1470 goto out_freeiov;
1471 total_len=err;
1473 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1474 msg_sys.msg_flags = 0;
1476 if (sock->file->f_flags & O_NONBLOCK)
1477 flags |= MSG_DONTWAIT;
1478 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1479 if (err < 0)
1480 goto out_freeiov;
1481 len = err;
1483 if (uaddr != NULL && msg_sys.msg_namelen) {
1484 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1485 if (err < 0)
1486 goto out_freeiov;
1488 err = __put_user(msg_sys.msg_flags, &msg->msg_flags);
1489 if (err)
1490 goto out_freeiov;
1491 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1492 &msg->msg_controllen);
1493 if (err)
1494 goto out_freeiov;
1495 err = len;
1497 out_freeiov:
1498 if (iov != iovstack)
1499 sock_kfree_s(sock->sk, iov, iov_size);
1500 out_put:
1501 sockfd_put(sock);
1502 out:
1503 return err;
1508 * Perform a file control on a socket file descriptor.
1510 * Doesn't acquire a fd lock, because no network fcntl
1511 * function sleeps currently.
1514 int sock_fcntl(struct file *filp, unsigned int cmd, unsigned long arg)
1516 struct socket *sock;
1518 sock = socki_lookup (filp->f_dentry->d_inode);
1519 if (sock && sock->ops)
1520 return sock_no_fcntl(sock, cmd, arg);
1521 return(-EINVAL);
1524 /* Argument list sizes for sys_socketcall */
1525 #define AL(x) ((x) * sizeof(unsigned long))
1526 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1527 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1528 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1529 #undef AL
1532 * System call vectors.
1534 * Argument checking cleaned up. Saved 20% in size.
1535 * This function doesn't need to set the kernel lock because
1536 * it is set by the callees.
1539 asmlinkage long sys_socketcall(int call, unsigned long *args)
1541 unsigned long a[6];
1542 unsigned long a0,a1;
1543 int err;
1545 if(call<1||call>SYS_RECVMSG)
1546 return -EINVAL;
1548 /* copy_from_user should be SMP safe. */
1549 if (copy_from_user(a, args, nargs[call]))
1550 return -EFAULT;
1552 a0=a[0];
1553 a1=a[1];
1555 switch(call)
1557 case SYS_SOCKET:
1558 err = sys_socket(a0,a1,a[2]);
1559 break;
1560 case SYS_BIND:
1561 err = sys_bind(a0,(struct sockaddr *)a1, a[2]);
1562 break;
1563 case SYS_CONNECT:
1564 err = sys_connect(a0, (struct sockaddr *)a1, a[2]);
1565 break;
1566 case SYS_LISTEN:
1567 err = sys_listen(a0,a1);
1568 break;
1569 case SYS_ACCEPT:
1570 err = sys_accept(a0,(struct sockaddr *)a1, (int *)a[2]);
1571 break;
1572 case SYS_GETSOCKNAME:
1573 err = sys_getsockname(a0,(struct sockaddr *)a1, (int *)a[2]);
1574 break;
1575 case SYS_GETPEERNAME:
1576 err = sys_getpeername(a0, (struct sockaddr *)a1, (int *)a[2]);
1577 break;
1578 case SYS_SOCKETPAIR:
1579 err = sys_socketpair(a0,a1, a[2], (int *)a[3]);
1580 break;
1581 case SYS_SEND:
1582 err = sys_send(a0, (void *)a1, a[2], a[3]);
1583 break;
1584 case SYS_SENDTO:
1585 err = sys_sendto(a0,(void *)a1, a[2], a[3],
1586 (struct sockaddr *)a[4], a[5]);
1587 break;
1588 case SYS_RECV:
1589 err = sys_recv(a0, (void *)a1, a[2], a[3]);
1590 break;
1591 case SYS_RECVFROM:
1592 err = sys_recvfrom(a0, (void *)a1, a[2], a[3],
1593 (struct sockaddr *)a[4], (int *)a[5]);
1594 break;
1595 case SYS_SHUTDOWN:
1596 err = sys_shutdown(a0,a1);
1597 break;
1598 case SYS_SETSOCKOPT:
1599 err = sys_setsockopt(a0, a1, a[2], (char *)a[3], a[4]);
1600 break;
1601 case SYS_GETSOCKOPT:
1602 err = sys_getsockopt(a0, a1, a[2], (char *)a[3], (int *)a[4]);
1603 break;
1604 case SYS_SENDMSG:
1605 err = sys_sendmsg(a0, (struct msghdr *) a1, a[2]);
1606 break;
1607 case SYS_RECVMSG:
1608 err = sys_recvmsg(a0, (struct msghdr *) a1, a[2]);
1609 break;
1610 default:
1611 err = -EINVAL;
1612 break;
1614 return err;
1618 * This function is called by a protocol handler that wants to
1619 * advertise its address family, and have it linked into the
1620 * SOCKET module.
1623 int sock_register(struct net_proto_family *ops)
1625 int err;
1627 if (ops->family >= NPROTO) {
1628 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
1629 return -ENOBUFS;
1631 net_family_write_lock();
1632 err = -EEXIST;
1633 if (net_families[ops->family] == NULL) {
1634 net_families[ops->family]=ops;
1635 err = 0;
1637 net_family_write_unlock();
1638 return err;
1642 * This function is called by a protocol handler that wants to
1643 * remove its address family, and have it unlinked from the
1644 * SOCKET module.
1647 int sock_unregister(int family)
1649 if (family < 0 || family >= NPROTO)
1650 return -1;
1652 net_family_write_lock();
1653 net_families[family]=NULL;
1654 net_family_write_unlock();
1655 return 0;
1659 extern void sk_init(void);
1661 #ifdef CONFIG_WAN_ROUTER
1662 extern void wanrouter_init(void);
1663 #endif
1665 #ifdef CONFIG_BLUEZ
1666 extern void bluez_init(void);
1667 #endif
1669 void __init sock_init(void)
1671 int i;
1673 printk(KERN_INFO "Linux NET4.0 for Linux 2.4\n");
1674 printk(KERN_INFO "Based upon Swansea University Computer Society NET3.039\n");
1677 * Initialize all address (protocol) families.
1680 for (i = 0; i < NPROTO; i++)
1681 net_families[i] = NULL;
1684 * Initialize sock SLAB cache.
1687 sk_init();
1689 #ifdef SLAB_SKB
1691 * Initialize skbuff SLAB cache
1693 skb_init();
1694 #endif
1697 * Wan router layer.
1700 #ifdef CONFIG_WAN_ROUTER
1701 wanrouter_init();
1702 #endif
1705 * Initialize the protocols module.
1708 register_filesystem(&sock_fs_type);
1709 sock_mnt = kern_mount(&sock_fs_type);
1710 /* The real protocol initialization is performed when
1711 * do_initcalls is run.
1716 * The netlink device handler may be needed early.
1719 #ifdef CONFIG_NET
1720 rtnetlink_init();
1721 #endif
1722 #ifdef CONFIG_NETLINK_DEV
1723 init_netlink();
1724 #endif
1725 #ifdef CONFIG_NETFILTER
1726 netfilter_init();
1727 #endif
1729 #ifdef CONFIG_BLUEZ
1730 bluez_init();
1731 #endif
1734 int socket_get_info(char *buffer, char **start, off_t offset, int length)
1736 int len, cpu;
1737 int counter = 0;
1739 for (cpu=0; cpu<smp_num_cpus; cpu++)
1740 counter += sockets_in_use[cpu_logical_map(cpu)].counter;
1742 /* It can be negative, by the way. 8) */
1743 if (counter < 0)
1744 counter = 0;
1746 len = sprintf(buffer, "sockets: used %d\n", counter);
1747 if (offset >= len)
1749 *start = buffer;
1750 return 0;
1752 *start = buffer + offset;
1753 len -= offset;
1754 if (len > length)
1755 len = length;
1756 if (len < 0)
1757 len = 0;
1758 return len;