Original kernel 2.4.37.5
[tomato.git] / release / src / linux / linux / drivers / net / sunqe.c
blob8734e7afd4d0f2a021e4a250b5e263d0f2774b9f
1 /* $Id: sunqe.c,v 1.52.2.1 2001/12/21 00:52:47 davem Exp $
2 * sunqe.c: Sparc QuadEthernet 10baseT SBUS card driver.
3 * Once again I am out to prove that every ethernet
4 * controller out there can be most efficiently programmed
5 * if you make it look like a LANCE.
7 * Copyright (C) 1996, 1999 David S. Miller (davem@redhat.com)
8 */
10 static char version[] =
11 "sunqe.c:v2.9 9/11/99 David S. Miller (davem@redhat.com)\n";
13 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/types.h>
18 #include <linux/fcntl.h>
19 #include <linux/interrupt.h>
20 #include <linux/ptrace.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/crc32.h>
29 #include <asm/system.h>
30 #include <asm/bitops.h>
31 #include <asm/io.h>
32 #include <asm/dma.h>
33 #include <linux/errno.h>
34 #include <asm/byteorder.h>
36 #include <asm/idprom.h>
37 #include <asm/sbus.h>
38 #include <asm/openprom.h>
39 #include <asm/oplib.h>
40 #include <asm/auxio.h>
41 #include <asm/pgtable.h>
42 #include <asm/irq.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <linux/skbuff.h>
48 #include "sunqe.h"
50 static struct sunqec *root_qec_dev;
52 static void qe_set_multicast(struct net_device *dev);
54 #define QEC_RESET_TRIES 200
56 static inline int qec_global_reset(unsigned long gregs)
58 int tries = QEC_RESET_TRIES;
60 sbus_writel(GLOB_CTRL_RESET, gregs + GLOB_CTRL);
61 while (--tries) {
62 u32 tmp = sbus_readl(gregs + GLOB_CTRL);
63 if (tmp & GLOB_CTRL_RESET) {
64 udelay(20);
65 continue;
67 break;
69 if (tries)
70 return 0;
71 printk(KERN_ERR "QuadEther: AIEEE cannot reset the QEC!\n");
72 return -1;
75 #define MACE_RESET_RETRIES 200
76 #define QE_RESET_RETRIES 200
78 static inline int qe_stop(struct sunqe *qep)
80 unsigned long cregs = qep->qcregs;
81 unsigned long mregs = qep->mregs;
82 int tries;
84 /* Reset the MACE, then the QEC channel. */
85 sbus_writeb(MREGS_BCONFIG_RESET, mregs + MREGS_BCONFIG);
86 tries = MACE_RESET_RETRIES;
87 while (--tries) {
88 u8 tmp = sbus_readb(mregs + MREGS_BCONFIG);
89 if (tmp & MREGS_BCONFIG_RESET) {
90 udelay(20);
91 continue;
93 break;
95 if (!tries) {
96 printk(KERN_ERR "QuadEther: AIEEE cannot reset the MACE!\n");
97 return -1;
100 sbus_writel(CREG_CTRL_RESET, cregs + CREG_CTRL);
101 tries = QE_RESET_RETRIES;
102 while (--tries) {
103 u32 tmp = sbus_readl(cregs + CREG_CTRL);
104 if (tmp & CREG_CTRL_RESET) {
105 udelay(20);
106 continue;
108 break;
110 if (!tries) {
111 printk(KERN_ERR "QuadEther: Cannot reset QE channel!\n");
112 return -1;
114 return 0;
117 static void qe_init_rings(struct sunqe *qep)
119 struct qe_init_block *qb = qep->qe_block;
120 struct sunqe_buffers *qbufs = qep->buffers;
121 __u32 qbufs_dvma = qep->buffers_dvma;
122 int i;
124 qep->rx_new = qep->rx_old = qep->tx_new = qep->tx_old = 0;
125 memset(qb, 0, sizeof(struct qe_init_block));
126 memset(qbufs, 0, sizeof(struct sunqe_buffers));
127 for (i = 0; i < RX_RING_SIZE; i++) {
128 qb->qe_rxd[i].rx_addr = qbufs_dvma + qebuf_offset(rx_buf, i);
129 qb->qe_rxd[i].rx_flags =
130 (RXD_OWN | ((RXD_PKT_SZ) & RXD_LENGTH));
134 static int qe_init(struct sunqe *qep, int from_irq)
136 struct sunqec *qecp = qep->parent;
137 unsigned long cregs = qep->qcregs;
138 unsigned long mregs = qep->mregs;
139 unsigned long gregs = qecp->gregs;
140 unsigned char *e = &qep->dev->dev_addr[0];
141 u32 tmp;
142 int i;
144 /* Shut it up. */
145 if (qe_stop(qep))
146 return -EAGAIN;
148 /* Setup initial rx/tx init block pointers. */
149 sbus_writel(qep->qblock_dvma + qib_offset(qe_rxd, 0), cregs + CREG_RXDS);
150 sbus_writel(qep->qblock_dvma + qib_offset(qe_txd, 0), cregs + CREG_TXDS);
152 /* Enable/mask the various irq's. */
153 sbus_writel(0, cregs + CREG_RIMASK);
154 sbus_writel(1, cregs + CREG_TIMASK);
156 sbus_writel(0, cregs + CREG_QMASK);
157 sbus_writel(CREG_MMASK_RXCOLL, cregs + CREG_MMASK);
159 /* Setup the FIFO pointers into QEC local memory. */
160 tmp = qep->channel * sbus_readl(gregs + GLOB_MSIZE);
161 sbus_writel(tmp, cregs + CREG_RXRBUFPTR);
162 sbus_writel(tmp, cregs + CREG_RXWBUFPTR);
164 tmp = sbus_readl(cregs + CREG_RXRBUFPTR) +
165 sbus_readl(gregs + GLOB_RSIZE);
166 sbus_writel(tmp, cregs + CREG_TXRBUFPTR);
167 sbus_writel(tmp, cregs + CREG_TXWBUFPTR);
169 /* Clear the channel collision counter. */
170 sbus_writel(0, cregs + CREG_CCNT);
172 /* For 10baseT, inter frame space nor throttle seems to be necessary. */
173 sbus_writel(0, cregs + CREG_PIPG);
175 /* Now dork with the AMD MACE. */
176 sbus_writeb(MREGS_PHYCONFIG_AUTO, mregs + MREGS_PHYCONFIG);
177 sbus_writeb(MREGS_TXFCNTL_AUTOPAD, mregs + MREGS_TXFCNTL);
178 sbus_writeb(0, mregs + MREGS_RXFCNTL);
180 /* The QEC dma's the rx'd packets from local memory out to main memory,
181 * and therefore it interrupts when the packet reception is "complete".
182 * So don't listen for the MACE talking about it.
184 sbus_writeb(MREGS_IMASK_COLL | MREGS_IMASK_RXIRQ, mregs + MREGS_IMASK);
185 sbus_writeb(MREGS_BCONFIG_BSWAP | MREGS_BCONFIG_64TS, mregs + MREGS_BCONFIG);
186 sbus_writeb((MREGS_FCONFIG_TXF16 | MREGS_FCONFIG_RXF32 |
187 MREGS_FCONFIG_RFWU | MREGS_FCONFIG_TFWU),
188 mregs + MREGS_FCONFIG);
190 /* Only usable interface on QuadEther is twisted pair. */
191 sbus_writeb(MREGS_PLSCONFIG_TP, mregs + MREGS_PLSCONFIG);
193 /* Tell MACE we are changing the ether address. */
194 sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_PARESET,
195 mregs + MREGS_IACONFIG);
196 while ((sbus_readb(mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
197 barrier();
198 sbus_writeb(e[0], mregs + MREGS_ETHADDR);
199 sbus_writeb(e[1], mregs + MREGS_ETHADDR);
200 sbus_writeb(e[2], mregs + MREGS_ETHADDR);
201 sbus_writeb(e[3], mregs + MREGS_ETHADDR);
202 sbus_writeb(e[4], mregs + MREGS_ETHADDR);
203 sbus_writeb(e[5], mregs + MREGS_ETHADDR);
205 /* Clear out the address filter. */
206 sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
207 mregs + MREGS_IACONFIG);
208 while ((sbus_readb(mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
209 barrier();
210 for (i = 0; i < 8; i++)
211 sbus_writeb(0, mregs + MREGS_FILTER);
213 /* Address changes are now complete. */
214 sbus_writeb(0, mregs + MREGS_IACONFIG);
216 qe_init_rings(qep);
218 /* Wait a little bit for the link to come up... */
219 mdelay(5);
220 if (!(sbus_readb(mregs + MREGS_PHYCONFIG) & MREGS_PHYCONFIG_LTESTDIS)) {
221 int tries = 50;
223 while (tries--) {
224 u8 tmp;
226 mdelay(5);
227 barrier();
228 tmp = sbus_readb(mregs + MREGS_PHYCONFIG);
229 if ((tmp & MREGS_PHYCONFIG_LSTAT) != 0)
230 break;
232 if (tries == 0)
233 printk(KERN_NOTICE "%s: Warning, link state is down.\n", qep->dev->name);
236 /* Missed packet counter is cleared on a read. */
237 sbus_readb(mregs + MREGS_MPCNT);
239 /* Reload multicast information, this will enable the receiver
240 * and transmitter.
242 qe_set_multicast(qep->dev);
244 /* QEC should now start to show interrupts. */
245 return 0;
248 /* Grrr, certain error conditions completely lock up the AMD MACE,
249 * so when we get these we _must_ reset the chip.
251 static int qe_is_bolixed(struct sunqe *qep, u32 qe_status)
253 struct net_device *dev = qep->dev;
254 int mace_hwbug_workaround = 0;
256 if (qe_status & CREG_STAT_EDEFER) {
257 printk(KERN_ERR "%s: Excessive transmit defers.\n", dev->name);
258 qep->net_stats.tx_errors++;
261 if (qe_status & CREG_STAT_CLOSS) {
262 printk(KERN_ERR "%s: Carrier lost, link down?\n", dev->name);
263 qep->net_stats.tx_errors++;
264 qep->net_stats.tx_carrier_errors++;
267 if (qe_status & CREG_STAT_ERETRIES) {
268 printk(KERN_ERR "%s: Excessive transmit retries (more than 16).\n", dev->name);
269 qep->net_stats.tx_errors++;
270 mace_hwbug_workaround = 1;
273 if (qe_status & CREG_STAT_LCOLL) {
274 printk(KERN_ERR "%s: Late transmit collision.\n", dev->name);
275 qep->net_stats.tx_errors++;
276 qep->net_stats.collisions++;
277 mace_hwbug_workaround = 1;
280 if (qe_status & CREG_STAT_FUFLOW) {
281 printk(KERN_ERR "%s: Transmit fifo underflow, driver bug.\n", dev->name);
282 qep->net_stats.tx_errors++;
283 mace_hwbug_workaround = 1;
286 if (qe_status & CREG_STAT_JERROR) {
287 printk(KERN_ERR "%s: Jabber error.\n", dev->name);
290 if (qe_status & CREG_STAT_BERROR) {
291 printk(KERN_ERR "%s: Babble error.\n", dev->name);
294 if (qe_status & CREG_STAT_CCOFLOW) {
295 qep->net_stats.tx_errors += 256;
296 qep->net_stats.collisions += 256;
299 if (qe_status & CREG_STAT_TXDERROR) {
300 printk(KERN_ERR "%s: Transmit descriptor is bogus, driver bug.\n", dev->name);
301 qep->net_stats.tx_errors++;
302 qep->net_stats.tx_aborted_errors++;
303 mace_hwbug_workaround = 1;
306 if (qe_status & CREG_STAT_TXLERR) {
307 printk(KERN_ERR "%s: Transmit late error.\n", dev->name);
308 qep->net_stats.tx_errors++;
309 mace_hwbug_workaround = 1;
312 if (qe_status & CREG_STAT_TXPERR) {
313 printk(KERN_ERR "%s: Transmit DMA parity error.\n", dev->name);
314 qep->net_stats.tx_errors++;
315 qep->net_stats.tx_aborted_errors++;
316 mace_hwbug_workaround = 1;
319 if (qe_status & CREG_STAT_TXSERR) {
320 printk(KERN_ERR "%s: Transmit DMA sbus error ack.\n", dev->name);
321 qep->net_stats.tx_errors++;
322 qep->net_stats.tx_aborted_errors++;
323 mace_hwbug_workaround = 1;
326 if (qe_status & CREG_STAT_RCCOFLOW) {
327 qep->net_stats.rx_errors += 256;
328 qep->net_stats.collisions += 256;
331 if (qe_status & CREG_STAT_RUOFLOW) {
332 qep->net_stats.rx_errors += 256;
333 qep->net_stats.rx_over_errors += 256;
336 if (qe_status & CREG_STAT_MCOFLOW) {
337 qep->net_stats.rx_errors += 256;
338 qep->net_stats.rx_missed_errors += 256;
341 if (qe_status & CREG_STAT_RXFOFLOW) {
342 printk(KERN_ERR "%s: Receive fifo overflow.\n", dev->name);
343 qep->net_stats.rx_errors++;
344 qep->net_stats.rx_over_errors++;
347 if (qe_status & CREG_STAT_RLCOLL) {
348 printk(KERN_ERR "%s: Late receive collision.\n", dev->name);
349 qep->net_stats.rx_errors++;
350 qep->net_stats.collisions++;
353 if (qe_status & CREG_STAT_FCOFLOW) {
354 qep->net_stats.rx_errors += 256;
355 qep->net_stats.rx_frame_errors += 256;
358 if (qe_status & CREG_STAT_CECOFLOW) {
359 qep->net_stats.rx_errors += 256;
360 qep->net_stats.rx_crc_errors += 256;
363 if (qe_status & CREG_STAT_RXDROP) {
364 printk(KERN_ERR "%s: Receive packet dropped.\n", dev->name);
365 qep->net_stats.rx_errors++;
366 qep->net_stats.rx_dropped++;
367 qep->net_stats.rx_missed_errors++;
370 if (qe_status & CREG_STAT_RXSMALL) {
371 printk(KERN_ERR "%s: Receive buffer too small, driver bug.\n", dev->name);
372 qep->net_stats.rx_errors++;
373 qep->net_stats.rx_length_errors++;
376 if (qe_status & CREG_STAT_RXLERR) {
377 printk(KERN_ERR "%s: Receive late error.\n", dev->name);
378 qep->net_stats.rx_errors++;
379 mace_hwbug_workaround = 1;
382 if (qe_status & CREG_STAT_RXPERR) {
383 printk(KERN_ERR "%s: Receive DMA parity error.\n", dev->name);
384 qep->net_stats.rx_errors++;
385 qep->net_stats.rx_missed_errors++;
386 mace_hwbug_workaround = 1;
389 if (qe_status & CREG_STAT_RXSERR) {
390 printk(KERN_ERR "%s: Receive DMA sbus error ack.\n", dev->name);
391 qep->net_stats.rx_errors++;
392 qep->net_stats.rx_missed_errors++;
393 mace_hwbug_workaround = 1;
396 if (mace_hwbug_workaround)
397 qe_init(qep, 1);
398 return mace_hwbug_workaround;
401 /* Per-QE receive interrupt service routine. Just like on the happy meal
402 * we receive directly into skb's with a small packet copy water mark.
404 static void qe_rx(struct sunqe *qep)
406 struct qe_rxd *rxbase = &qep->qe_block->qe_rxd[0];
407 struct qe_rxd *this;
408 struct sunqe_buffers *qbufs = qep->buffers;
409 __u32 qbufs_dvma = qep->buffers_dvma;
410 int elem = qep->rx_new, drops = 0;
411 u32 flags;
413 this = &rxbase[elem];
414 while (!((flags = this->rx_flags) & RXD_OWN)) {
415 struct sk_buff *skb;
416 unsigned char *this_qbuf =
417 &qbufs->rx_buf[elem & (RX_RING_SIZE - 1)][0];
418 __u32 this_qbuf_dvma = qbufs_dvma +
419 qebuf_offset(rx_buf, (elem & (RX_RING_SIZE - 1)));
420 struct qe_rxd *end_rxd =
421 &rxbase[(elem+RX_RING_SIZE)&(RX_RING_MAXSIZE-1)];
422 int len = (flags & RXD_LENGTH) - 4; /* QE adds ether FCS size to len */
424 /* Check for errors. */
425 if (len < ETH_ZLEN) {
426 qep->net_stats.rx_errors++;
427 qep->net_stats.rx_length_errors++;
428 qep->net_stats.rx_dropped++;
429 } else {
430 skb = dev_alloc_skb(len + 2);
431 if (skb == NULL) {
432 drops++;
433 qep->net_stats.rx_dropped++;
434 } else {
435 skb->dev = qep->dev;
436 skb_reserve(skb, 2);
437 skb_put(skb, len);
438 eth_copy_and_sum(skb, (unsigned char *) this_qbuf,
439 len, 0);
440 skb->protocol = eth_type_trans(skb, qep->dev);
441 netif_rx(skb);
442 qep->dev->last_rx = jiffies;
443 qep->net_stats.rx_packets++;
444 qep->net_stats.rx_bytes += len;
447 end_rxd->rx_addr = this_qbuf_dvma;
448 end_rxd->rx_flags = (RXD_OWN | ((RXD_PKT_SZ) & RXD_LENGTH));
450 elem = NEXT_RX(elem);
451 this = &rxbase[elem];
453 qep->rx_new = elem;
454 if (drops)
455 printk(KERN_NOTICE "%s: Memory squeeze, deferring packet.\n", qep->dev->name);
458 static void qe_tx_reclaim(struct sunqe *qep);
460 /* Interrupts for all QE's get filtered out via the QEC master controller,
461 * so we just run through each qe and check to see who is signaling
462 * and thus needs to be serviced.
464 static void qec_interrupt(int irq, void *dev_id, struct pt_regs *regs)
466 struct sunqec *qecp = (struct sunqec *) dev_id;
467 u32 qec_status;
468 int channel = 0;
470 /* Latch the status now. */
471 qec_status = sbus_readl(qecp->gregs + GLOB_STAT);
472 while (channel < 4) {
473 if (qec_status & 0xf) {
474 struct sunqe *qep = qecp->qes[channel];
475 u32 qe_status;
477 qe_status = sbus_readl(qep->qcregs + CREG_STAT);
478 if (qe_status & CREG_STAT_ERRORS) {
479 if (qe_is_bolixed(qep, qe_status))
480 goto next;
482 if (qe_status & CREG_STAT_RXIRQ)
483 qe_rx(qep);
484 if (netif_queue_stopped(qep->dev) &&
485 (qe_status & CREG_STAT_TXIRQ)) {
486 spin_lock(&qep->lock);
487 qe_tx_reclaim(qep);
488 if (TX_BUFFS_AVAIL(qep) > 0) {
489 /* Wake net queue and return to
490 * lazy tx reclaim.
492 netif_wake_queue(qep->dev);
493 sbus_writel(1, qep->qcregs + CREG_TIMASK);
495 spin_unlock(&qep->lock);
497 next:
500 qec_status >>= 4;
501 channel++;
505 static int qe_open(struct net_device *dev)
507 struct sunqe *qep = (struct sunqe *) dev->priv;
509 qep->mconfig = (MREGS_MCONFIG_TXENAB |
510 MREGS_MCONFIG_RXENAB |
511 MREGS_MCONFIG_MBAENAB);
512 return qe_init(qep, 0);
515 static int qe_close(struct net_device *dev)
517 struct sunqe *qep = (struct sunqe *) dev->priv;
519 qe_stop(qep);
520 return 0;
523 /* Reclaim TX'd frames from the ring. This must always run under
524 * the IRQ protected qep->lock.
526 static void qe_tx_reclaim(struct sunqe *qep)
528 struct qe_txd *txbase = &qep->qe_block->qe_txd[0];
529 int elem = qep->tx_old;
531 while (elem != qep->tx_new) {
532 u32 flags = txbase[elem].tx_flags;
534 if (flags & TXD_OWN)
535 break;
536 elem = NEXT_TX(elem);
538 qep->tx_old = elem;
541 static void qe_tx_timeout(struct net_device *dev)
543 struct sunqe *qep = (struct sunqe *) dev->priv;
544 int tx_full;
546 spin_lock_irq(&qep->lock);
548 /* Try to reclaim, if that frees up some tx
549 * entries, we're fine.
551 qe_tx_reclaim(qep);
552 tx_full = TX_BUFFS_AVAIL(qep) <= 0;
554 spin_unlock_irq(&qep->lock);
556 if (! tx_full)
557 goto out;
559 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
560 qe_init(qep, 1);
562 out:
563 netif_wake_queue(dev);
566 /* Get a packet queued to go onto the wire. */
567 static int qe_start_xmit(struct sk_buff *skb, struct net_device *dev)
569 struct sunqe *qep = (struct sunqe *) dev->priv;
570 struct sunqe_buffers *qbufs = qep->buffers;
571 __u32 txbuf_dvma, qbufs_dvma = qep->buffers_dvma;
572 unsigned char *txbuf;
573 int len, entry;
575 spin_lock_irq(&qep->lock);
577 qe_tx_reclaim(qep);
579 len = skb->len;
580 entry = qep->tx_new;
582 txbuf = &qbufs->tx_buf[entry & (TX_RING_SIZE - 1)][0];
583 txbuf_dvma = qbufs_dvma +
584 qebuf_offset(tx_buf, (entry & (TX_RING_SIZE - 1)));
586 /* Avoid a race... */
587 qep->qe_block->qe_txd[entry].tx_flags = TXD_UPDATE;
589 memcpy(txbuf, skb->data, len);
591 qep->qe_block->qe_txd[entry].tx_addr = txbuf_dvma;
592 qep->qe_block->qe_txd[entry].tx_flags =
593 (TXD_OWN | TXD_SOP | TXD_EOP | (len & TXD_LENGTH));
594 qep->tx_new = NEXT_TX(entry);
596 /* Get it going. */
597 dev->trans_start = jiffies;
598 sbus_writel(CREG_CTRL_TWAKEUP, qep->qcregs + CREG_CTRL);
600 qep->net_stats.tx_packets++;
601 qep->net_stats.tx_bytes += len;
603 if (TX_BUFFS_AVAIL(qep) <= 0) {
604 /* Halt the net queue and enable tx interrupts.
605 * When the tx queue empties the tx irq handler
606 * will wake up the queue and return us back to
607 * the lazy tx reclaim scheme.
609 netif_stop_queue(dev);
610 sbus_writel(0, qep->qcregs + CREG_TIMASK);
612 spin_unlock_irq(&qep->lock);
614 dev_kfree_skb(skb);
616 return 0;
619 static struct net_device_stats *qe_get_stats(struct net_device *dev)
621 struct sunqe *qep = (struct sunqe *) dev->priv;
623 return &qep->net_stats;
626 static void qe_set_multicast(struct net_device *dev)
628 struct sunqe *qep = (struct sunqe *) dev->priv;
629 struct dev_mc_list *dmi = dev->mc_list;
630 u8 new_mconfig = qep->mconfig;
631 char *addrs;
632 int i;
633 u32 crc;
635 /* Lock out others. */
636 netif_stop_queue(dev);
638 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
639 sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
640 qep->mregs + MREGS_IACONFIG);
641 while ((sbus_readb(qep->mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
642 barrier();
643 for (i = 0; i < 8; i++)
644 sbus_writeb(0xff, qep->mregs + MREGS_FILTER);
645 sbus_writeb(0, qep->mregs + MREGS_IACONFIG);
646 } else if (dev->flags & IFF_PROMISC) {
647 new_mconfig |= MREGS_MCONFIG_PROMISC;
648 } else {
649 u16 hash_table[4];
650 u8 *hbytes = (unsigned char *) &hash_table[0];
652 for (i = 0; i < 4; i++)
653 hash_table[i] = 0;
655 for (i = 0; i < dev->mc_count; i++) {
656 addrs = dmi->dmi_addr;
657 dmi = dmi->next;
659 if (!(*addrs & 1))
660 continue;
661 crc = ether_crc_le(6, addrs);
662 crc >>= 26;
663 hash_table[crc >> 4] |= 1 << (crc & 0xf);
665 /* Program the qe with the new filter value. */
666 sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
667 qep->mregs + MREGS_IACONFIG);
668 while ((sbus_readb(qep->mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
669 barrier();
670 for (i = 0; i < 8; i++) {
671 u8 tmp = *hbytes++;
672 sbus_writeb(tmp, qep->mregs + MREGS_FILTER);
674 sbus_writeb(0, qep->mregs + MREGS_IACONFIG);
677 /* Any change of the logical address filter, the physical address,
678 * or enabling/disabling promiscuous mode causes the MACE to disable
679 * the receiver. So we must re-enable them here or else the MACE
680 * refuses to listen to anything on the network. Sheesh, took
681 * me a day or two to find this bug.
683 qep->mconfig = new_mconfig;
684 sbus_writeb(qep->mconfig, qep->mregs + MREGS_MCONFIG);
686 /* Let us get going again. */
687 netif_wake_queue(dev);
690 /* This is only called once at boot time for each card probed. */
691 static inline void qec_init_once(struct sunqec *qecp, struct sbus_dev *qsdev)
693 u8 bsizes = qecp->qec_bursts;
695 if (sbus_can_burst64(qsdev) && (bsizes & DMA_BURST64)) {
696 sbus_writel(GLOB_CTRL_B64, qecp->gregs + GLOB_CTRL);
697 } else if (bsizes & DMA_BURST32) {
698 sbus_writel(GLOB_CTRL_B32, qecp->gregs + GLOB_CTRL);
699 } else {
700 sbus_writel(GLOB_CTRL_B16, qecp->gregs + GLOB_CTRL);
703 /* Packetsize only used in 100baseT BigMAC configurations,
704 * set it to zero just to be on the safe side.
706 sbus_writel(GLOB_PSIZE_2048, qecp->gregs + GLOB_PSIZE);
708 /* Set the local memsize register, divided up to one piece per QE channel. */
709 sbus_writel((qsdev->reg_addrs[1].reg_size >> 2),
710 qecp->gregs + GLOB_MSIZE);
712 /* Divide up the local QEC memory amongst the 4 QE receiver and
713 * transmitter FIFOs. Basically it is (total / 2 / num_channels).
715 sbus_writel((qsdev->reg_addrs[1].reg_size >> 2) >> 1,
716 qecp->gregs + GLOB_TSIZE);
717 sbus_writel((qsdev->reg_addrs[1].reg_size >> 2) >> 1,
718 qecp->gregs + GLOB_RSIZE);
721 /* Four QE's per QEC card. */
722 static int __init qec_ether_init(struct net_device *dev, struct sbus_dev *sdev)
724 static unsigned version_printed;
725 struct net_device *qe_devs[4];
726 struct sunqe *qeps[4];
727 struct sbus_dev *qesdevs[4];
728 struct sunqec *qecp = NULL;
729 u8 bsizes, bsizes_more;
730 int i, j, res = ENOMEM;
732 dev = init_etherdev(0, sizeof(struct sunqe));
733 qe_devs[0] = dev;
734 qeps[0] = (struct sunqe *) dev->priv;
735 qeps[0]->channel = 0;
736 spin_lock_init(&qeps[0]->lock);
737 for (j = 0; j < 6; j++)
738 qe_devs[0]->dev_addr[j] = idprom->id_ethaddr[j];
740 if (version_printed++ == 0)
741 printk(KERN_INFO "%s", version);
743 qe_devs[1] = qe_devs[2] = qe_devs[3] = NULL;
744 for (i = 1; i < 4; i++) {
745 qe_devs[i] = init_etherdev(0, sizeof(struct sunqe));
746 if (qe_devs[i] == NULL || qe_devs[i]->priv == NULL)
747 goto qec_free_devs;
748 qeps[i] = (struct sunqe *) qe_devs[i]->priv;
749 for (j = 0; j < 6; j++)
750 qe_devs[i]->dev_addr[j] = idprom->id_ethaddr[j];
751 qeps[i]->channel = i;
753 qecp = kmalloc(sizeof(struct sunqec), GFP_KERNEL);
754 if (qecp == NULL)
755 goto qec_free_devs;
756 qecp->qec_sdev = sdev;
758 for (i = 0; i < 4; i++) {
759 qecp->qes[i] = qeps[i];
760 qeps[i]->dev = qe_devs[i];
761 qeps[i]->parent = qecp;
764 /* Link in channel 0. */
765 i = prom_getintdefault(sdev->child->prom_node, "channel#", -1);
766 if (i == -1) { res=ENODEV; goto qec_free_devs; }
767 qesdevs[i] = sdev->child;
769 /* Link in channel 1. */
770 i = prom_getintdefault(sdev->child->next->prom_node, "channel#", -1);
771 if (i == -1) { res=ENODEV; goto qec_free_devs; }
772 qesdevs[i] = sdev->child->next;
774 /* Link in channel 2. */
775 i = prom_getintdefault(sdev->child->next->next->prom_node, "channel#", -1);
776 if (i == -1) { res=ENODEV; goto qec_free_devs; }
777 qesdevs[i] = sdev->child->next->next;
779 /* Link in channel 3. */
780 i = prom_getintdefault(sdev->child->next->next->next->prom_node, "channel#", -1);
781 if (i == -1) { res=ENODEV; goto qec_free_devs; }
782 qesdevs[i] = sdev->child->next->next->next;
784 for (i = 0; i < 4; i++)
785 qeps[i]->qe_sdev = qesdevs[i];
787 /* Now map in the registers, QEC globals first. */
788 qecp->gregs = sbus_ioremap(&sdev->resource[0], 0,
789 GLOB_REG_SIZE, "QEC Global Registers");
790 if (!qecp->gregs) {
791 printk(KERN_ERR "QuadEther: Cannot map QEC global registers.\n");
792 res = ENODEV;
793 goto qec_free_devs;
796 /* Make sure the QEC is in MACE mode. */
797 if ((sbus_readl(qecp->gregs + GLOB_CTRL) & 0xf0000000) != GLOB_CTRL_MMODE) {
798 printk(KERN_ERR "QuadEther: AIEEE, QEC is not in MACE mode!\n");
799 res = ENODEV;
800 goto qec_free_devs;
803 /* Reset the QEC. */
804 if (qec_global_reset(qecp->gregs)) {
805 res = ENODEV;
806 goto qec_free_devs;
809 /* Find and set the burst sizes for the QEC, since it does
810 * the actual dma for all 4 channels.
812 bsizes = prom_getintdefault(sdev->prom_node, "burst-sizes", 0xff);
813 bsizes &= 0xff;
814 bsizes_more = prom_getintdefault(sdev->bus->prom_node, "burst-sizes", 0xff);
816 if (bsizes_more != 0xff)
817 bsizes &= bsizes_more;
818 if (bsizes == 0xff || (bsizes & DMA_BURST16) == 0 ||
819 (bsizes & DMA_BURST32)==0)
820 bsizes = (DMA_BURST32 - 1);
822 qecp->qec_bursts = bsizes;
824 /* Perform one time QEC initialization, we never touch the QEC
825 * globals again after this.
827 qec_init_once(qecp, sdev);
829 for (i = 0; i < 4; i++) {
830 /* Map in QEC per-channel control registers. */
831 qeps[i]->qcregs = sbus_ioremap(&qesdevs[i]->resource[0], 0,
832 CREG_REG_SIZE, "QEC Channel Registers");
833 if (!qeps[i]->qcregs) {
834 printk(KERN_ERR "QuadEther: Cannot map QE %d's channel registers.\n", i);
835 res = ENODEV;
836 goto qec_free_devs;
839 /* Map in per-channel AMD MACE registers. */
840 qeps[i]->mregs = sbus_ioremap(&qesdevs[i]->resource[1], 0,
841 MREGS_REG_SIZE, "QE MACE Registers");
842 if (!qeps[i]->mregs) {
843 printk(KERN_ERR "QuadEther: Cannot map QE %d's MACE registers.\n", i);
844 res = ENODEV;
845 goto qec_free_devs;
848 qeps[i]->qe_block = sbus_alloc_consistent(qesdevs[i],
849 PAGE_SIZE,
850 &qeps[i]->qblock_dvma);
851 qeps[i]->buffers = sbus_alloc_consistent(qesdevs[i],
852 sizeof(struct sunqe_buffers),
853 &qeps[i]->buffers_dvma);
854 if (qeps[i]->qe_block == NULL ||
855 qeps[i]->qblock_dvma == 0 ||
856 qeps[i]->buffers == NULL ||
857 qeps[i]->buffers_dvma == 0) {
858 res = ENODEV;
859 goto qec_free_devs;
862 /* Stop this QE. */
863 qe_stop(qeps[i]);
866 for (i = 0; i < 4; i++) {
867 SET_MODULE_OWNER(qe_devs[i]);
868 qe_devs[i]->open = qe_open;
869 qe_devs[i]->stop = qe_close;
870 qe_devs[i]->hard_start_xmit = qe_start_xmit;
871 qe_devs[i]->get_stats = qe_get_stats;
872 qe_devs[i]->set_multicast_list = qe_set_multicast;
873 qe_devs[i]->tx_timeout = qe_tx_timeout;
874 qe_devs[i]->watchdog_timeo = 5*HZ;
875 qe_devs[i]->irq = sdev->irqs[0];
876 qe_devs[i]->dma = 0;
877 ether_setup(qe_devs[i]);
880 /* QEC receives interrupts from each QE, then it sends the actual
881 * IRQ to the cpu itself. Since QEC is the single point of
882 * interrupt for all QE channels we register the IRQ handler
883 * for it now.
885 if (request_irq(sdev->irqs[0], &qec_interrupt,
886 SA_SHIRQ, "QuadEther", (void *) qecp)) {
887 printk(KERN_ERR "QuadEther: Can't register QEC master irq handler.\n");
888 res = EAGAIN;
889 goto qec_free_devs;
892 /* Report the QE channels. */
893 for (i = 0; i < 4; i++) {
894 printk(KERN_INFO "%s: QuadEthernet channel[%d] ", qe_devs[i]->name, i);
895 for (j = 0; j < 6; j++)
896 printk ("%2.2x%c",
897 qe_devs[i]->dev_addr[j],
898 j == 5 ? ' ': ':');
899 printk("\n");
902 /* We are home free at this point, link the qe's into
903 * the master list for later driver exit.
905 for (i = 0; i < 4; i++)
906 qe_devs[i]->ifindex = dev_new_index();
907 qecp->next_module = root_qec_dev;
908 root_qec_dev = qecp;
910 return 0;
912 qec_free_devs:
913 for (i = 0; i < 4; i++) {
914 if (qe_devs[i] != NULL) {
915 if (qe_devs[i]->priv) {
916 struct sunqe *qe = (struct sunqe *)qe_devs[i]->priv;
918 if (qe->qcregs)
919 sbus_iounmap(qe->qcregs, CREG_REG_SIZE);
920 if (qe->mregs)
921 sbus_iounmap(qe->mregs, MREGS_REG_SIZE);
922 if (qe->qe_block != NULL)
923 sbus_free_consistent(qe->qe_sdev,
924 PAGE_SIZE,
925 qe->qe_block,
926 qe->qblock_dvma);
927 if (qe->buffers != NULL)
928 sbus_free_consistent(qe->qe_sdev,
929 sizeof(struct sunqe_buffers),
930 qe->buffers,
931 qe->buffers_dvma);
933 kfree(qe_devs[i]);
936 if (qecp != NULL) {
937 if (qecp->gregs)
938 sbus_iounmap(qecp->gregs, GLOB_REG_SIZE);
939 kfree(qecp);
941 return res;
944 static int __init qec_match(struct sbus_dev *sdev)
946 struct sbus_dev *sibling;
947 int i;
949 if (strcmp(sdev->prom_name, "qec") != 0)
950 return 0;
952 /* QEC can be parent of either QuadEthernet or BigMAC
953 * children. Do not confuse this with qfe/SUNW,qfe
954 * which is a quad-happymeal card and handled by
955 * a different driver.
957 sibling = sdev->child;
958 for (i = 0; i < 4; i++) {
959 if (sibling == NULL)
960 return 0;
961 if (strcmp(sibling->prom_name, "qe") != 0)
962 return 0;
963 sibling = sibling->next;
965 return 1;
968 static int __init qec_probe(void)
970 struct net_device *dev = NULL;
971 struct sbus_bus *bus;
972 struct sbus_dev *sdev = 0;
973 static int called;
974 int cards = 0, v;
976 root_qec_dev = NULL;
978 if (called)
979 return -ENODEV;
980 called++;
982 for_each_sbus(bus) {
983 for_each_sbusdev(sdev, bus) {
984 if (cards)
985 dev = NULL;
987 if (qec_match(sdev)) {
988 cards++;
989 if ((v = qec_ether_init(dev, sdev)))
990 return v;
994 if (!cards)
995 return -ENODEV;
996 return 0;
999 static void __exit qec_cleanup(void)
1001 struct sunqec *next_qec;
1002 int i;
1004 while (root_qec_dev) {
1005 next_qec = root_qec_dev->next_module;
1007 /* Release all four QE channels, then the QEC itself. */
1008 for (i = 0; i < 4; i++) {
1009 unregister_netdev(root_qec_dev->qes[i]->dev);
1010 sbus_iounmap(root_qec_dev->qes[i]->qcregs, CREG_REG_SIZE);
1011 sbus_iounmap(root_qec_dev->qes[i]->mregs, MREGS_REG_SIZE);
1012 sbus_free_consistent(root_qec_dev->qes[i]->qe_sdev,
1013 PAGE_SIZE,
1014 root_qec_dev->qes[i]->qe_block,
1015 root_qec_dev->qes[i]->qblock_dvma);
1016 sbus_free_consistent(root_qec_dev->qes[i]->qe_sdev,
1017 sizeof(struct sunqe_buffers),
1018 root_qec_dev->qes[i]->buffers,
1019 root_qec_dev->qes[i]->buffers_dvma);
1020 kfree(root_qec_dev->qes[i]->dev);
1022 free_irq(root_qec_dev->qec_sdev->irqs[0], (void *)root_qec_dev);
1023 sbus_iounmap(root_qec_dev->gregs, GLOB_REG_SIZE);
1024 kfree(root_qec_dev);
1025 root_qec_dev = next_qec;
1029 module_init(qec_probe);
1030 module_exit(qec_cleanup);
1031 MODULE_LICENSE("GPL");