allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / sound / drivers / vx / vx_mixer.c
blobf63152a6a2234939b22d3f6308b881435dce81da
1 /*
2 * Driver for Digigram VX soundcards
4 * Common mixer part
6 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <sound/driver.h>
24 #include <sound/core.h>
25 #include <sound/control.h>
26 #include <sound/tlv.h>
27 #include <sound/vx_core.h>
28 #include "vx_cmd.h"
32 * write a codec data (24bit)
34 static void vx_write_codec_reg(struct vx_core *chip, int codec, unsigned int data)
36 unsigned long flags;
38 snd_assert(chip->ops->write_codec, return);
40 if (chip->chip_status & VX_STAT_IS_STALE)
41 return;
43 spin_lock_irqsave(&chip->lock, flags);
44 chip->ops->write_codec(chip, codec, data);
45 spin_unlock_irqrestore(&chip->lock, flags);
49 * Data type used to access the Codec
51 union vx_codec_data {
52 u32 l;
53 #ifdef SNDRV_BIG_ENDIAN
54 struct w {
55 u16 h;
56 u16 l;
57 } w;
58 struct b {
59 u8 hh;
60 u8 mh;
61 u8 ml;
62 u8 ll;
63 } b;
64 #else /* LITTLE_ENDIAN */
65 struct w {
66 u16 l;
67 u16 h;
68 } w;
69 struct b {
70 u8 ll;
71 u8 ml;
72 u8 mh;
73 u8 hh;
74 } b;
75 #endif
78 #define SET_CDC_DATA_SEL(di,s) ((di).b.mh = (u8) (s))
79 #define SET_CDC_DATA_REG(di,r) ((di).b.ml = (u8) (r))
80 #define SET_CDC_DATA_VAL(di,d) ((di).b.ll = (u8) (d))
81 #define SET_CDC_DATA_INIT(di) ((di).l = 0L, SET_CDC_DATA_SEL(di,XX_CODEC_SELECTOR))
84 * set up codec register and write the value
85 * @codec: the codec id, 0 or 1
86 * @reg: register index
87 * @val: data value
89 static void vx_set_codec_reg(struct vx_core *chip, int codec, int reg, int val)
91 union vx_codec_data data;
92 /* DAC control register */
93 SET_CDC_DATA_INIT(data);
94 SET_CDC_DATA_REG(data, reg);
95 SET_CDC_DATA_VAL(data, val);
96 vx_write_codec_reg(chip, codec, data.l);
101 * vx_set_analog_output_level - set the output attenuation level
102 * @codec: the output codec, 0 or 1. (1 for VXP440 only)
103 * @left: left output level, 0 = mute
104 * @right: right output level
106 static void vx_set_analog_output_level(struct vx_core *chip, int codec, int left, int right)
108 left = chip->hw->output_level_max - left;
109 right = chip->hw->output_level_max - right;
111 if (chip->ops->akm_write) {
112 chip->ops->akm_write(chip, XX_CODEC_LEVEL_LEFT_REGISTER, left);
113 chip->ops->akm_write(chip, XX_CODEC_LEVEL_RIGHT_REGISTER, right);
114 } else {
115 /* convert to attenuation level: 0 = 0dB (max), 0xe3 = -113.5 dB (min) */
116 vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_LEFT_REGISTER, left);
117 vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_RIGHT_REGISTER, right);
123 * vx_toggle_dac_mute - mute/unmute DAC
124 * @mute: 0 = unmute, 1 = mute
127 #define DAC_ATTEN_MIN 0x08
128 #define DAC_ATTEN_MAX 0x38
130 void vx_toggle_dac_mute(struct vx_core *chip, int mute)
132 unsigned int i;
133 for (i = 0; i < chip->hw->num_codecs; i++) {
134 if (chip->ops->akm_write)
135 chip->ops->akm_write(chip, XX_CODEC_DAC_CONTROL_REGISTER, mute); /* XXX */
136 else
137 vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER,
138 mute ? DAC_ATTEN_MAX : DAC_ATTEN_MIN);
143 * vx_reset_codec - reset and initialize the codecs
145 void vx_reset_codec(struct vx_core *chip, int cold_reset)
147 unsigned int i;
148 int port = chip->type >= VX_TYPE_VXPOCKET ? 0x75 : 0x65;
150 chip->ops->reset_codec(chip);
152 /* AKM codecs should be initialized in reset_codec callback */
153 if (! chip->ops->akm_write) {
154 /* initialize old codecs */
155 for (i = 0; i < chip->hw->num_codecs; i++) {
156 /* DAC control register (change level when zero crossing + mute) */
157 vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER, DAC_ATTEN_MAX);
158 /* ADC control register */
159 vx_set_codec_reg(chip, i, XX_CODEC_ADC_CONTROL_REGISTER, 0x00);
160 /* Port mode register */
161 vx_set_codec_reg(chip, i, XX_CODEC_PORT_MODE_REGISTER, port);
162 /* Clock control register */
163 vx_set_codec_reg(chip, i, XX_CODEC_CLOCK_CONTROL_REGISTER, 0x00);
167 /* mute analog output */
168 for (i = 0; i < chip->hw->num_codecs; i++) {
169 chip->output_level[i][0] = 0;
170 chip->output_level[i][1] = 0;
171 vx_set_analog_output_level(chip, i, 0, 0);
176 * change the audio input source
177 * @src: the target source (VX_AUDIO_SRC_XXX)
179 static void vx_change_audio_source(struct vx_core *chip, int src)
181 unsigned long flags;
183 if (chip->chip_status & VX_STAT_IS_STALE)
184 return;
186 spin_lock_irqsave(&chip->lock, flags);
187 chip->ops->change_audio_source(chip, src);
188 spin_unlock_irqrestore(&chip->lock, flags);
193 * change the audio source if necessary and possible
194 * returns 1 if the source is actually changed.
196 int vx_sync_audio_source(struct vx_core *chip)
198 if (chip->audio_source_target == chip->audio_source ||
199 chip->pcm_running)
200 return 0;
201 vx_change_audio_source(chip, chip->audio_source_target);
202 chip->audio_source = chip->audio_source_target;
203 return 1;
208 * audio level, mute, monitoring
210 struct vx_audio_level {
211 unsigned int has_level: 1;
212 unsigned int has_monitor_level: 1;
213 unsigned int has_mute: 1;
214 unsigned int has_monitor_mute: 1;
215 unsigned int mute;
216 unsigned int monitor_mute;
217 short level;
218 short monitor_level;
221 static int vx_adjust_audio_level(struct vx_core *chip, int audio, int capture,
222 struct vx_audio_level *info)
224 struct vx_rmh rmh;
226 if (chip->chip_status & VX_STAT_IS_STALE)
227 return -EBUSY;
229 vx_init_rmh(&rmh, CMD_AUDIO_LEVEL_ADJUST);
230 if (capture)
231 rmh.Cmd[0] |= COMMAND_RECORD_MASK;
232 /* Add Audio IO mask */
233 rmh.Cmd[1] = 1 << audio;
234 rmh.Cmd[2] = 0;
235 if (info->has_level) {
236 rmh.Cmd[0] |= VALID_AUDIO_IO_DIGITAL_LEVEL;
237 rmh.Cmd[2] |= info->level;
239 if (info->has_monitor_level) {
240 rmh.Cmd[0] |= VALID_AUDIO_IO_MONITORING_LEVEL;
241 rmh.Cmd[2] |= ((unsigned int)info->monitor_level << 10);
243 if (info->has_mute) {
244 rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_LEVEL;
245 if (info->mute)
246 rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_LEVEL;
248 if (info->has_monitor_mute) {
249 /* validate flag for M2 at least to unmute it */
250 rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_MONITORING_1 | VALID_AUDIO_IO_MUTE_MONITORING_2;
251 if (info->monitor_mute)
252 rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_MONITORING_1;
255 return vx_send_msg(chip, &rmh);
259 #if 0 // not used
260 static int vx_read_audio_level(struct vx_core *chip, int audio, int capture,
261 struct vx_audio_level *info)
263 int err;
264 struct vx_rmh rmh;
266 memset(info, 0, sizeof(*info));
267 vx_init_rmh(&rmh, CMD_GET_AUDIO_LEVELS);
268 if (capture)
269 rmh.Cmd[0] |= COMMAND_RECORD_MASK;
270 /* Add Audio IO mask */
271 rmh.Cmd[1] = 1 << audio;
272 err = vx_send_msg(chip, &rmh);
273 if (err < 0)
274 return err;
275 info.level = rmh.Stat[0] & MASK_DSP_WORD_LEVEL;
276 info.monitor_level = (rmh.Stat[0] >> 10) & MASK_DSP_WORD_LEVEL;
277 info.mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_LEVEL) ? 1 : 0;
278 info.monitor_mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_MONITORING_1) ? 1 : 0;
279 return 0;
281 #endif // not used
284 * set the monitoring level and mute state of the given audio
285 * no more static, because must be called from vx_pcm to demute monitoring
287 int vx_set_monitor_level(struct vx_core *chip, int audio, int level, int active)
289 struct vx_audio_level info;
291 memset(&info, 0, sizeof(info));
292 info.has_monitor_level = 1;
293 info.monitor_level = level;
294 info.has_monitor_mute = 1;
295 info.monitor_mute = !active;
296 chip->audio_monitor[audio] = level;
297 chip->audio_monitor_active[audio] = active;
298 return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */
303 * set the mute status of the given audio
305 static int vx_set_audio_switch(struct vx_core *chip, int audio, int active)
307 struct vx_audio_level info;
309 memset(&info, 0, sizeof(info));
310 info.has_mute = 1;
311 info.mute = !active;
312 chip->audio_active[audio] = active;
313 return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */
317 * set the mute status of the given audio
319 static int vx_set_audio_gain(struct vx_core *chip, int audio, int capture, int level)
321 struct vx_audio_level info;
323 memset(&info, 0, sizeof(info));
324 info.has_level = 1;
325 info.level = level;
326 chip->audio_gain[capture][audio] = level;
327 return vx_adjust_audio_level(chip, audio, capture, &info);
331 * reset all audio levels
333 static void vx_reset_audio_levels(struct vx_core *chip)
335 unsigned int i, c;
336 struct vx_audio_level info;
338 memset(chip->audio_gain, 0, sizeof(chip->audio_gain));
339 memset(chip->audio_active, 0, sizeof(chip->audio_active));
340 memset(chip->audio_monitor, 0, sizeof(chip->audio_monitor));
341 memset(chip->audio_monitor_active, 0, sizeof(chip->audio_monitor_active));
343 for (c = 0; c < 2; c++) {
344 for (i = 0; i < chip->hw->num_ins * 2; i++) {
345 memset(&info, 0, sizeof(info));
346 if (c == 0) {
347 info.has_monitor_level = 1;
348 info.has_mute = 1;
349 info.has_monitor_mute = 1;
351 info.has_level = 1;
352 info.level = CVAL_0DB; /* default: 0dB */
353 vx_adjust_audio_level(chip, i, c, &info);
354 chip->audio_gain[c][i] = CVAL_0DB;
355 chip->audio_monitor[i] = CVAL_0DB;
362 * VU, peak meter record
365 #define VU_METER_CHANNELS 2
367 struct vx_vu_meter {
368 int saturated;
369 int vu_level;
370 int peak_level;
374 * get the VU and peak meter values
375 * @audio: the audio index
376 * @capture: 0 = playback, 1 = capture operation
377 * @info: the array of vx_vu_meter records (size = 2).
379 static int vx_get_audio_vu_meter(struct vx_core *chip, int audio, int capture, struct vx_vu_meter *info)
381 struct vx_rmh rmh;
382 int i, err;
384 if (chip->chip_status & VX_STAT_IS_STALE)
385 return -EBUSY;
387 vx_init_rmh(&rmh, CMD_AUDIO_VU_PIC_METER);
388 rmh.LgStat += 2 * VU_METER_CHANNELS;
389 if (capture)
390 rmh.Cmd[0] |= COMMAND_RECORD_MASK;
392 /* Add Audio IO mask */
393 rmh.Cmd[1] = 0;
394 for (i = 0; i < VU_METER_CHANNELS; i++)
395 rmh.Cmd[1] |= 1 << (audio + i);
396 err = vx_send_msg(chip, &rmh);
397 if (err < 0)
398 return err;
399 /* Read response */
400 for (i = 0; i < 2 * VU_METER_CHANNELS; i +=2) {
401 info->saturated = (rmh.Stat[0] & (1 << (audio + i))) ? 1 : 0;
402 info->vu_level = rmh.Stat[i + 1];
403 info->peak_level = rmh.Stat[i + 2];
404 info++;
406 return 0;
411 * control API entries
415 * output level control
417 static int vx_output_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
419 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
420 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
421 uinfo->count = 2;
422 uinfo->value.integer.min = 0;
423 uinfo->value.integer.max = chip->hw->output_level_max;
424 return 0;
427 static int vx_output_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
429 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
430 int codec = kcontrol->id.index;
431 mutex_lock(&chip->mixer_mutex);
432 ucontrol->value.integer.value[0] = chip->output_level[codec][0];
433 ucontrol->value.integer.value[1] = chip->output_level[codec][1];
434 mutex_unlock(&chip->mixer_mutex);
435 return 0;
438 static int vx_output_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
440 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
441 int codec = kcontrol->id.index;
442 mutex_lock(&chip->mixer_mutex);
443 if (ucontrol->value.integer.value[0] != chip->output_level[codec][0] ||
444 ucontrol->value.integer.value[1] != chip->output_level[codec][1]) {
445 vx_set_analog_output_level(chip, codec,
446 ucontrol->value.integer.value[0],
447 ucontrol->value.integer.value[1]);
448 chip->output_level[codec][0] = ucontrol->value.integer.value[0];
449 chip->output_level[codec][1] = ucontrol->value.integer.value[1];
450 mutex_unlock(&chip->mixer_mutex);
451 return 1;
453 mutex_unlock(&chip->mixer_mutex);
454 return 0;
457 static struct snd_kcontrol_new vx_control_output_level = {
458 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
459 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
460 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
461 .name = "Master Playback Volume",
462 .info = vx_output_level_info,
463 .get = vx_output_level_get,
464 .put = vx_output_level_put,
465 /* tlv will be filled later */
469 * audio source select
471 static int vx_audio_src_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
473 static char *texts_mic[3] = {
474 "Digital", "Line", "Mic"
476 static char *texts_vx2[2] = {
477 "Digital", "Analog"
479 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
481 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
482 uinfo->count = 1;
483 if (chip->type >= VX_TYPE_VXPOCKET) {
484 uinfo->value.enumerated.items = 3;
485 if (uinfo->value.enumerated.item > 2)
486 uinfo->value.enumerated.item = 2;
487 strcpy(uinfo->value.enumerated.name,
488 texts_mic[uinfo->value.enumerated.item]);
489 } else {
490 uinfo->value.enumerated.items = 2;
491 if (uinfo->value.enumerated.item > 1)
492 uinfo->value.enumerated.item = 1;
493 strcpy(uinfo->value.enumerated.name,
494 texts_vx2[uinfo->value.enumerated.item]);
496 return 0;
499 static int vx_audio_src_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
501 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
502 ucontrol->value.enumerated.item[0] = chip->audio_source_target;
503 return 0;
506 static int vx_audio_src_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
508 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
509 mutex_lock(&chip->mixer_mutex);
510 if (chip->audio_source_target != ucontrol->value.enumerated.item[0]) {
511 chip->audio_source_target = ucontrol->value.enumerated.item[0];
512 vx_sync_audio_source(chip);
513 mutex_unlock(&chip->mixer_mutex);
514 return 1;
516 mutex_unlock(&chip->mixer_mutex);
517 return 0;
520 static struct snd_kcontrol_new vx_control_audio_src = {
521 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
522 .name = "Capture Source",
523 .info = vx_audio_src_info,
524 .get = vx_audio_src_get,
525 .put = vx_audio_src_put,
529 * clock mode selection
531 static int vx_clock_mode_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
533 static char *texts[3] = {
534 "Auto", "Internal", "External"
537 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
538 uinfo->count = 1;
539 uinfo->value.enumerated.items = 3;
540 if (uinfo->value.enumerated.item > 2)
541 uinfo->value.enumerated.item = 2;
542 strcpy(uinfo->value.enumerated.name,
543 texts[uinfo->value.enumerated.item]);
544 return 0;
547 static int vx_clock_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
549 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
550 ucontrol->value.enumerated.item[0] = chip->clock_mode;
551 return 0;
554 static int vx_clock_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
556 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
557 mutex_lock(&chip->mixer_mutex);
558 if (chip->clock_mode != ucontrol->value.enumerated.item[0]) {
559 chip->clock_mode = ucontrol->value.enumerated.item[0];
560 vx_set_clock(chip, chip->freq);
561 mutex_unlock(&chip->mixer_mutex);
562 return 1;
564 mutex_unlock(&chip->mixer_mutex);
565 return 0;
568 static struct snd_kcontrol_new vx_control_clock_mode = {
569 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
570 .name = "Clock Mode",
571 .info = vx_clock_mode_info,
572 .get = vx_clock_mode_get,
573 .put = vx_clock_mode_put,
577 * Audio Gain
579 static int vx_audio_gain_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
581 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
582 uinfo->count = 2;
583 uinfo->value.integer.min = 0;
584 uinfo->value.integer.max = CVAL_MAX;
585 return 0;
588 static int vx_audio_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
590 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
591 int audio = kcontrol->private_value & 0xff;
592 int capture = (kcontrol->private_value >> 8) & 1;
594 mutex_lock(&chip->mixer_mutex);
595 ucontrol->value.integer.value[0] = chip->audio_gain[capture][audio];
596 ucontrol->value.integer.value[1] = chip->audio_gain[capture][audio+1];
597 mutex_unlock(&chip->mixer_mutex);
598 return 0;
601 static int vx_audio_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
603 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
604 int audio = kcontrol->private_value & 0xff;
605 int capture = (kcontrol->private_value >> 8) & 1;
607 mutex_lock(&chip->mixer_mutex);
608 if (ucontrol->value.integer.value[0] != chip->audio_gain[capture][audio] ||
609 ucontrol->value.integer.value[1] != chip->audio_gain[capture][audio+1]) {
610 vx_set_audio_gain(chip, audio, capture, ucontrol->value.integer.value[0]);
611 vx_set_audio_gain(chip, audio+1, capture, ucontrol->value.integer.value[1]);
612 mutex_unlock(&chip->mixer_mutex);
613 return 1;
615 mutex_unlock(&chip->mixer_mutex);
616 return 0;
619 static int vx_audio_monitor_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
621 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
622 int audio = kcontrol->private_value & 0xff;
624 mutex_lock(&chip->mixer_mutex);
625 ucontrol->value.integer.value[0] = chip->audio_monitor[audio];
626 ucontrol->value.integer.value[1] = chip->audio_monitor[audio+1];
627 mutex_unlock(&chip->mixer_mutex);
628 return 0;
631 static int vx_audio_monitor_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
633 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
634 int audio = kcontrol->private_value & 0xff;
636 mutex_lock(&chip->mixer_mutex);
637 if (ucontrol->value.integer.value[0] != chip->audio_monitor[audio] ||
638 ucontrol->value.integer.value[1] != chip->audio_monitor[audio+1]) {
639 vx_set_monitor_level(chip, audio, ucontrol->value.integer.value[0],
640 chip->audio_monitor_active[audio]);
641 vx_set_monitor_level(chip, audio+1, ucontrol->value.integer.value[1],
642 chip->audio_monitor_active[audio+1]);
643 mutex_unlock(&chip->mixer_mutex);
644 return 1;
646 mutex_unlock(&chip->mixer_mutex);
647 return 0;
650 static int vx_audio_sw_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
652 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
653 uinfo->count = 2;
654 uinfo->value.integer.min = 0;
655 uinfo->value.integer.max = 1;
656 return 0;
659 static int vx_audio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
661 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
662 int audio = kcontrol->private_value & 0xff;
664 mutex_lock(&chip->mixer_mutex);
665 ucontrol->value.integer.value[0] = chip->audio_active[audio];
666 ucontrol->value.integer.value[1] = chip->audio_active[audio+1];
667 mutex_unlock(&chip->mixer_mutex);
668 return 0;
671 static int vx_audio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
673 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
674 int audio = kcontrol->private_value & 0xff;
676 mutex_lock(&chip->mixer_mutex);
677 if (ucontrol->value.integer.value[0] != chip->audio_active[audio] ||
678 ucontrol->value.integer.value[1] != chip->audio_active[audio+1]) {
679 vx_set_audio_switch(chip, audio, ucontrol->value.integer.value[0]);
680 vx_set_audio_switch(chip, audio+1, ucontrol->value.integer.value[1]);
681 mutex_unlock(&chip->mixer_mutex);
682 return 1;
684 mutex_unlock(&chip->mixer_mutex);
685 return 0;
688 static int vx_monitor_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
690 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
691 int audio = kcontrol->private_value & 0xff;
693 mutex_lock(&chip->mixer_mutex);
694 ucontrol->value.integer.value[0] = chip->audio_monitor_active[audio];
695 ucontrol->value.integer.value[1] = chip->audio_monitor_active[audio+1];
696 mutex_unlock(&chip->mixer_mutex);
697 return 0;
700 static int vx_monitor_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
702 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
703 int audio = kcontrol->private_value & 0xff;
705 mutex_lock(&chip->mixer_mutex);
706 if (ucontrol->value.integer.value[0] != chip->audio_monitor_active[audio] ||
707 ucontrol->value.integer.value[1] != chip->audio_monitor_active[audio+1]) {
708 vx_set_monitor_level(chip, audio, chip->audio_monitor[audio],
709 ucontrol->value.integer.value[0]);
710 vx_set_monitor_level(chip, audio+1, chip->audio_monitor[audio+1],
711 ucontrol->value.integer.value[1]);
712 mutex_unlock(&chip->mixer_mutex);
713 return 1;
715 mutex_unlock(&chip->mixer_mutex);
716 return 0;
719 static const DECLARE_TLV_DB_SCALE(db_scale_audio_gain, -10975, 25, 0);
721 static struct snd_kcontrol_new vx_control_audio_gain = {
722 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
723 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
724 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
725 /* name will be filled later */
726 .info = vx_audio_gain_info,
727 .get = vx_audio_gain_get,
728 .put = vx_audio_gain_put,
729 .tlv = { .p = db_scale_audio_gain },
731 static struct snd_kcontrol_new vx_control_output_switch = {
732 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
733 .name = "PCM Playback Switch",
734 .info = vx_audio_sw_info,
735 .get = vx_audio_sw_get,
736 .put = vx_audio_sw_put
738 static struct snd_kcontrol_new vx_control_monitor_gain = {
739 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
740 .name = "Monitoring Volume",
741 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
742 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
743 .info = vx_audio_gain_info, /* shared */
744 .get = vx_audio_monitor_get,
745 .put = vx_audio_monitor_put,
746 .tlv = { .p = db_scale_audio_gain },
748 static struct snd_kcontrol_new vx_control_monitor_switch = {
749 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
750 .name = "Monitoring Switch",
751 .info = vx_audio_sw_info, /* shared */
752 .get = vx_monitor_sw_get,
753 .put = vx_monitor_sw_put
758 * IEC958 status bits
760 static int vx_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
762 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
763 uinfo->count = 1;
764 return 0;
767 static int vx_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
769 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
771 mutex_lock(&chip->mixer_mutex);
772 ucontrol->value.iec958.status[0] = (chip->uer_bits >> 0) & 0xff;
773 ucontrol->value.iec958.status[1] = (chip->uer_bits >> 8) & 0xff;
774 ucontrol->value.iec958.status[2] = (chip->uer_bits >> 16) & 0xff;
775 ucontrol->value.iec958.status[3] = (chip->uer_bits >> 24) & 0xff;
776 mutex_unlock(&chip->mixer_mutex);
777 return 0;
780 static int vx_iec958_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
782 ucontrol->value.iec958.status[0] = 0xff;
783 ucontrol->value.iec958.status[1] = 0xff;
784 ucontrol->value.iec958.status[2] = 0xff;
785 ucontrol->value.iec958.status[3] = 0xff;
786 return 0;
789 static int vx_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
791 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
792 unsigned int val;
794 val = (ucontrol->value.iec958.status[0] << 0) |
795 (ucontrol->value.iec958.status[1] << 8) |
796 (ucontrol->value.iec958.status[2] << 16) |
797 (ucontrol->value.iec958.status[3] << 24);
798 mutex_lock(&chip->mixer_mutex);
799 if (chip->uer_bits != val) {
800 chip->uer_bits = val;
801 vx_set_iec958_status(chip, val);
802 mutex_unlock(&chip->mixer_mutex);
803 return 1;
805 mutex_unlock(&chip->mixer_mutex);
806 return 0;
809 static struct snd_kcontrol_new vx_control_iec958_mask = {
810 .access = SNDRV_CTL_ELEM_ACCESS_READ,
811 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
812 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
813 .info = vx_iec958_info, /* shared */
814 .get = vx_iec958_mask_get,
817 static struct snd_kcontrol_new vx_control_iec958 = {
818 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
819 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
820 .info = vx_iec958_info,
821 .get = vx_iec958_get,
822 .put = vx_iec958_put
827 * VU meter
830 #define METER_MAX 0xff
831 #define METER_SHIFT 16
833 static int vx_vu_meter_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
835 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
836 uinfo->count = 2;
837 uinfo->value.integer.min = 0;
838 uinfo->value.integer.max = METER_MAX;
839 return 0;
842 static int vx_vu_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
844 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
845 struct vx_vu_meter meter[2];
846 int audio = kcontrol->private_value & 0xff;
847 int capture = (kcontrol->private_value >> 8) & 1;
849 vx_get_audio_vu_meter(chip, audio, capture, meter);
850 ucontrol->value.integer.value[0] = meter[0].vu_level >> METER_SHIFT;
851 ucontrol->value.integer.value[1] = meter[1].vu_level >> METER_SHIFT;
852 return 0;
855 static int vx_peak_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
857 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
858 struct vx_vu_meter meter[2];
859 int audio = kcontrol->private_value & 0xff;
860 int capture = (kcontrol->private_value >> 8) & 1;
862 vx_get_audio_vu_meter(chip, audio, capture, meter);
863 ucontrol->value.integer.value[0] = meter[0].peak_level >> METER_SHIFT;
864 ucontrol->value.integer.value[1] = meter[1].peak_level >> METER_SHIFT;
865 return 0;
868 static int vx_saturation_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
870 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
871 uinfo->count = 2;
872 uinfo->value.integer.min = 0;
873 uinfo->value.integer.max = 1;
874 return 0;
877 static int vx_saturation_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
879 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
880 struct vx_vu_meter meter[2];
881 int audio = kcontrol->private_value & 0xff;
883 vx_get_audio_vu_meter(chip, audio, 1, meter); /* capture only */
884 ucontrol->value.integer.value[0] = meter[0].saturated;
885 ucontrol->value.integer.value[1] = meter[1].saturated;
886 return 0;
889 static struct snd_kcontrol_new vx_control_vu_meter = {
890 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
891 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
892 /* name will be filled later */
893 .info = vx_vu_meter_info,
894 .get = vx_vu_meter_get,
897 static struct snd_kcontrol_new vx_control_peak_meter = {
898 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
899 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
900 /* name will be filled later */
901 .info = vx_vu_meter_info, /* shared */
902 .get = vx_peak_meter_get,
905 static struct snd_kcontrol_new vx_control_saturation = {
906 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
907 .name = "Input Saturation",
908 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
909 .info = vx_saturation_info,
910 .get = vx_saturation_get,
919 int snd_vx_mixer_new(struct vx_core *chip)
921 unsigned int i, c;
922 int err;
923 struct snd_kcontrol_new temp;
924 struct snd_card *card = chip->card;
925 char name[32];
927 strcpy(card->mixername, card->driver);
929 /* output level controls */
930 for (i = 0; i < chip->hw->num_outs; i++) {
931 temp = vx_control_output_level;
932 temp.index = i;
933 temp.tlv.p = chip->hw->output_level_db_scale;
934 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
935 return err;
938 /* PCM volumes, switches, monitoring */
939 for (i = 0; i < chip->hw->num_outs; i++) {
940 int val = i * 2;
941 temp = vx_control_audio_gain;
942 temp.index = i;
943 temp.name = "PCM Playback Volume";
944 temp.private_value = val;
945 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
946 return err;
947 temp = vx_control_output_switch;
948 temp.index = i;
949 temp.private_value = val;
950 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
951 return err;
952 temp = vx_control_monitor_gain;
953 temp.index = i;
954 temp.private_value = val;
955 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
956 return err;
957 temp = vx_control_monitor_switch;
958 temp.index = i;
959 temp.private_value = val;
960 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
961 return err;
963 for (i = 0; i < chip->hw->num_outs; i++) {
964 temp = vx_control_audio_gain;
965 temp.index = i;
966 temp.name = "PCM Capture Volume";
967 temp.private_value = (i * 2) | (1 << 8);
968 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
969 return err;
972 /* Audio source */
973 if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_audio_src, chip))) < 0)
974 return err;
975 /* clock mode */
976 if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_clock_mode, chip))) < 0)
977 return err;
978 /* IEC958 controls */
979 if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958_mask, chip))) < 0)
980 return err;
981 if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958, chip))) < 0)
982 return err;
983 /* VU, peak, saturation meters */
984 for (c = 0; c < 2; c++) {
985 static char *dir[2] = { "Output", "Input" };
986 for (i = 0; i < chip->hw->num_ins; i++) {
987 int val = (i * 2) | (c << 8);
988 if (c == 1) {
989 temp = vx_control_saturation;
990 temp.index = i;
991 temp.private_value = val;
992 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
993 return err;
995 sprintf(name, "%s VU Meter", dir[c]);
996 temp = vx_control_vu_meter;
997 temp.index = i;
998 temp.name = name;
999 temp.private_value = val;
1000 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
1001 return err;
1002 sprintf(name, "%s Peak Meter", dir[c]);
1003 temp = vx_control_peak_meter;
1004 temp.index = i;
1005 temp.name = name;
1006 temp.private_value = val;
1007 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
1008 return err;
1011 vx_reset_audio_levels(chip);
1012 return 0;