allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / drivers / scsi / scsi_lib.c
blob81c59207882bed80a72c8a3770308c3d5fa86e00
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
34 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE 2
37 struct scsi_host_sg_pool {
38 size_t size;
39 char *name;
40 struct kmem_cache *slab;
41 mempool_t *pool;
44 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
45 #error SCSI_MAX_PHYS_SEGMENTS is too small
46 #endif
48 #define SP(x) { x, "sgpool-" #x }
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 SP(32),
53 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
54 SP(64),
55 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
56 SP(128),
57 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
58 SP(256),
59 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
60 #error SCSI_MAX_PHYS_SEGMENTS is too large
61 #endif
62 #endif
63 #endif
64 #endif
65 };
66 #undef SP
68 static void scsi_run_queue(struct request_queue *q);
71 * Function: scsi_unprep_request()
73 * Purpose: Remove all preparation done for a request, including its
74 * associated scsi_cmnd, so that it can be requeued.
76 * Arguments: req - request to unprepare
78 * Lock status: Assumed that no locks are held upon entry.
80 * Returns: Nothing.
82 static void scsi_unprep_request(struct request *req)
84 struct scsi_cmnd *cmd = req->special;
86 req->cmd_flags &= ~REQ_DONTPREP;
87 req->special = NULL;
89 scsi_put_command(cmd);
92 /**
93 * __scsi_queue_insert - private queue insertion
94 * @cmd: The SCSI command being requeued
95 * @reason: The reason for the requeue
96 * @unbusy: Whether the queue should be unbusied
98 * This is a private queue insertion. The public interface
99 * scsi_queue_insert() always assumes the queue should be unbusied
100 * because it's always called before the completion. This function is
101 * for a requeue after completion, which should only occur in this
102 * file.
104 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
106 struct Scsi_Host *host = cmd->device->host;
107 struct scsi_device *device = cmd->device;
108 struct request_queue *q = device->request_queue;
109 unsigned long flags;
111 SCSI_LOG_MLQUEUE(1,
112 printk("Inserting command %p into mlqueue\n", cmd));
115 * Set the appropriate busy bit for the device/host.
117 * If the host/device isn't busy, assume that something actually
118 * completed, and that we should be able to queue a command now.
120 * Note that the prior mid-layer assumption that any host could
121 * always queue at least one command is now broken. The mid-layer
122 * will implement a user specifiable stall (see
123 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
124 * if a command is requeued with no other commands outstanding
125 * either for the device or for the host.
127 if (reason == SCSI_MLQUEUE_HOST_BUSY)
128 host->host_blocked = host->max_host_blocked;
129 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
130 device->device_blocked = device->max_device_blocked;
133 * Decrement the counters, since these commands are no longer
134 * active on the host/device.
136 if (unbusy)
137 scsi_device_unbusy(device);
140 * Requeue this command. It will go before all other commands
141 * that are already in the queue.
143 * NOTE: there is magic here about the way the queue is plugged if
144 * we have no outstanding commands.
146 * Although we *don't* plug the queue, we call the request
147 * function. The SCSI request function detects the blocked condition
148 * and plugs the queue appropriately.
150 spin_lock_irqsave(q->queue_lock, flags);
151 blk_requeue_request(q, cmd->request);
152 spin_unlock_irqrestore(q->queue_lock, flags);
154 scsi_run_queue(q);
156 return 0;
160 * Function: scsi_queue_insert()
162 * Purpose: Insert a command in the midlevel queue.
164 * Arguments: cmd - command that we are adding to queue.
165 * reason - why we are inserting command to queue.
167 * Lock status: Assumed that lock is not held upon entry.
169 * Returns: Nothing.
171 * Notes: We do this for one of two cases. Either the host is busy
172 * and it cannot accept any more commands for the time being,
173 * or the device returned QUEUE_FULL and can accept no more
174 * commands.
175 * Notes: This could be called either from an interrupt context or a
176 * normal process context.
178 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
180 return __scsi_queue_insert(cmd, reason, 1);
183 * scsi_execute - insert request and wait for the result
184 * @sdev: scsi device
185 * @cmd: scsi command
186 * @data_direction: data direction
187 * @buffer: data buffer
188 * @bufflen: len of buffer
189 * @sense: optional sense buffer
190 * @timeout: request timeout in seconds
191 * @retries: number of times to retry request
192 * @flags: or into request flags;
194 * returns the req->errors value which is the scsi_cmnd result
195 * field.
197 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
198 int data_direction, void *buffer, unsigned bufflen,
199 unsigned char *sense, int timeout, int retries, int flags)
201 struct request *req;
202 int write = (data_direction == DMA_TO_DEVICE);
203 int ret = DRIVER_ERROR << 24;
205 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
207 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
208 buffer, bufflen, __GFP_WAIT))
209 goto out;
211 req->cmd_len = COMMAND_SIZE(cmd[0]);
212 memcpy(req->cmd, cmd, req->cmd_len);
213 req->sense = sense;
214 req->sense_len = 0;
215 req->retries = retries;
216 req->timeout = timeout;
217 req->cmd_type = REQ_TYPE_BLOCK_PC;
218 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
221 * head injection *required* here otherwise quiesce won't work
223 blk_execute_rq(req->q, NULL, req, 1);
226 * Some devices (USB mass-storage in particular) may transfer
227 * garbage data together with a residue indicating that the data
228 * is invalid. Prevent the garbage from being misinterpreted
229 * and prevent security leaks by zeroing out the excess data.
231 if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
232 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
234 ret = req->errors;
235 out:
236 blk_put_request(req);
238 return ret;
240 EXPORT_SYMBOL(scsi_execute);
243 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
244 int data_direction, void *buffer, unsigned bufflen,
245 struct scsi_sense_hdr *sshdr, int timeout, int retries)
247 char *sense = NULL;
248 int result;
250 if (sshdr) {
251 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
252 if (!sense)
253 return DRIVER_ERROR << 24;
255 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
256 sense, timeout, retries, 0);
257 if (sshdr)
258 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
260 kfree(sense);
261 return result;
263 EXPORT_SYMBOL(scsi_execute_req);
265 struct scsi_io_context {
266 void *data;
267 void (*done)(void *data, char *sense, int result, int resid);
268 char sense[SCSI_SENSE_BUFFERSIZE];
271 static struct kmem_cache *scsi_io_context_cache;
273 static void scsi_end_async(struct request *req, int uptodate)
275 struct scsi_io_context *sioc = req->end_io_data;
277 if (sioc->done)
278 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
280 kmem_cache_free(scsi_io_context_cache, sioc);
281 __blk_put_request(req->q, req);
284 static int scsi_merge_bio(struct request *rq, struct bio *bio)
286 struct request_queue *q = rq->q;
288 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
289 if (rq_data_dir(rq) == WRITE)
290 bio->bi_rw |= (1 << BIO_RW);
291 blk_queue_bounce(q, &bio);
293 if (!rq->bio)
294 blk_rq_bio_prep(q, rq, bio);
295 else if (!ll_back_merge_fn(q, rq, bio))
296 return -EINVAL;
297 else {
298 rq->biotail->bi_next = bio;
299 rq->biotail = bio;
302 return 0;
305 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
307 if (bio->bi_size)
308 return 1;
310 bio_put(bio);
311 return 0;
315 * scsi_req_map_sg - map a scatterlist into a request
316 * @rq: request to fill
317 * @sg: scatterlist
318 * @nsegs: number of elements
319 * @bufflen: len of buffer
320 * @gfp: memory allocation flags
322 * scsi_req_map_sg maps a scatterlist into a request so that the
323 * request can be sent to the block layer. We do not trust the scatterlist
324 * sent to use, as some ULDs use that struct to only organize the pages.
326 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
327 int nsegs, unsigned bufflen, gfp_t gfp)
329 struct request_queue *q = rq->q;
330 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
331 unsigned int data_len = 0, len, bytes, off;
332 struct scatterlist *sg;
333 struct page *page;
334 struct bio *bio = NULL;
335 int i, err, nr_vecs = 0;
337 for_each_sg(sgl, sg, nsegs, i) {
338 page = sg->page;
339 off = sg->offset;
340 len = sg->length;
341 data_len += len;
343 while (len > 0) {
344 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
346 if (!bio) {
347 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
348 nr_pages -= nr_vecs;
350 bio = bio_alloc(gfp, nr_vecs);
351 if (!bio) {
352 err = -ENOMEM;
353 goto free_bios;
355 bio->bi_end_io = scsi_bi_endio;
358 if (bio_add_pc_page(q, bio, page, bytes, off) !=
359 bytes) {
360 bio_put(bio);
361 err = -EINVAL;
362 goto free_bios;
365 if (bio->bi_vcnt >= nr_vecs) {
366 err = scsi_merge_bio(rq, bio);
367 if (err) {
368 bio_endio(bio, bio->bi_size, 0);
369 goto free_bios;
371 bio = NULL;
374 page++;
375 len -= bytes;
376 off = 0;
380 rq->buffer = rq->data = NULL;
381 rq->data_len = data_len;
382 return 0;
384 free_bios:
385 while ((bio = rq->bio) != NULL) {
386 rq->bio = bio->bi_next;
388 * call endio instead of bio_put incase it was bounced
390 bio_endio(bio, bio->bi_size, 0);
393 return err;
397 * scsi_execute_async - insert request
398 * @sdev: scsi device
399 * @cmd: scsi command
400 * @cmd_len: length of scsi cdb
401 * @data_direction: data direction
402 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
403 * @bufflen: len of buffer
404 * @use_sg: if buffer is a scatterlist this is the number of elements
405 * @timeout: request timeout in seconds
406 * @retries: number of times to retry request
407 * @flags: or into request flags
409 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
410 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
411 int use_sg, int timeout, int retries, void *privdata,
412 void (*done)(void *, char *, int, int), gfp_t gfp)
414 struct request *req;
415 struct scsi_io_context *sioc;
416 int err = 0;
417 int write = (data_direction == DMA_TO_DEVICE);
419 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
420 if (!sioc)
421 return DRIVER_ERROR << 24;
423 req = blk_get_request(sdev->request_queue, write, gfp);
424 if (!req)
425 goto free_sense;
426 req->cmd_type = REQ_TYPE_BLOCK_PC;
427 req->cmd_flags |= REQ_QUIET;
429 if (use_sg)
430 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
431 else if (bufflen)
432 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
434 if (err)
435 goto free_req;
437 req->cmd_len = cmd_len;
438 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
439 memcpy(req->cmd, cmd, req->cmd_len);
440 req->sense = sioc->sense;
441 req->sense_len = 0;
442 req->timeout = timeout;
443 req->retries = retries;
444 req->end_io_data = sioc;
446 sioc->data = privdata;
447 sioc->done = done;
449 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
450 return 0;
452 free_req:
453 blk_put_request(req);
454 free_sense:
455 kmem_cache_free(scsi_io_context_cache, sioc);
456 return DRIVER_ERROR << 24;
458 EXPORT_SYMBOL_GPL(scsi_execute_async);
461 * Function: scsi_init_cmd_errh()
463 * Purpose: Initialize cmd fields related to error handling.
465 * Arguments: cmd - command that is ready to be queued.
467 * Notes: This function has the job of initializing a number of
468 * fields related to error handling. Typically this will
469 * be called once for each command, as required.
471 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
473 cmd->serial_number = 0;
474 cmd->resid = 0;
475 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
476 if (cmd->cmd_len == 0)
477 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
480 void scsi_device_unbusy(struct scsi_device *sdev)
482 struct Scsi_Host *shost = sdev->host;
483 unsigned long flags;
485 spin_lock_irqsave(shost->host_lock, flags);
486 shost->host_busy--;
487 if (unlikely(scsi_host_in_recovery(shost) &&
488 (shost->host_failed || shost->host_eh_scheduled)))
489 scsi_eh_wakeup(shost);
490 spin_unlock(shost->host_lock);
491 spin_lock(sdev->request_queue->queue_lock);
492 sdev->device_busy--;
493 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
497 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
498 * and call blk_run_queue for all the scsi_devices on the target -
499 * including current_sdev first.
501 * Called with *no* scsi locks held.
503 static void scsi_single_lun_run(struct scsi_device *current_sdev)
505 struct Scsi_Host *shost = current_sdev->host;
506 struct scsi_device *sdev, *tmp;
507 struct scsi_target *starget = scsi_target(current_sdev);
508 unsigned long flags;
510 spin_lock_irqsave(shost->host_lock, flags);
511 starget->starget_sdev_user = NULL;
512 spin_unlock_irqrestore(shost->host_lock, flags);
515 * Call blk_run_queue for all LUNs on the target, starting with
516 * current_sdev. We race with others (to set starget_sdev_user),
517 * but in most cases, we will be first. Ideally, each LU on the
518 * target would get some limited time or requests on the target.
520 blk_run_queue(current_sdev->request_queue);
522 spin_lock_irqsave(shost->host_lock, flags);
523 if (starget->starget_sdev_user)
524 goto out;
525 list_for_each_entry_safe(sdev, tmp, &starget->devices,
526 same_target_siblings) {
527 if (sdev == current_sdev)
528 continue;
529 if (scsi_device_get(sdev))
530 continue;
532 spin_unlock_irqrestore(shost->host_lock, flags);
533 blk_run_queue(sdev->request_queue);
534 spin_lock_irqsave(shost->host_lock, flags);
536 scsi_device_put(sdev);
538 out:
539 spin_unlock_irqrestore(shost->host_lock, flags);
543 * Function: scsi_run_queue()
545 * Purpose: Select a proper request queue to serve next
547 * Arguments: q - last request's queue
549 * Returns: Nothing
551 * Notes: The previous command was completely finished, start
552 * a new one if possible.
554 static void scsi_run_queue(struct request_queue *q)
556 struct scsi_device *sdev = q->queuedata;
557 struct Scsi_Host *shost = sdev->host;
558 unsigned long flags;
560 if (sdev->single_lun)
561 scsi_single_lun_run(sdev);
563 spin_lock_irqsave(shost->host_lock, flags);
564 while (!list_empty(&shost->starved_list) &&
565 !shost->host_blocked && !shost->host_self_blocked &&
566 !((shost->can_queue > 0) &&
567 (shost->host_busy >= shost->can_queue))) {
569 * As long as shost is accepting commands and we have
570 * starved queues, call blk_run_queue. scsi_request_fn
571 * drops the queue_lock and can add us back to the
572 * starved_list.
574 * host_lock protects the starved_list and starved_entry.
575 * scsi_request_fn must get the host_lock before checking
576 * or modifying starved_list or starved_entry.
578 sdev = list_entry(shost->starved_list.next,
579 struct scsi_device, starved_entry);
580 list_del_init(&sdev->starved_entry);
581 spin_unlock_irqrestore(shost->host_lock, flags);
584 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
585 !test_and_set_bit(QUEUE_FLAG_REENTER,
586 &sdev->request_queue->queue_flags)) {
587 blk_run_queue(sdev->request_queue);
588 clear_bit(QUEUE_FLAG_REENTER,
589 &sdev->request_queue->queue_flags);
590 } else
591 blk_run_queue(sdev->request_queue);
593 spin_lock_irqsave(shost->host_lock, flags);
594 if (unlikely(!list_empty(&sdev->starved_entry)))
596 * sdev lost a race, and was put back on the
597 * starved list. This is unlikely but without this
598 * in theory we could loop forever.
600 break;
602 spin_unlock_irqrestore(shost->host_lock, flags);
604 blk_run_queue(q);
608 * Function: scsi_requeue_command()
610 * Purpose: Handle post-processing of completed commands.
612 * Arguments: q - queue to operate on
613 * cmd - command that may need to be requeued.
615 * Returns: Nothing
617 * Notes: After command completion, there may be blocks left
618 * over which weren't finished by the previous command
619 * this can be for a number of reasons - the main one is
620 * I/O errors in the middle of the request, in which case
621 * we need to request the blocks that come after the bad
622 * sector.
623 * Notes: Upon return, cmd is a stale pointer.
625 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
627 struct request *req = cmd->request;
628 unsigned long flags;
630 spin_lock_irqsave(q->queue_lock, flags);
631 scsi_unprep_request(req);
632 blk_requeue_request(q, req);
633 spin_unlock_irqrestore(q->queue_lock, flags);
635 scsi_run_queue(q);
638 void scsi_next_command(struct scsi_cmnd *cmd)
640 struct scsi_device *sdev = cmd->device;
641 struct request_queue *q = sdev->request_queue;
643 /* need to hold a reference on the device before we let go of the cmd */
644 get_device(&sdev->sdev_gendev);
646 scsi_put_command(cmd);
647 scsi_run_queue(q);
649 /* ok to remove device now */
650 put_device(&sdev->sdev_gendev);
653 void scsi_run_host_queues(struct Scsi_Host *shost)
655 struct scsi_device *sdev;
657 shost_for_each_device(sdev, shost)
658 scsi_run_queue(sdev->request_queue);
661 static void scsi_release_buffers(struct scsi_cmnd *);
664 * Function: scsi_end_request()
666 * Purpose: Post-processing of completed commands (usually invoked at end
667 * of upper level post-processing and scsi_io_completion).
669 * Arguments: cmd - command that is complete.
670 * error - 0 if I/O indicates success, < 0 for I/O error.
671 * bytes - number of bytes of completed I/O
672 * requeue - indicates whether we should requeue leftovers.
674 * Lock status: Assumed that lock is not held upon entry.
676 * Returns: cmd if requeue required, NULL otherwise.
678 * Notes: This is called for block device requests in order to
679 * mark some number of sectors as complete.
681 * We are guaranteeing that the request queue will be goosed
682 * at some point during this call.
683 * Notes: If cmd was requeued, upon return it will be a stale pointer.
685 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
686 int bytes, int requeue)
688 request_queue_t *q = cmd->device->request_queue;
689 struct request *req = cmd->request;
692 * If there are blocks left over at the end, set up the command
693 * to queue the remainder of them.
695 if (blk_end_request(req, error, bytes)) {
696 int leftover = (req->hard_nr_sectors << 9);
698 if (blk_pc_request(req))
699 leftover = req->data_len;
701 /* kill remainder if no retrys */
702 if (error && blk_noretry_request(req))
703 blk_end_request(req, error, leftover);
704 else {
705 if (requeue) {
707 * Bleah. Leftovers again. Stick the
708 * leftovers in the front of the
709 * queue, and goose the queue again.
711 scsi_release_buffers(cmd);
712 scsi_requeue_command(q, cmd);
713 cmd = NULL;
715 return cmd;
720 * This will goose the queue request function at the end, so we don't
721 * need to worry about launching another command.
723 scsi_release_buffers(cmd);
724 scsi_next_command(cmd);
725 return NULL;
728 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
730 struct scsi_host_sg_pool *sgp;
731 struct scatterlist *sgl;
733 BUG_ON(!cmd->use_sg);
735 switch (cmd->use_sg) {
736 case 1 ... 8:
737 cmd->sglist_len = 0;
738 break;
739 case 9 ... 16:
740 cmd->sglist_len = 1;
741 break;
742 case 17 ... 32:
743 cmd->sglist_len = 2;
744 break;
745 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
746 case 33 ... 64:
747 cmd->sglist_len = 3;
748 break;
749 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
750 case 65 ... 128:
751 cmd->sglist_len = 4;
752 break;
753 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
754 case 129 ... 256:
755 cmd->sglist_len = 5;
756 break;
757 #endif
758 #endif
759 #endif
760 default:
761 return NULL;
764 sgp = scsi_sg_pools + cmd->sglist_len;
765 sgl = mempool_alloc(sgp->pool, gfp_mask);
766 return sgl;
769 EXPORT_SYMBOL(scsi_alloc_sgtable);
771 void scsi_free_sgtable(struct scsi_cmnd *cmd)
773 struct scatterlist *sgl = cmd->request_buffer;
774 struct scsi_host_sg_pool *sgp;
776 BUG_ON(cmd->sglist_len >= SG_MEMPOOL_NR);
778 sgp = scsi_sg_pools + cmd->sglist_len;
779 mempool_free(sgl, sgp->pool);
782 EXPORT_SYMBOL(scsi_free_sgtable);
785 * Function: scsi_release_buffers()
787 * Purpose: Completion processing for block device I/O requests.
789 * Arguments: cmd - command that we are bailing.
791 * Lock status: Assumed that no lock is held upon entry.
793 * Returns: Nothing
795 * Notes: In the event that an upper level driver rejects a
796 * command, we must release resources allocated during
797 * the __init_io() function. Primarily this would involve
798 * the scatter-gather table, and potentially any bounce
799 * buffers.
801 static void scsi_release_buffers(struct scsi_cmnd *cmd)
803 if (cmd->use_sg)
804 scsi_free_sgtable(cmd);
807 * Zero these out. They now point to freed memory, and it is
808 * dangerous to hang onto the pointers.
810 cmd->request_buffer = NULL;
811 cmd->request_bufflen = 0;
815 * Function: scsi_io_completion()
817 * Purpose: Completion processing for block device I/O requests.
819 * Arguments: cmd - command that is finished.
821 * Lock status: Assumed that no lock is held upon entry.
823 * Returns: Nothing
825 * Notes: This function is matched in terms of capabilities to
826 * the function that created the scatter-gather list.
827 * In other words, if there are no bounce buffers
828 * (the normal case for most drivers), we don't need
829 * the logic to deal with cleaning up afterwards.
831 * We must call scsi_end_request(). This will finish off
832 * the specified number of sectors. If we are done, the
833 * command block will be released and the queue function
834 * will be goosed. If we are not done then we have to
835 * figure out what to do next:
837 * a) We can call scsi_requeue_command(). The request
838 * will be unprepared and put back on the queue. Then
839 * a new command will be created for it. This should
840 * be used if we made forward progress, or if we want
841 * to switch from READ(10) to READ(6) for example.
843 * b) We can call scsi_queue_insert(). The request will
844 * be put back on the queue and retried using the same
845 * command as before, possibly after a delay.
847 * c) We can call blk_end_request() with -EIO to fail
848 * the remainder of the request.
850 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
852 int result = cmd->result;
853 request_queue_t *q = cmd->device->request_queue;
854 struct request *req = cmd->request;
855 int error = 0;
856 struct scsi_sense_hdr sshdr;
857 int sense_valid = 0;
858 int sense_deferred = 0;
859 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
860 ACTION_DELAYED_RETRY} action;
861 char *description = NULL;
863 if (result) {
864 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
865 if (sense_valid)
866 sense_deferred = scsi_sense_is_deferred(&sshdr);
869 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
870 req->errors = result;
871 if (result) {
872 if (sense_valid && req->sense) {
874 * SG_IO wants current and deferred errors
876 int len = 8 + cmd->sense_buffer[7];
878 if (len > SCSI_SENSE_BUFFERSIZE)
879 len = SCSI_SENSE_BUFFERSIZE;
880 memcpy(req->sense, cmd->sense_buffer, len);
881 req->sense_len = len;
883 if (!sense_deferred)
884 error = -EIO;
886 req->data_len = cmd->resid;
890 * Next deal with any sectors which we were able to correctly
891 * handle.
893 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
894 "%d bytes done.\n",
895 req->nr_sectors, good_bytes));
898 * Recovered errors need reporting, but they're always treated
899 * as success, so fiddle the result code here. For BLOCK_PC
900 * we already took a copy of the original into rq->errors which
901 * is what gets returned to the user
903 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
904 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
905 * print since caller wants ATA registers. Only occurs on
906 * SCSI ATA PASS_THROUGH commands when CK_COND=1
908 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
910 else if (!(req->cmd_flags & REQ_QUIET))
911 scsi_print_sense("", cmd);
912 result = 0;
913 /* BLOCK_PC may have set error */
914 error = 0;
918 * A number of bytes were successfully read. If there
919 * are leftovers and there is some kind of error
920 * (result != 0), retry the rest.
922 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
923 return;
925 error = -EIO;
927 if (host_byte(result) == DID_RESET) {
928 /* Third party bus reset or reset for error recovery
929 * reasons. Just retry the command and see what
930 * happens.
932 action = ACTION_RETRY;
933 } else if (sense_valid && !sense_deferred) {
934 switch (sshdr.sense_key) {
935 case UNIT_ATTENTION:
936 if (cmd->device->removable) {
937 /* Detected disc change. Set a bit
938 * and quietly refuse further access.
940 cmd->device->changed = 1;
941 description = "Media Changed";
942 action = ACTION_FAIL;
943 } else {
944 /* Must have been a power glitch, or a
945 * bus reset. Could not have been a
946 * media change, so we just retry the
947 * command and see what happens.
949 action = ACTION_RETRY;
951 break;
952 case ILLEGAL_REQUEST:
953 /* If we had an ILLEGAL REQUEST returned, then
954 * we may have performed an unsupported
955 * command. The only thing this should be
956 * would be a ten byte read where only a six
957 * byte read was supported. Also, on a system
958 * where READ CAPACITY failed, we may have
959 * read past the end of the disk.
961 if ((cmd->device->use_10_for_rw &&
962 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
963 (cmd->cmnd[0] == READ_10 ||
964 cmd->cmnd[0] == WRITE_10)) {
965 /* This will issue a new 6-byte command. */
966 cmd->device->use_10_for_rw = 0;
967 action = ACTION_REPREP;
968 } else if (sshdr.asc == 0x10) /* DIX */ {
969 description = "Host Data Integrity Failure";
970 action = ACTION_FAIL;
971 error = -EILSEQ;
972 } else
973 action = ACTION_FAIL;
974 break;
975 case ABORTED_COMMAND:
976 action = ACTION_FAIL;
977 if (sshdr.asc == 0x10) { /* DIF */
978 description = "Target Data Integrity Failure";
979 error = -EILSEQ;
981 break;
982 case NOT_READY:
983 /* If the device is in the process of becoming
984 * ready, or has a temporary blockage, retry.
986 if (sshdr.asc == 0x04) {
987 switch (sshdr.ascq) {
988 case 0x01: /* becoming ready */
989 case 0x04: /* format in progress */
990 case 0x05: /* rebuild in progress */
991 case 0x06: /* recalculation in progress */
992 case 0x07: /* operation in progress */
993 case 0x08: /* Long write in progress */
994 case 0x09: /* self test in progress */
995 case 0x14: /* space allocation in progress */
996 action = ACTION_DELAYED_RETRY;
997 break;
998 default:
999 description = "Device not ready";
1000 action = ACTION_FAIL;
1001 break;
1003 } else {
1004 description = "Device not ready";
1005 action = ACTION_FAIL;
1007 break;
1008 case VOLUME_OVERFLOW:
1009 /* See SSC3rXX or current. */
1010 action = ACTION_FAIL;
1011 break;
1012 default:
1013 description = "Unhandled sense code";
1014 action = ACTION_FAIL;
1015 break;
1017 } else {
1018 description = "Unhandled error code";
1019 action = ACTION_FAIL;
1022 switch (action) {
1023 case ACTION_FAIL:
1024 /* Give up and fail the remainder of the request */
1025 scsi_release_buffers(cmd);
1026 if (!(req->cmd_flags & REQ_QUIET)) {
1027 if (description)
1028 scmd_printk(KERN_INFO, cmd, "%s\n",
1029 description);
1030 scsi_print_result(cmd);
1031 if (driver_byte(result) & DRIVER_SENSE)
1032 scsi_print_sense("", cmd);
1033 scsi_print_command(cmd);
1035 blk_end_request(req, error, blk_rq_bytes(req));
1036 scsi_next_command(cmd);
1037 break;
1038 case ACTION_REPREP:
1039 /* Unprep the request and put it back at the head of the queue.
1040 * A new command will be prepared and issued.
1042 scsi_release_buffers(cmd);
1043 scsi_requeue_command(q, cmd);
1044 break;
1045 case ACTION_RETRY:
1046 /* Retry the same command immediately */
1047 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1048 break;
1049 case ACTION_DELAYED_RETRY:
1050 /* Retry the same command after a delay */
1051 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1052 break;
1055 EXPORT_SYMBOL(scsi_io_completion);
1058 * Function: scsi_init_io()
1060 * Purpose: SCSI I/O initialize function.
1062 * Arguments: cmd - Command descriptor we wish to initialize
1064 * Returns: 0 on success
1065 * BLKPREP_DEFER if the failure is retryable
1066 * BLKPREP_KILL if the failure is fatal
1068 static int scsi_init_io(struct scsi_cmnd *cmd)
1070 struct request *req = cmd->request;
1071 struct scatterlist *sgpnt;
1072 int count;
1075 * We used to not use scatter-gather for single segment request,
1076 * but now we do (it makes highmem I/O easier to support without
1077 * kmapping pages)
1079 cmd->use_sg = req->nr_phys_segments;
1082 * If sg table allocation fails, requeue request later.
1084 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1085 if (unlikely(!sgpnt)) {
1086 scsi_unprep_request(req);
1087 return BLKPREP_DEFER;
1090 req->buffer = NULL;
1091 cmd->request_buffer = (char *) sgpnt;
1092 if (blk_pc_request(req))
1093 cmd->request_bufflen = req->data_len;
1094 else
1095 cmd->request_bufflen = req->nr_sectors << 9;
1098 * Next, walk the list, and fill in the addresses and sizes of
1099 * each segment.
1101 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1102 if (likely(count <= cmd->use_sg)) {
1103 cmd->use_sg = count;
1104 return BLKPREP_OK;
1107 printk(KERN_ERR "Incorrect number of segments after building list\n");
1108 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1109 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1110 req->current_nr_sectors);
1112 /* release the command and kill it */
1113 scsi_release_buffers(cmd);
1114 scsi_put_command(cmd);
1115 return BLKPREP_KILL;
1118 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1119 sector_t *error_sector)
1121 struct scsi_device *sdev = q->queuedata;
1122 struct scsi_driver *drv;
1124 if (sdev->sdev_state != SDEV_RUNNING)
1125 return -ENXIO;
1127 drv = *(struct scsi_driver **) disk->private_data;
1128 if (drv->issue_flush)
1129 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1131 return -EOPNOTSUPP;
1134 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1135 struct request *req)
1137 struct scsi_cmnd *cmd;
1139 if (!req->special) {
1140 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1141 if (unlikely(!cmd))
1142 return NULL;
1143 req->special = cmd;
1144 } else {
1145 cmd = req->special;
1148 /* pull a tag out of the request if we have one */
1149 cmd->tag = req->tag;
1150 cmd->request = req;
1152 return cmd;
1155 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1157 BUG_ON(!blk_pc_request(cmd->request));
1159 * This will complete the whole command with uptodate=1 so
1160 * as far as the block layer is concerned the command completed
1161 * successfully. Since this is a REQ_BLOCK_PC command the
1162 * caller should check the request's errors value
1164 scsi_io_completion(cmd, cmd->request_bufflen);
1167 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1169 struct scsi_cmnd *cmd;
1171 cmd = scsi_get_cmd_from_req(sdev, req);
1172 if (unlikely(!cmd))
1173 return BLKPREP_DEFER;
1176 * BLOCK_PC requests may transfer data, in which case they must
1177 * a bio attached to them. Or they might contain a SCSI command
1178 * that does not transfer data, in which case they may optionally
1179 * submit a request without an attached bio.
1181 if (req->bio) {
1182 int ret;
1184 BUG_ON(!req->nr_phys_segments);
1186 ret = scsi_init_io(cmd);
1187 if (unlikely(ret))
1188 return ret;
1189 } else {
1190 BUG_ON(req->data_len);
1191 BUG_ON(req->data);
1193 cmd->request_bufflen = 0;
1194 cmd->request_buffer = NULL;
1195 cmd->use_sg = 0;
1196 req->buffer = NULL;
1199 BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1200 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1201 cmd->cmd_len = req->cmd_len;
1202 if (!req->data_len)
1203 cmd->sc_data_direction = DMA_NONE;
1204 else if (rq_data_dir(req) == WRITE)
1205 cmd->sc_data_direction = DMA_TO_DEVICE;
1206 else
1207 cmd->sc_data_direction = DMA_FROM_DEVICE;
1209 cmd->transfersize = req->data_len;
1210 cmd->allowed = req->retries;
1211 cmd->timeout_per_command = req->timeout;
1212 cmd->done = scsi_blk_pc_done;
1213 return BLKPREP_OK;
1217 * Setup a REQ_TYPE_FS command. These are simple read/write request
1218 * from filesystems that still need to be translated to SCSI CDBs from
1219 * the ULD.
1221 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1223 struct scsi_cmnd *cmd;
1224 struct scsi_driver *drv;
1225 int ret;
1228 * Filesystem requests must transfer data.
1230 BUG_ON(!req->nr_phys_segments);
1232 cmd = scsi_get_cmd_from_req(sdev, req);
1233 if (unlikely(!cmd))
1234 return BLKPREP_DEFER;
1236 ret = scsi_init_io(cmd);
1237 if (unlikely(ret))
1238 return ret;
1241 * Initialize the actual SCSI command for this request.
1243 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1244 if (unlikely(!drv->init_command(cmd))) {
1245 scsi_release_buffers(cmd);
1246 scsi_put_command(cmd);
1247 return BLKPREP_KILL;
1250 return BLKPREP_OK;
1253 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1255 struct scsi_device *sdev = q->queuedata;
1256 int ret = BLKPREP_OK;
1259 * If the device is not in running state we will reject some
1260 * or all commands.
1262 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1263 switch (sdev->sdev_state) {
1264 case SDEV_OFFLINE:
1266 * If the device is offline we refuse to process any
1267 * commands. The device must be brought online
1268 * before trying any recovery commands.
1270 sdev_printk(KERN_ERR, sdev,
1271 "rejecting I/O to offline device\n");
1272 ret = BLKPREP_KILL;
1273 break;
1274 case SDEV_DEL:
1276 * If the device is fully deleted, we refuse to
1277 * process any commands as well.
1279 sdev_printk(KERN_ERR, sdev,
1280 "rejecting I/O to dead device\n");
1281 ret = BLKPREP_KILL;
1282 break;
1283 case SDEV_QUIESCE:
1284 case SDEV_BLOCK:
1286 * If the devices is blocked we defer normal commands.
1288 if (!(req->cmd_flags & REQ_PREEMPT))
1289 ret = BLKPREP_DEFER;
1290 break;
1291 default:
1293 * For any other not fully online state we only allow
1294 * special commands. In particular any user initiated
1295 * command is not allowed.
1297 if (!(req->cmd_flags & REQ_PREEMPT))
1298 ret = BLKPREP_KILL;
1299 break;
1302 if (ret != BLKPREP_OK)
1303 goto out;
1306 switch (req->cmd_type) {
1307 case REQ_TYPE_BLOCK_PC:
1308 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1309 break;
1310 case REQ_TYPE_FS:
1311 ret = scsi_setup_fs_cmnd(sdev, req);
1312 break;
1313 default:
1315 * All other command types are not supported.
1317 * Note that these days the SCSI subsystem does not use
1318 * REQ_TYPE_SPECIAL requests anymore. These are only used
1319 * (directly or via blk_insert_request) by non-SCSI drivers.
1321 blk_dump_rq_flags(req, "SCSI bad req");
1322 ret = BLKPREP_KILL;
1323 break;
1326 out:
1327 switch (ret) {
1328 case BLKPREP_KILL:
1329 req->errors = DID_NO_CONNECT << 16;
1330 break;
1331 case BLKPREP_DEFER:
1333 * If we defer, the elv_next_request() returns NULL, but the
1334 * queue must be restarted, so we plug here if no returning
1335 * command will automatically do that.
1337 if (sdev->device_busy == 0)
1338 blk_plug_device(q);
1339 break;
1340 default:
1341 req->cmd_flags |= REQ_DONTPREP;
1344 return ret;
1348 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1349 * return 0.
1351 * Called with the queue_lock held.
1353 static inline int scsi_dev_queue_ready(struct request_queue *q,
1354 struct scsi_device *sdev)
1356 if (sdev->device_busy >= sdev->queue_depth)
1357 return 0;
1358 if (sdev->device_busy == 0 && sdev->device_blocked) {
1360 * unblock after device_blocked iterates to zero
1362 if (--sdev->device_blocked == 0) {
1363 SCSI_LOG_MLQUEUE(3,
1364 sdev_printk(KERN_INFO, sdev,
1365 "unblocking device at zero depth\n"));
1366 } else {
1367 blk_plug_device(q);
1368 return 0;
1371 if (sdev->device_blocked)
1372 return 0;
1374 return 1;
1378 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1379 * return 0. We must end up running the queue again whenever 0 is
1380 * returned, else IO can hang.
1382 * Called with host_lock held.
1384 static inline int scsi_host_queue_ready(struct request_queue *q,
1385 struct Scsi_Host *shost,
1386 struct scsi_device *sdev)
1388 if (scsi_host_in_recovery(shost))
1389 return 0;
1390 if (shost->host_busy == 0 && shost->host_blocked) {
1392 * unblock after host_blocked iterates to zero
1394 if (--shost->host_blocked == 0) {
1395 SCSI_LOG_MLQUEUE(3,
1396 printk("scsi%d unblocking host at zero depth\n",
1397 shost->host_no));
1398 } else {
1399 blk_plug_device(q);
1400 return 0;
1403 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1404 shost->host_blocked || shost->host_self_blocked) {
1405 if (list_empty(&sdev->starved_entry))
1406 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1407 return 0;
1410 /* We're OK to process the command, so we can't be starved */
1411 if (!list_empty(&sdev->starved_entry))
1412 list_del_init(&sdev->starved_entry);
1414 return 1;
1418 * Kill a request for a dead device
1420 static void scsi_kill_request(struct request *req, request_queue_t *q)
1422 struct scsi_cmnd *cmd = req->special;
1423 struct scsi_device *sdev;
1424 struct Scsi_Host *shost;
1426 blkdev_dequeue_request(req);
1428 if (unlikely(cmd == NULL)) {
1429 printk(KERN_CRIT "impossible request in %s.\n",
1430 __FUNCTION__);
1431 BUG();
1434 sdev = cmd->device;
1435 shost = sdev->host;
1436 scsi_init_cmd_errh(cmd);
1437 cmd->result = DID_NO_CONNECT << 16;
1438 atomic_inc(&cmd->device->iorequest_cnt);
1441 * SCSI request completion path will do scsi_device_unbusy(),
1442 * bump busy counts. To bump the counters, we need to dance
1443 * with the locks as normal issue path does.
1445 sdev->device_busy++;
1446 spin_unlock(sdev->request_queue->queue_lock);
1447 spin_lock(shost->host_lock);
1448 shost->host_busy++;
1449 spin_unlock(shost->host_lock);
1450 spin_lock(sdev->request_queue->queue_lock);
1452 __scsi_done(cmd);
1455 static void scsi_softirq_done(struct request *rq)
1457 struct scsi_cmnd *cmd = rq->completion_data;
1458 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1459 int disposition;
1461 INIT_LIST_HEAD(&cmd->eh_entry);
1463 disposition = scsi_decide_disposition(cmd);
1464 if (disposition != SUCCESS &&
1465 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1466 sdev_printk(KERN_ERR, cmd->device,
1467 "timing out command, waited %lus\n",
1468 wait_for/HZ);
1469 disposition = SUCCESS;
1472 scsi_log_completion(cmd, disposition);
1474 switch (disposition) {
1475 case SUCCESS:
1476 scsi_finish_command(cmd);
1477 break;
1478 case NEEDS_RETRY:
1479 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1480 break;
1481 case ADD_TO_MLQUEUE:
1482 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1483 break;
1484 default:
1485 if (!scsi_eh_scmd_add(cmd, 0))
1486 scsi_finish_command(cmd);
1491 * Function: scsi_request_fn()
1493 * Purpose: Main strategy routine for SCSI.
1495 * Arguments: q - Pointer to actual queue.
1497 * Returns: Nothing
1499 * Lock status: IO request lock assumed to be held when called.
1501 static void scsi_request_fn(struct request_queue *q)
1503 struct scsi_device *sdev = q->queuedata;
1504 struct Scsi_Host *shost;
1505 struct scsi_cmnd *cmd;
1506 struct request *req;
1508 if (!sdev) {
1509 printk("scsi: killing requests for dead queue\n");
1510 while ((req = elv_next_request(q)) != NULL)
1511 scsi_kill_request(req, q);
1512 return;
1515 if(!get_device(&sdev->sdev_gendev))
1516 /* We must be tearing the block queue down already */
1517 return;
1520 * To start with, we keep looping until the queue is empty, or until
1521 * the host is no longer able to accept any more requests.
1523 shost = sdev->host;
1524 while (!blk_queue_plugged(q)) {
1525 int rtn;
1527 * get next queueable request. We do this early to make sure
1528 * that the request is fully prepared even if we cannot
1529 * accept it.
1531 req = elv_next_request(q);
1532 if (!req || !scsi_dev_queue_ready(q, sdev))
1533 break;
1535 if (unlikely(!scsi_device_online(sdev))) {
1536 sdev_printk(KERN_ERR, sdev,
1537 "rejecting I/O to offline device\n");
1538 scsi_kill_request(req, q);
1539 continue;
1544 * Remove the request from the request list.
1546 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1547 blkdev_dequeue_request(req);
1548 sdev->device_busy++;
1550 spin_unlock(q->queue_lock);
1551 cmd = req->special;
1552 if (unlikely(cmd == NULL)) {
1553 printk(KERN_CRIT "impossible request in %s.\n"
1554 "please mail a stack trace to "
1555 "linux-scsi@vger.kernel.org\n",
1556 __FUNCTION__);
1557 blk_dump_rq_flags(req, "foo");
1558 BUG();
1560 spin_lock(shost->host_lock);
1562 if (!scsi_host_queue_ready(q, shost, sdev))
1563 goto not_ready;
1564 if (sdev->single_lun) {
1565 if (scsi_target(sdev)->starget_sdev_user &&
1566 scsi_target(sdev)->starget_sdev_user != sdev)
1567 goto not_ready;
1568 scsi_target(sdev)->starget_sdev_user = sdev;
1570 shost->host_busy++;
1573 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1574 * take the lock again.
1576 spin_unlock_irq(shost->host_lock);
1579 * Finally, initialize any error handling parameters, and set up
1580 * the timers for timeouts.
1582 scsi_init_cmd_errh(cmd);
1585 * Dispatch the command to the low-level driver.
1587 rtn = scsi_dispatch_cmd(cmd);
1588 spin_lock_irq(q->queue_lock);
1589 if(rtn) {
1590 /* we're refusing the command; because of
1591 * the way locks get dropped, we need to
1592 * check here if plugging is required */
1593 if(sdev->device_busy == 0)
1594 blk_plug_device(q);
1596 break;
1600 goto out;
1602 not_ready:
1603 spin_unlock_irq(shost->host_lock);
1606 * lock q, handle tag, requeue req, and decrement device_busy. We
1607 * must return with queue_lock held.
1609 * Decrementing device_busy without checking it is OK, as all such
1610 * cases (host limits or settings) should run the queue at some
1611 * later time.
1613 spin_lock_irq(q->queue_lock);
1614 blk_requeue_request(q, req);
1615 sdev->device_busy--;
1616 if(sdev->device_busy == 0)
1617 blk_plug_device(q);
1618 out:
1619 /* must be careful here...if we trigger the ->remove() function
1620 * we cannot be holding the q lock */
1621 spin_unlock_irq(q->queue_lock);
1622 put_device(&sdev->sdev_gendev);
1623 spin_lock_irq(q->queue_lock);
1626 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1628 struct device *host_dev;
1629 u64 bounce_limit = 0xffffffff;
1631 if (shost->unchecked_isa_dma)
1632 return BLK_BOUNCE_ISA;
1634 * Platforms with virtual-DMA translation
1635 * hardware have no practical limit.
1637 if (!PCI_DMA_BUS_IS_PHYS)
1638 return BLK_BOUNCE_ANY;
1640 host_dev = scsi_get_device(shost);
1641 if (host_dev && host_dev->dma_mask)
1642 bounce_limit = *host_dev->dma_mask;
1644 return bounce_limit;
1646 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1648 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1649 request_fn_proc *request_fn)
1651 struct request_queue *q;
1653 q = blk_init_queue(request_fn, NULL);
1654 if (!q)
1655 return NULL;
1657 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1658 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1659 blk_queue_max_sectors(q, shost->max_sectors);
1660 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1661 blk_queue_segment_boundary(q, shost->dma_boundary);
1663 if (!shost->use_clustering)
1664 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1667 * set a reasonable default alignment on word boundaries: the
1668 * host and device may alter it using
1669 * blk_queue_update_dma_alignment() later.
1671 blk_queue_dma_alignment(q, 0x03);
1673 return q;
1675 EXPORT_SYMBOL(__scsi_alloc_queue);
1677 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1679 struct request_queue *q;
1681 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1682 if (!q)
1683 return NULL;
1685 blk_queue_prep_rq(q, scsi_prep_fn);
1686 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1687 blk_queue_softirq_done(q, scsi_softirq_done);
1688 return q;
1691 void scsi_free_queue(struct request_queue *q)
1693 blk_cleanup_queue(q);
1697 * Function: scsi_block_requests()
1699 * Purpose: Utility function used by low-level drivers to prevent further
1700 * commands from being queued to the device.
1702 * Arguments: shost - Host in question
1704 * Returns: Nothing
1706 * Lock status: No locks are assumed held.
1708 * Notes: There is no timer nor any other means by which the requests
1709 * get unblocked other than the low-level driver calling
1710 * scsi_unblock_requests().
1712 void scsi_block_requests(struct Scsi_Host *shost)
1714 shost->host_self_blocked = 1;
1716 EXPORT_SYMBOL(scsi_block_requests);
1719 * Function: scsi_unblock_requests()
1721 * Purpose: Utility function used by low-level drivers to allow further
1722 * commands from being queued to the device.
1724 * Arguments: shost - Host in question
1726 * Returns: Nothing
1728 * Lock status: No locks are assumed held.
1730 * Notes: There is no timer nor any other means by which the requests
1731 * get unblocked other than the low-level driver calling
1732 * scsi_unblock_requests().
1734 * This is done as an API function so that changes to the
1735 * internals of the scsi mid-layer won't require wholesale
1736 * changes to drivers that use this feature.
1738 void scsi_unblock_requests(struct Scsi_Host *shost)
1740 shost->host_self_blocked = 0;
1741 scsi_run_host_queues(shost);
1743 EXPORT_SYMBOL(scsi_unblock_requests);
1745 int __init scsi_init_queue(void)
1747 int i;
1749 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1750 sizeof(struct scsi_io_context),
1751 0, 0, NULL, NULL);
1752 if (!scsi_io_context_cache) {
1753 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1754 return -ENOMEM;
1757 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1758 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1759 int size = sgp->size * sizeof(struct scatterlist);
1761 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1762 SLAB_HWCACHE_ALIGN, NULL, NULL);
1763 if (!sgp->slab) {
1764 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1765 sgp->name);
1768 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1769 sgp->slab);
1770 if (!sgp->pool) {
1771 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1772 sgp->name);
1776 return 0;
1779 void scsi_exit_queue(void)
1781 int i;
1783 kmem_cache_destroy(scsi_io_context_cache);
1785 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1786 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1787 mempool_destroy(sgp->pool);
1788 kmem_cache_destroy(sgp->slab);
1793 * scsi_mode_select - issue a mode select
1794 * @sdev: SCSI device to be queried
1795 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1796 * @sp: Save page bit (0 == don't save, 1 == save)
1797 * @modepage: mode page being requested
1798 * @buffer: request buffer (may not be smaller than eight bytes)
1799 * @len: length of request buffer.
1800 * @timeout: command timeout
1801 * @retries: number of retries before failing
1802 * @data: returns a structure abstracting the mode header data
1803 * @sense: place to put sense data (or NULL if no sense to be collected).
1804 * must be SCSI_SENSE_BUFFERSIZE big.
1806 * Returns zero if successful; negative error number or scsi
1807 * status on error
1811 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1812 unsigned char *buffer, int len, int timeout, int retries,
1813 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1815 unsigned char cmd[10];
1816 unsigned char *real_buffer;
1817 int ret;
1819 memset(cmd, 0, sizeof(cmd));
1820 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1822 if (sdev->use_10_for_ms) {
1823 if (len > 65535)
1824 return -EINVAL;
1825 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1826 if (!real_buffer)
1827 return -ENOMEM;
1828 memcpy(real_buffer + 8, buffer, len);
1829 len += 8;
1830 real_buffer[0] = 0;
1831 real_buffer[1] = 0;
1832 real_buffer[2] = data->medium_type;
1833 real_buffer[3] = data->device_specific;
1834 real_buffer[4] = data->longlba ? 0x01 : 0;
1835 real_buffer[5] = 0;
1836 real_buffer[6] = data->block_descriptor_length >> 8;
1837 real_buffer[7] = data->block_descriptor_length;
1839 cmd[0] = MODE_SELECT_10;
1840 cmd[7] = len >> 8;
1841 cmd[8] = len;
1842 } else {
1843 if (len > 255 || data->block_descriptor_length > 255 ||
1844 data->longlba)
1845 return -EINVAL;
1847 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1848 if (!real_buffer)
1849 return -ENOMEM;
1850 memcpy(real_buffer + 4, buffer, len);
1851 len += 4;
1852 real_buffer[0] = 0;
1853 real_buffer[1] = data->medium_type;
1854 real_buffer[2] = data->device_specific;
1855 real_buffer[3] = data->block_descriptor_length;
1858 cmd[0] = MODE_SELECT;
1859 cmd[4] = len;
1862 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1863 sshdr, timeout, retries);
1864 kfree(real_buffer);
1865 return ret;
1867 EXPORT_SYMBOL_GPL(scsi_mode_select);
1870 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1871 * six bytes if necessary.
1872 * @sdev: SCSI device to be queried
1873 * @dbd: set if mode sense will allow block descriptors to be returned
1874 * @modepage: mode page being requested
1875 * @buffer: request buffer (may not be smaller than eight bytes)
1876 * @len: length of request buffer.
1877 * @timeout: command timeout
1878 * @retries: number of retries before failing
1879 * @data: returns a structure abstracting the mode header data
1880 * @sense: place to put sense data (or NULL if no sense to be collected).
1881 * must be SCSI_SENSE_BUFFERSIZE big.
1883 * Returns zero if unsuccessful, or the header offset (either 4
1884 * or 8 depending on whether a six or ten byte command was
1885 * issued) if successful.
1888 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1889 unsigned char *buffer, int len, int timeout, int retries,
1890 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1892 unsigned char cmd[12];
1893 int use_10_for_ms;
1894 int header_length;
1895 int result;
1896 struct scsi_sense_hdr my_sshdr;
1898 memset(data, 0, sizeof(*data));
1899 memset(&cmd[0], 0, 12);
1900 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1901 cmd[2] = modepage;
1903 /* caller might not be interested in sense, but we need it */
1904 if (!sshdr)
1905 sshdr = &my_sshdr;
1907 retry:
1908 use_10_for_ms = sdev->use_10_for_ms;
1910 if (use_10_for_ms) {
1911 if (len < 8)
1912 len = 8;
1914 cmd[0] = MODE_SENSE_10;
1915 cmd[8] = len;
1916 header_length = 8;
1917 } else {
1918 if (len < 4)
1919 len = 4;
1921 cmd[0] = MODE_SENSE;
1922 cmd[4] = len;
1923 header_length = 4;
1926 memset(buffer, 0, len);
1928 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1929 sshdr, timeout, retries);
1931 /* This code looks awful: what it's doing is making sure an
1932 * ILLEGAL REQUEST sense return identifies the actual command
1933 * byte as the problem. MODE_SENSE commands can return
1934 * ILLEGAL REQUEST if the code page isn't supported */
1936 if (use_10_for_ms && !scsi_status_is_good(result) &&
1937 (driver_byte(result) & DRIVER_SENSE)) {
1938 if (scsi_sense_valid(sshdr)) {
1939 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1940 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1942 * Invalid command operation code
1944 sdev->use_10_for_ms = 0;
1945 goto retry;
1950 if(scsi_status_is_good(result)) {
1951 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1952 (modepage == 6 || modepage == 8))) {
1953 /* Initio breakage? */
1954 header_length = 0;
1955 data->length = 13;
1956 data->medium_type = 0;
1957 data->device_specific = 0;
1958 data->longlba = 0;
1959 data->block_descriptor_length = 0;
1960 } else if(use_10_for_ms) {
1961 data->length = buffer[0]*256 + buffer[1] + 2;
1962 data->medium_type = buffer[2];
1963 data->device_specific = buffer[3];
1964 data->longlba = buffer[4] & 0x01;
1965 data->block_descriptor_length = buffer[6]*256
1966 + buffer[7];
1967 } else {
1968 data->length = buffer[0] + 1;
1969 data->medium_type = buffer[1];
1970 data->device_specific = buffer[2];
1971 data->block_descriptor_length = buffer[3];
1973 data->header_length = header_length;
1976 return result;
1978 EXPORT_SYMBOL(scsi_mode_sense);
1981 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1983 char cmd[] = {
1984 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1986 struct scsi_sense_hdr sshdr;
1987 int result;
1989 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1990 timeout, retries);
1992 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1994 if ((scsi_sense_valid(&sshdr)) &&
1995 ((sshdr.sense_key == UNIT_ATTENTION) ||
1996 (sshdr.sense_key == NOT_READY))) {
1997 sdev->changed = 1;
1998 result = 0;
2001 return result;
2003 EXPORT_SYMBOL(scsi_test_unit_ready);
2006 * scsi_device_set_state - Take the given device through the device
2007 * state model.
2008 * @sdev: scsi device to change the state of.
2009 * @state: state to change to.
2011 * Returns zero if unsuccessful or an error if the requested
2012 * transition is illegal.
2015 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2017 enum scsi_device_state oldstate = sdev->sdev_state;
2019 if (state == oldstate)
2020 return 0;
2022 switch (state) {
2023 case SDEV_CREATED:
2024 /* There are no legal states that come back to
2025 * created. This is the manually initialised start
2026 * state */
2027 goto illegal;
2029 case SDEV_RUNNING:
2030 switch (oldstate) {
2031 case SDEV_CREATED:
2032 case SDEV_OFFLINE:
2033 case SDEV_QUIESCE:
2034 case SDEV_BLOCK:
2035 break;
2036 default:
2037 goto illegal;
2039 break;
2041 case SDEV_QUIESCE:
2042 switch (oldstate) {
2043 case SDEV_RUNNING:
2044 case SDEV_OFFLINE:
2045 break;
2046 default:
2047 goto illegal;
2049 break;
2051 case SDEV_OFFLINE:
2052 switch (oldstate) {
2053 case SDEV_CREATED:
2054 case SDEV_RUNNING:
2055 case SDEV_QUIESCE:
2056 case SDEV_BLOCK:
2057 break;
2058 default:
2059 goto illegal;
2061 break;
2063 case SDEV_BLOCK:
2064 switch (oldstate) {
2065 case SDEV_CREATED:
2066 case SDEV_RUNNING:
2067 break;
2068 default:
2069 goto illegal;
2071 break;
2073 case SDEV_CANCEL:
2074 switch (oldstate) {
2075 case SDEV_CREATED:
2076 case SDEV_RUNNING:
2077 case SDEV_QUIESCE:
2078 case SDEV_OFFLINE:
2079 case SDEV_BLOCK:
2080 break;
2081 default:
2082 goto illegal;
2084 break;
2086 case SDEV_DEL:
2087 switch (oldstate) {
2088 case SDEV_CREATED:
2089 case SDEV_RUNNING:
2090 case SDEV_OFFLINE:
2091 case SDEV_CANCEL:
2092 break;
2093 default:
2094 goto illegal;
2096 break;
2099 sdev->sdev_state = state;
2100 return 0;
2102 illegal:
2103 SCSI_LOG_ERROR_RECOVERY(1,
2104 sdev_printk(KERN_ERR, sdev,
2105 "Illegal state transition %s->%s\n",
2106 scsi_device_state_name(oldstate),
2107 scsi_device_state_name(state))
2109 return -EINVAL;
2111 EXPORT_SYMBOL(scsi_device_set_state);
2114 * scsi_device_quiesce - Block user issued commands.
2115 * @sdev: scsi device to quiesce.
2117 * This works by trying to transition to the SDEV_QUIESCE state
2118 * (which must be a legal transition). When the device is in this
2119 * state, only special requests will be accepted, all others will
2120 * be deferred. Since special requests may also be requeued requests,
2121 * a successful return doesn't guarantee the device will be
2122 * totally quiescent.
2124 * Must be called with user context, may sleep.
2126 * Returns zero if unsuccessful or an error if not.
2129 scsi_device_quiesce(struct scsi_device *sdev)
2131 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2132 if (err)
2133 return err;
2135 scsi_run_queue(sdev->request_queue);
2136 while (sdev->device_busy) {
2137 msleep_interruptible(200);
2138 scsi_run_queue(sdev->request_queue);
2140 return 0;
2142 EXPORT_SYMBOL(scsi_device_quiesce);
2145 * scsi_device_resume - Restart user issued commands to a quiesced device.
2146 * @sdev: scsi device to resume.
2148 * Moves the device from quiesced back to running and restarts the
2149 * queues.
2151 * Must be called with user context, may sleep.
2153 void
2154 scsi_device_resume(struct scsi_device *sdev)
2156 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2157 return;
2158 scsi_run_queue(sdev->request_queue);
2160 EXPORT_SYMBOL(scsi_device_resume);
2162 static void
2163 device_quiesce_fn(struct scsi_device *sdev, void *data)
2165 scsi_device_quiesce(sdev);
2168 void
2169 scsi_target_quiesce(struct scsi_target *starget)
2171 starget_for_each_device(starget, NULL, device_quiesce_fn);
2173 EXPORT_SYMBOL(scsi_target_quiesce);
2175 static void
2176 device_resume_fn(struct scsi_device *sdev, void *data)
2178 scsi_device_resume(sdev);
2181 void
2182 scsi_target_resume(struct scsi_target *starget)
2184 starget_for_each_device(starget, NULL, device_resume_fn);
2186 EXPORT_SYMBOL(scsi_target_resume);
2189 * scsi_internal_device_block - internal function to put a device
2190 * temporarily into the SDEV_BLOCK state
2191 * @sdev: device to block
2193 * Block request made by scsi lld's to temporarily stop all
2194 * scsi commands on the specified device. Called from interrupt
2195 * or normal process context.
2197 * Returns zero if successful or error if not
2199 * Notes:
2200 * This routine transitions the device to the SDEV_BLOCK state
2201 * (which must be a legal transition). When the device is in this
2202 * state, all commands are deferred until the scsi lld reenables
2203 * the device with scsi_device_unblock or device_block_tmo fires.
2204 * This routine assumes the host_lock is held on entry.
2207 scsi_internal_device_block(struct scsi_device *sdev)
2209 request_queue_t *q = sdev->request_queue;
2210 unsigned long flags;
2211 int err = 0;
2213 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2214 if (err)
2215 return err;
2218 * The device has transitioned to SDEV_BLOCK. Stop the
2219 * block layer from calling the midlayer with this device's
2220 * request queue.
2222 spin_lock_irqsave(q->queue_lock, flags);
2223 blk_stop_queue(q);
2224 spin_unlock_irqrestore(q->queue_lock, flags);
2226 return 0;
2228 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2231 * scsi_internal_device_unblock - resume a device after a block request
2232 * @sdev: device to resume
2234 * Called by scsi lld's or the midlayer to restart the device queue
2235 * for the previously suspended scsi device. Called from interrupt or
2236 * normal process context.
2238 * Returns zero if successful or error if not.
2240 * Notes:
2241 * This routine transitions the device to the SDEV_RUNNING state
2242 * (which must be a legal transition) allowing the midlayer to
2243 * goose the queue for this device. This routine assumes the
2244 * host_lock is held upon entry.
2247 scsi_internal_device_unblock(struct scsi_device *sdev)
2249 request_queue_t *q = sdev->request_queue;
2250 int err;
2251 unsigned long flags;
2254 * Try to transition the scsi device to SDEV_RUNNING
2255 * and goose the device queue if successful.
2257 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2258 if (err)
2259 return err;
2261 spin_lock_irqsave(q->queue_lock, flags);
2262 blk_start_queue(q);
2263 spin_unlock_irqrestore(q->queue_lock, flags);
2265 return 0;
2267 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2269 static void
2270 device_block(struct scsi_device *sdev, void *data)
2272 scsi_internal_device_block(sdev);
2275 static int
2276 target_block(struct device *dev, void *data)
2278 if (scsi_is_target_device(dev))
2279 starget_for_each_device(to_scsi_target(dev), NULL,
2280 device_block);
2281 return 0;
2284 void
2285 scsi_target_block(struct device *dev)
2287 if (scsi_is_target_device(dev))
2288 starget_for_each_device(to_scsi_target(dev), NULL,
2289 device_block);
2290 else
2291 device_for_each_child(dev, NULL, target_block);
2293 EXPORT_SYMBOL_GPL(scsi_target_block);
2295 static void
2296 device_unblock(struct scsi_device *sdev, void *data)
2298 scsi_internal_device_unblock(sdev);
2301 static int
2302 target_unblock(struct device *dev, void *data)
2304 if (scsi_is_target_device(dev))
2305 starget_for_each_device(to_scsi_target(dev), NULL,
2306 device_unblock);
2307 return 0;
2310 void
2311 scsi_target_unblock(struct device *dev)
2313 if (scsi_is_target_device(dev))
2314 starget_for_each_device(to_scsi_target(dev), NULL,
2315 device_unblock);
2316 else
2317 device_for_each_child(dev, NULL, target_unblock);
2319 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2322 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2323 * @sg: scatter-gather list
2324 * @sg_count: number of segments in sg
2325 * @offset: offset in bytes into sg, on return offset into the mapped area
2326 * @len: bytes to map, on return number of bytes mapped
2328 * Returns virtual address of the start of the mapped page
2330 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2331 size_t *offset, size_t *len)
2333 int i;
2334 size_t sg_len = 0, len_complete = 0;
2335 struct scatterlist *sg;
2336 struct page *page;
2338 WARN_ON(!irqs_disabled());
2340 for_each_sg(sgl, sg, sg_count, i) {
2341 len_complete = sg_len; /* Complete sg-entries */
2342 sg_len += sg->length;
2343 if (sg_len > *offset)
2344 break;
2347 if (unlikely(i == sg_count)) {
2348 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2349 "elements %d\n",
2350 __FUNCTION__, sg_len, *offset, sg_count);
2351 WARN_ON(1);
2352 return NULL;
2355 /* Offset starting from the beginning of first page in this sg-entry */
2356 *offset = *offset - len_complete + sg->offset;
2358 /* Assumption: contiguous pages can be accessed as "page + i" */
2359 page = nth_page(sg->page, (*offset >> PAGE_SHIFT));
2360 *offset &= ~PAGE_MASK;
2362 /* Bytes in this sg-entry from *offset to the end of the page */
2363 sg_len = PAGE_SIZE - *offset;
2364 if (*len > sg_len)
2365 *len = sg_len;
2367 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2369 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2372 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2373 * mapped with scsi_kmap_atomic_sg
2374 * @virt: virtual address to be unmapped
2376 void scsi_kunmap_atomic_sg(void *virt)
2378 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2380 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2383 * scsi_dma_map - perform DMA mapping against command's sg lists
2384 * @cmd: scsi command
2386 * Returns the number of sg lists actually used, zero if the sg lists
2387 * is NULL, or -ENOMEM if the mapping failed.
2389 int scsi_dma_map(struct scsi_cmnd *cmd)
2391 int nseg = 0;
2393 if (scsi_sg_count(cmd)) {
2394 struct device *dev = cmd->device->host->shost_gendev.parent;
2396 nseg = dma_map_sg(dev, scsi_sglist(cmd), scsi_sg_count(cmd),
2397 cmd->sc_data_direction);
2398 if (unlikely(!nseg))
2399 return -ENOMEM;
2401 return nseg;
2403 EXPORT_SYMBOL(scsi_dma_map);
2406 * scsi_dma_unmap - unmap command's sg lists mapped by scsi_dma_map
2407 * @cmd: scsi command
2409 void scsi_dma_unmap(struct scsi_cmnd *cmd)
2411 if (scsi_sg_count(cmd)) {
2412 struct device *dev = cmd->device->host->shost_gendev.parent;
2414 dma_unmap_sg(dev, scsi_sglist(cmd), scsi_sg_count(cmd),
2415 cmd->sc_data_direction);
2418 EXPORT_SYMBOL(scsi_dma_unmap);