allow coexistance of N build and AC build.
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / powerpc / sysdev / cpm2_common.c
blob9244129747955d062b7a255c3797b97a23b88ab4
1 /*
2 * General Purpose functions for the global management of the
3 * 8260 Communication Processor Module.
4 * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
5 * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
6 * 2.3.99 Updates
8 * 2006 (c) MontaVista Software, Inc.
9 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
12 * This file is licensed under the terms of the GNU General Public License
13 * version 2. This program is licensed "as is" without any warranty of any
14 * kind, whether express or implied.
19 * In addition to the individual control of the communication
20 * channels, there are a few functions that globally affect the
21 * communication processor.
23 * Buffer descriptors must be allocated from the dual ported memory
24 * space. The allocator for that is here. When the communication
25 * process is reset, we reclaim the memory available. There is
26 * currently no deallocator for this memory.
28 #include <linux/errno.h>
29 #include <linux/sched.h>
30 #include <linux/kernel.h>
31 #include <linux/param.h>
32 #include <linux/string.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/module.h>
36 #include <asm/io.h>
37 #include <asm/irq.h>
38 #include <asm/mpc8260.h>
39 #include <asm/page.h>
40 #include <asm/pgtable.h>
41 #include <asm/cpm2.h>
42 #include <asm/rheap.h>
43 #include <asm/fs_pd.h>
45 #include <sysdev/fsl_soc.h>
47 static void cpm2_dpinit(void);
48 cpm_cpm2_t *cpmp; /* Pointer to comm processor space */
50 /* We allocate this here because it is used almost exclusively for
51 * the communication processor devices.
53 cpm2_map_t *cpm2_immr;
54 intctl_cpm2_t *cpm2_intctl;
56 #define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount
57 of space for CPM as it is larger
58 than on PQ2 */
60 void
61 cpm2_reset(void)
63 cpm2_immr = (cpm2_map_t *)ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE);
64 cpm2_intctl = cpm2_map(im_intctl);
66 /* Reclaim the DP memory for our use.
68 cpm2_dpinit();
70 /* Tell everyone where the comm processor resides.
72 cpmp = &cpm2_immr->im_cpm;
75 /* Set a baud rate generator. This needs lots of work. There are
76 * eight BRGs, which can be connected to the CPM channels or output
77 * as clocks. The BRGs are in two different block of internal
78 * memory mapped space.
79 * The baud rate clock is the system clock divided by something.
80 * It was set up long ago during the initial boot phase and is
81 * is given to us.
82 * Baud rate clocks are zero-based in the driver code (as that maps
83 * to port numbers). Documentation uses 1-based numbering.
85 #define BRG_INT_CLK (get_brgfreq())
86 #define BRG_UART_CLK (BRG_INT_CLK/16)
88 /* This function is used by UARTS, or anything else that uses a 16x
89 * oversampled clock.
91 void
92 cpm_setbrg(uint brg, uint rate)
94 volatile uint *bp;
96 /* This is good enough to get SMCs running.....
98 if (brg < 4) {
99 bp = cpm2_map_size(im_brgc1, 16);
100 } else {
101 bp = cpm2_map_size(im_brgc5, 16);
102 brg -= 4;
104 bp += brg;
105 *bp = ((BRG_UART_CLK / rate) << 1) | CPM_BRG_EN;
107 cpm2_unmap(bp);
110 /* This function is used to set high speed synchronous baud rate
111 * clocks.
113 void
114 cpm2_fastbrg(uint brg, uint rate, int div16)
116 volatile uint *bp;
118 if (brg < 4) {
119 bp = cpm2_map_size(im_brgc1, 16);
121 else {
122 bp = cpm2_map_size(im_brgc5, 16);
123 brg -= 4;
125 bp += brg;
126 *bp = ((BRG_INT_CLK / rate) << 1) | CPM_BRG_EN;
127 if (div16)
128 *bp |= CPM_BRG_DIV16;
130 cpm2_unmap(bp);
133 int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
135 int ret = 0;
136 int shift;
137 int i, bits = 0;
138 cpmux_t *im_cpmux;
139 u32 *reg;
140 u32 mask = 7;
141 u8 clk_map [24][3] = {
142 {CPM_CLK_FCC1, CPM_BRG5, 0},
143 {CPM_CLK_FCC1, CPM_BRG6, 1},
144 {CPM_CLK_FCC1, CPM_BRG7, 2},
145 {CPM_CLK_FCC1, CPM_BRG8, 3},
146 {CPM_CLK_FCC1, CPM_CLK9, 4},
147 {CPM_CLK_FCC1, CPM_CLK10, 5},
148 {CPM_CLK_FCC1, CPM_CLK11, 6},
149 {CPM_CLK_FCC1, CPM_CLK12, 7},
150 {CPM_CLK_FCC2, CPM_BRG5, 0},
151 {CPM_CLK_FCC2, CPM_BRG6, 1},
152 {CPM_CLK_FCC2, CPM_BRG7, 2},
153 {CPM_CLK_FCC2, CPM_BRG8, 3},
154 {CPM_CLK_FCC2, CPM_CLK13, 4},
155 {CPM_CLK_FCC2, CPM_CLK14, 5},
156 {CPM_CLK_FCC2, CPM_CLK15, 6},
157 {CPM_CLK_FCC2, CPM_CLK16, 7},
158 {CPM_CLK_FCC3, CPM_BRG5, 0},
159 {CPM_CLK_FCC3, CPM_BRG6, 1},
160 {CPM_CLK_FCC3, CPM_BRG7, 2},
161 {CPM_CLK_FCC3, CPM_BRG8, 3},
162 {CPM_CLK_FCC3, CPM_CLK13, 4},
163 {CPM_CLK_FCC3, CPM_CLK14, 5},
164 {CPM_CLK_FCC3, CPM_CLK15, 6},
165 {CPM_CLK_FCC3, CPM_CLK16, 7}
168 im_cpmux = cpm2_map(im_cpmux);
170 switch (target) {
171 case CPM_CLK_SCC1:
172 reg = &im_cpmux->cmx_scr;
173 shift = 24;
174 case CPM_CLK_SCC2:
175 reg = &im_cpmux->cmx_scr;
176 shift = 16;
177 break;
178 case CPM_CLK_SCC3:
179 reg = &im_cpmux->cmx_scr;
180 shift = 8;
181 break;
182 case CPM_CLK_SCC4:
183 reg = &im_cpmux->cmx_scr;
184 shift = 0;
185 break;
186 case CPM_CLK_FCC1:
187 reg = &im_cpmux->cmx_fcr;
188 shift = 24;
189 break;
190 case CPM_CLK_FCC2:
191 reg = &im_cpmux->cmx_fcr;
192 shift = 16;
193 break;
194 case CPM_CLK_FCC3:
195 reg = &im_cpmux->cmx_fcr;
196 shift = 8;
197 break;
198 default:
199 printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n");
200 return -EINVAL;
203 if (mode == CPM_CLK_RX)
204 shift +=3;
206 for (i=0; i<24; i++) {
207 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
208 bits = clk_map[i][2];
209 break;
212 if (i == sizeof(clk_map)/3)
213 ret = -EINVAL;
215 bits <<= shift;
216 mask <<= shift;
217 out_be32(reg, (in_be32(reg) & ~mask) | bits);
219 cpm2_unmap(im_cpmux);
220 return ret;
224 * dpalloc / dpfree bits.
226 static spinlock_t cpm_dpmem_lock;
227 /* 16 blocks should be enough to satisfy all requests
228 * until the memory subsystem goes up... */
229 static rh_block_t cpm_boot_dpmem_rh_block[16];
230 static rh_info_t cpm_dpmem_info;
231 static u8* im_dprambase;
233 static void cpm2_dpinit(void)
235 spin_lock_init(&cpm_dpmem_lock);
237 im_dprambase = ioremap(CPM_MAP_ADDR, CPM_DATAONLY_BASE + CPM_DATAONLY_SIZE);
239 /* initialize the info header */
240 rh_init(&cpm_dpmem_info, 1,
241 sizeof(cpm_boot_dpmem_rh_block) /
242 sizeof(cpm_boot_dpmem_rh_block[0]),
243 cpm_boot_dpmem_rh_block);
245 /* Attach the usable dpmem area */
246 /* XXX: This is actually crap. CPM_DATAONLY_BASE and
247 * CPM_DATAONLY_SIZE is only a subset of the available dpram. It
248 * varies with the processor and the microcode patches activated.
249 * But the following should be at least safe.
251 rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
254 /* This function returns an index into the DPRAM area.
256 unsigned long cpm_dpalloc(uint size, uint align)
258 unsigned long start;
259 unsigned long flags;
261 spin_lock_irqsave(&cpm_dpmem_lock, flags);
262 cpm_dpmem_info.alignment = align;
263 start = rh_alloc(&cpm_dpmem_info, size, "commproc");
264 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
266 return (uint)start;
268 EXPORT_SYMBOL(cpm_dpalloc);
270 int cpm_dpfree(unsigned long offset)
272 int ret;
273 unsigned long flags;
275 spin_lock_irqsave(&cpm_dpmem_lock, flags);
276 ret = rh_free(&cpm_dpmem_info, offset);
277 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
279 return ret;
281 EXPORT_SYMBOL(cpm_dpfree);
283 /* not sure if this is ever needed */
284 unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align)
286 unsigned long start;
287 unsigned long flags;
289 spin_lock_irqsave(&cpm_dpmem_lock, flags);
290 cpm_dpmem_info.alignment = align;
291 start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc");
292 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
294 return start;
296 EXPORT_SYMBOL(cpm_dpalloc_fixed);
298 void cpm_dpdump(void)
300 rh_dump(&cpm_dpmem_info);
302 EXPORT_SYMBOL(cpm_dpdump);
304 void *cpm_dpram_addr(unsigned long offset)
306 return (void *)(im_dprambase + offset);
308 EXPORT_SYMBOL(cpm_dpram_addr);