OpenSSL: update to 1.0.2c
[tomato.git] / release / src / router / openssl / crypto / evp / e_aes_cbc_hmac_sha256.c
blobb1c586e6fd96b8b46f30d2f17c8c19b9dc8f9d8d
1 /* ====================================================================
2 * Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ====================================================================
50 #include <openssl/opensslconf.h>
52 #include <stdio.h>
53 #include <string.h>
55 #if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA256)
57 # include <openssl/evp.h>
58 # include <openssl/objects.h>
59 # include <openssl/aes.h>
60 # include <openssl/sha.h>
61 # include <openssl/rand.h>
62 # include "modes_lcl.h"
64 # ifndef EVP_CIPH_FLAG_AEAD_CIPHER
65 # define EVP_CIPH_FLAG_AEAD_CIPHER 0x200000
66 # define EVP_CTRL_AEAD_TLS1_AAD 0x16
67 # define EVP_CTRL_AEAD_SET_MAC_KEY 0x17
68 # endif
70 # if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
71 # define EVP_CIPH_FLAG_DEFAULT_ASN1 0
72 # endif
74 # if !defined(EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)
75 # define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
76 # endif
78 # define TLS1_1_VERSION 0x0302
80 typedef struct {
81 AES_KEY ks;
82 SHA256_CTX head, tail, md;
83 size_t payload_length; /* AAD length in decrypt case */
84 union {
85 unsigned int tls_ver;
86 unsigned char tls_aad[16]; /* 13 used */
87 } aux;
88 } EVP_AES_HMAC_SHA256;
90 # define NO_PAYLOAD_LENGTH ((size_t)-1)
92 # if defined(AES_ASM) && ( \
93 defined(__x86_64) || defined(__x86_64__) || \
94 defined(_M_AMD64) || defined(_M_X64) || \
95 defined(__INTEL__) )
97 extern unsigned int OPENSSL_ia32cap_P[];
98 # define AESNI_CAPABLE (1<<(57-32))
100 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
101 AES_KEY *key);
102 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
103 AES_KEY *key);
105 void aesni_cbc_encrypt(const unsigned char *in,
106 unsigned char *out,
107 size_t length,
108 const AES_KEY *key, unsigned char *ivec, int enc);
110 int aesni_cbc_sha256_enc(const void *inp, void *out, size_t blocks,
111 const AES_KEY *key, unsigned char iv[16],
112 SHA256_CTX *ctx, const void *in0);
114 # define data(ctx) ((EVP_AES_HMAC_SHA256 *)(ctx)->cipher_data)
116 static int aesni_cbc_hmac_sha256_init_key(EVP_CIPHER_CTX *ctx,
117 const unsigned char *inkey,
118 const unsigned char *iv, int enc)
120 EVP_AES_HMAC_SHA256 *key = data(ctx);
121 int ret;
123 if (enc)
124 memset(&key->ks, 0, sizeof(key->ks.rd_key)),
125 ret = aesni_set_encrypt_key(inkey, ctx->key_len * 8, &key->ks);
126 else
127 ret = aesni_set_decrypt_key(inkey, ctx->key_len * 8, &key->ks);
129 SHA256_Init(&key->head); /* handy when benchmarking */
130 key->tail = key->head;
131 key->md = key->head;
133 key->payload_length = NO_PAYLOAD_LENGTH;
135 return ret < 0 ? 0 : 1;
138 # define STITCHED_CALL
140 # if !defined(STITCHED_CALL)
141 # define aes_off 0
142 # endif
144 void sha256_block_data_order(void *c, const void *p, size_t len);
146 static void sha256_update(SHA256_CTX *c, const void *data, size_t len)
148 const unsigned char *ptr = data;
149 size_t res;
151 if ((res = c->num)) {
152 res = SHA256_CBLOCK - res;
153 if (len < res)
154 res = len;
155 SHA256_Update(c, ptr, res);
156 ptr += res;
157 len -= res;
160 res = len % SHA256_CBLOCK;
161 len -= res;
163 if (len) {
164 sha256_block_data_order(c, ptr, len / SHA256_CBLOCK);
166 ptr += len;
167 c->Nh += len >> 29;
168 c->Nl += len <<= 3;
169 if (c->Nl < (unsigned int)len)
170 c->Nh++;
173 if (res)
174 SHA256_Update(c, ptr, res);
177 # ifdef SHA256_Update
178 # undef SHA256_Update
179 # endif
180 # define SHA256_Update sha256_update
182 # if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
184 typedef struct {
185 unsigned int A[8], B[8], C[8], D[8], E[8], F[8], G[8], H[8];
186 } SHA256_MB_CTX;
187 typedef struct {
188 const unsigned char *ptr;
189 int blocks;
190 } HASH_DESC;
192 void sha256_multi_block(SHA256_MB_CTX *, const HASH_DESC *, int);
194 typedef struct {
195 const unsigned char *inp;
196 unsigned char *out;
197 int blocks;
198 u64 iv[2];
199 } CIPH_DESC;
201 void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
203 static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA256 *key,
204 unsigned char *out,
205 const unsigned char *inp,
206 size_t inp_len, int n4x)
207 { /* n4x is 1 or 2 */
208 HASH_DESC hash_d[8], edges[8];
209 CIPH_DESC ciph_d[8];
210 unsigned char storage[sizeof(SHA256_MB_CTX) + 32];
211 union {
212 u64 q[16];
213 u32 d[32];
214 u8 c[128];
215 } blocks[8];
216 SHA256_MB_CTX *ctx;
217 unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
219 size_t ret = 0;
220 u8 *IVs;
221 # if defined(BSWAP8)
222 u64 seqnum;
223 # endif
225 /* ask for IVs in bulk */
226 if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
227 return 0;
229 /* align */
230 ctx = (SHA256_MB_CTX *) (storage + 32 - ((size_t)storage % 32));
232 frag = (unsigned int)inp_len >> (1 + n4x);
233 last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
234 if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
235 frag++;
236 last -= x4 - 1;
239 packlen = 5 + 16 + ((frag + 32 + 16) & -16);
241 /* populate descriptors with pointers and IVs */
242 hash_d[0].ptr = inp;
243 ciph_d[0].inp = inp;
244 /* 5+16 is place for header and explicit IV */
245 ciph_d[0].out = out + 5 + 16;
246 memcpy(ciph_d[0].out - 16, IVs, 16);
247 memcpy(ciph_d[0].iv, IVs, 16);
248 IVs += 16;
250 for (i = 1; i < x4; i++) {
251 ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
252 ciph_d[i].out = ciph_d[i - 1].out + packlen;
253 memcpy(ciph_d[i].out - 16, IVs, 16);
254 memcpy(ciph_d[i].iv, IVs, 16);
255 IVs += 16;
258 # if defined(BSWAP8)
259 memcpy(blocks[0].c, key->md.data, 8);
260 seqnum = BSWAP8(blocks[0].q[0]);
261 # endif
262 for (i = 0; i < x4; i++) {
263 unsigned int len = (i == (x4 - 1) ? last : frag);
264 # if !defined(BSWAP8)
265 unsigned int carry, j;
266 # endif
268 ctx->A[i] = key->md.h[0];
269 ctx->B[i] = key->md.h[1];
270 ctx->C[i] = key->md.h[2];
271 ctx->D[i] = key->md.h[3];
272 ctx->E[i] = key->md.h[4];
273 ctx->F[i] = key->md.h[5];
274 ctx->G[i] = key->md.h[6];
275 ctx->H[i] = key->md.h[7];
277 /* fix seqnum */
278 # if defined(BSWAP8)
279 blocks[i].q[0] = BSWAP8(seqnum + i);
280 # else
281 for (carry = i, j = 8; j--;) {
282 blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
283 carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
285 # endif
286 blocks[i].c[8] = ((u8 *)key->md.data)[8];
287 blocks[i].c[9] = ((u8 *)key->md.data)[9];
288 blocks[i].c[10] = ((u8 *)key->md.data)[10];
289 /* fix length */
290 blocks[i].c[11] = (u8)(len >> 8);
291 blocks[i].c[12] = (u8)(len);
293 memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
294 hash_d[i].ptr += 64 - 13;
295 hash_d[i].blocks = (len - (64 - 13)) / 64;
297 edges[i].ptr = blocks[i].c;
298 edges[i].blocks = 1;
301 /* hash 13-byte headers and first 64-13 bytes of inputs */
302 sha256_multi_block(ctx, edges, n4x);
303 /* hash bulk inputs */
304 # define MAXCHUNKSIZE 2048
305 # if MAXCHUNKSIZE%64
306 # error "MAXCHUNKSIZE is not divisible by 64"
307 # elif MAXCHUNKSIZE
309 * goal is to minimize pressure on L1 cache by moving in shorter steps,
310 * so that hashed data is still in the cache by the time we encrypt it
312 minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
313 if (minblocks > MAXCHUNKSIZE / 64) {
314 for (i = 0; i < x4; i++) {
315 edges[i].ptr = hash_d[i].ptr;
316 edges[i].blocks = MAXCHUNKSIZE / 64;
317 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
319 do {
320 sha256_multi_block(ctx, edges, n4x);
321 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
323 for (i = 0; i < x4; i++) {
324 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
325 hash_d[i].blocks -= MAXCHUNKSIZE / 64;
326 edges[i].blocks = MAXCHUNKSIZE / 64;
327 ciph_d[i].inp += MAXCHUNKSIZE;
328 ciph_d[i].out += MAXCHUNKSIZE;
329 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
330 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
332 processed += MAXCHUNKSIZE;
333 minblocks -= MAXCHUNKSIZE / 64;
334 } while (minblocks > MAXCHUNKSIZE / 64);
336 # endif
337 # undef MAXCHUNKSIZE
338 sha256_multi_block(ctx, hash_d, n4x);
340 memset(blocks, 0, sizeof(blocks));
341 for (i = 0; i < x4; i++) {
342 unsigned int len = (i == (x4 - 1) ? last : frag),
343 off = hash_d[i].blocks * 64;
344 const unsigned char *ptr = hash_d[i].ptr + off;
346 off = (len - processed) - (64 - 13) - off; /* remainder actually */
347 memcpy(blocks[i].c, ptr, off);
348 blocks[i].c[off] = 0x80;
349 len += 64 + 13; /* 64 is HMAC header */
350 len *= 8; /* convert to bits */
351 if (off < (64 - 8)) {
352 # ifdef BSWAP4
353 blocks[i].d[15] = BSWAP4(len);
354 # else
355 PUTU32(blocks[i].c + 60, len);
356 # endif
357 edges[i].blocks = 1;
358 } else {
359 # ifdef BSWAP4
360 blocks[i].d[31] = BSWAP4(len);
361 # else
362 PUTU32(blocks[i].c + 124, len);
363 # endif
364 edges[i].blocks = 2;
366 edges[i].ptr = blocks[i].c;
369 /* hash input tails and finalize */
370 sha256_multi_block(ctx, edges, n4x);
372 memset(blocks, 0, sizeof(blocks));
373 for (i = 0; i < x4; i++) {
374 # ifdef BSWAP4
375 blocks[i].d[0] = BSWAP4(ctx->A[i]);
376 ctx->A[i] = key->tail.h[0];
377 blocks[i].d[1] = BSWAP4(ctx->B[i]);
378 ctx->B[i] = key->tail.h[1];
379 blocks[i].d[2] = BSWAP4(ctx->C[i]);
380 ctx->C[i] = key->tail.h[2];
381 blocks[i].d[3] = BSWAP4(ctx->D[i]);
382 ctx->D[i] = key->tail.h[3];
383 blocks[i].d[4] = BSWAP4(ctx->E[i]);
384 ctx->E[i] = key->tail.h[4];
385 blocks[i].d[5] = BSWAP4(ctx->F[i]);
386 ctx->F[i] = key->tail.h[5];
387 blocks[i].d[6] = BSWAP4(ctx->G[i]);
388 ctx->G[i] = key->tail.h[6];
389 blocks[i].d[7] = BSWAP4(ctx->H[i]);
390 ctx->H[i] = key->tail.h[7];
391 blocks[i].c[32] = 0x80;
392 blocks[i].d[15] = BSWAP4((64 + 32) * 8);
393 # else
394 PUTU32(blocks[i].c + 0, ctx->A[i]);
395 ctx->A[i] = key->tail.h[0];
396 PUTU32(blocks[i].c + 4, ctx->B[i]);
397 ctx->B[i] = key->tail.h[1];
398 PUTU32(blocks[i].c + 8, ctx->C[i]);
399 ctx->C[i] = key->tail.h[2];
400 PUTU32(blocks[i].c + 12, ctx->D[i]);
401 ctx->D[i] = key->tail.h[3];
402 PUTU32(blocks[i].c + 16, ctx->E[i]);
403 ctx->E[i] = key->tail.h[4];
404 PUTU32(blocks[i].c + 20, ctx->F[i]);
405 ctx->F[i] = key->tail.h[5];
406 PUTU32(blocks[i].c + 24, ctx->G[i]);
407 ctx->G[i] = key->tail.h[6];
408 PUTU32(blocks[i].c + 28, ctx->H[i]);
409 ctx->H[i] = key->tail.h[7];
410 blocks[i].c[32] = 0x80;
411 PUTU32(blocks[i].c + 60, (64 + 32) * 8);
412 # endif
413 edges[i].ptr = blocks[i].c;
414 edges[i].blocks = 1;
417 /* finalize MACs */
418 sha256_multi_block(ctx, edges, n4x);
420 for (i = 0; i < x4; i++) {
421 unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
422 unsigned char *out0 = out;
424 memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
425 ciph_d[i].inp = ciph_d[i].out;
427 out += 5 + 16 + len;
429 /* write MAC */
430 PUTU32(out + 0, ctx->A[i]);
431 PUTU32(out + 4, ctx->B[i]);
432 PUTU32(out + 8, ctx->C[i]);
433 PUTU32(out + 12, ctx->D[i]);
434 PUTU32(out + 16, ctx->E[i]);
435 PUTU32(out + 20, ctx->F[i]);
436 PUTU32(out + 24, ctx->G[i]);
437 PUTU32(out + 28, ctx->H[i]);
438 out += 32;
439 len += 32;
441 /* pad */
442 pad = 15 - len % 16;
443 for (j = 0; j <= pad; j++)
444 *(out++) = pad;
445 len += pad + 1;
447 ciph_d[i].blocks = (len - processed) / 16;
448 len += 16; /* account for explicit iv */
450 /* arrange header */
451 out0[0] = ((u8 *)key->md.data)[8];
452 out0[1] = ((u8 *)key->md.data)[9];
453 out0[2] = ((u8 *)key->md.data)[10];
454 out0[3] = (u8)(len >> 8);
455 out0[4] = (u8)(len);
457 ret += len + 5;
458 inp += frag;
461 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
463 OPENSSL_cleanse(blocks, sizeof(blocks));
464 OPENSSL_cleanse(ctx, sizeof(*ctx));
466 return ret;
468 # endif
470 static int aesni_cbc_hmac_sha256_cipher(EVP_CIPHER_CTX *ctx,
471 unsigned char *out,
472 const unsigned char *in, size_t len)
474 EVP_AES_HMAC_SHA256 *key = data(ctx);
475 unsigned int l;
476 size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
477 * later */
478 sha_off = 0;
479 # if defined(STITCHED_CALL)
480 size_t aes_off = 0, blocks;
482 sha_off = SHA256_CBLOCK - key->md.num;
483 # endif
485 key->payload_length = NO_PAYLOAD_LENGTH;
487 if (len % AES_BLOCK_SIZE)
488 return 0;
490 if (ctx->encrypt) {
491 if (plen == NO_PAYLOAD_LENGTH)
492 plen = len;
493 else if (len !=
494 ((plen + SHA256_DIGEST_LENGTH +
495 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
496 return 0;
497 else if (key->aux.tls_ver >= TLS1_1_VERSION)
498 iv = AES_BLOCK_SIZE;
500 # if defined(STITCHED_CALL)
501 if (OPENSSL_ia32cap_P[1] & (1 << (60 - 32)) && /* AVX? */
502 plen > (sha_off + iv) &&
503 (blocks = (plen - (sha_off + iv)) / SHA256_CBLOCK)) {
504 SHA256_Update(&key->md, in + iv, sha_off);
506 (void)aesni_cbc_sha256_enc(in, out, blocks, &key->ks,
507 ctx->iv, &key->md, in + iv + sha_off);
508 blocks *= SHA256_CBLOCK;
509 aes_off += blocks;
510 sha_off += blocks;
511 key->md.Nh += blocks >> 29;
512 key->md.Nl += blocks <<= 3;
513 if (key->md.Nl < (unsigned int)blocks)
514 key->md.Nh++;
515 } else {
516 sha_off = 0;
518 # endif
519 sha_off += iv;
520 SHA256_Update(&key->md, in + sha_off, plen - sha_off);
522 if (plen != len) { /* "TLS" mode of operation */
523 if (in != out)
524 memcpy(out + aes_off, in + aes_off, plen - aes_off);
526 /* calculate HMAC and append it to payload */
527 SHA256_Final(out + plen, &key->md);
528 key->md = key->tail;
529 SHA256_Update(&key->md, out + plen, SHA256_DIGEST_LENGTH);
530 SHA256_Final(out + plen, &key->md);
532 /* pad the payload|hmac */
533 plen += SHA256_DIGEST_LENGTH;
534 for (l = len - plen - 1; plen < len; plen++)
535 out[plen] = l;
536 /* encrypt HMAC|padding at once */
537 aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
538 &key->ks, ctx->iv, 1);
539 } else {
540 aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
541 &key->ks, ctx->iv, 1);
543 } else {
544 union {
545 unsigned int u[SHA256_DIGEST_LENGTH / sizeof(unsigned int)];
546 unsigned char c[64 + SHA256_DIGEST_LENGTH];
547 } mac, *pmac;
549 /* arrange cache line alignment */
550 pmac = (void *)(((size_t)mac.c + 63) & ((size_t)0 - 64));
552 /* decrypt HMAC|padding at once */
553 aesni_cbc_encrypt(in, out, len, &key->ks, ctx->iv, 0);
555 if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
556 size_t inp_len, mask, j, i;
557 unsigned int res, maxpad, pad, bitlen;
558 int ret = 1;
559 union {
560 unsigned int u[SHA_LBLOCK];
561 unsigned char c[SHA256_CBLOCK];
562 } *data = (void *)key->md.data;
564 if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
565 >= TLS1_1_VERSION)
566 iv = AES_BLOCK_SIZE;
568 if (len < (iv + SHA256_DIGEST_LENGTH + 1))
569 return 0;
571 /* omit explicit iv */
572 out += iv;
573 len -= iv;
575 /* figure out payload length */
576 pad = out[len - 1];
577 maxpad = len - (SHA256_DIGEST_LENGTH + 1);
578 maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
579 maxpad &= 255;
581 inp_len = len - (SHA256_DIGEST_LENGTH + pad + 1);
582 mask = (0 - ((inp_len - len) >> (sizeof(inp_len) * 8 - 1)));
583 inp_len &= mask;
584 ret &= (int)mask;
586 key->aux.tls_aad[plen - 2] = inp_len >> 8;
587 key->aux.tls_aad[plen - 1] = inp_len;
589 /* calculate HMAC */
590 key->md = key->head;
591 SHA256_Update(&key->md, key->aux.tls_aad, plen);
593 # if 1
594 len -= SHA256_DIGEST_LENGTH; /* amend mac */
595 if (len >= (256 + SHA256_CBLOCK)) {
596 j = (len - (256 + SHA256_CBLOCK)) & (0 - SHA256_CBLOCK);
597 j += SHA256_CBLOCK - key->md.num;
598 SHA256_Update(&key->md, out, j);
599 out += j;
600 len -= j;
601 inp_len -= j;
604 /* but pretend as if we hashed padded payload */
605 bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
606 # ifdef BSWAP4
607 bitlen = BSWAP4(bitlen);
608 # else
609 mac.c[0] = 0;
610 mac.c[1] = (unsigned char)(bitlen >> 16);
611 mac.c[2] = (unsigned char)(bitlen >> 8);
612 mac.c[3] = (unsigned char)bitlen;
613 bitlen = mac.u[0];
614 # endif
616 pmac->u[0] = 0;
617 pmac->u[1] = 0;
618 pmac->u[2] = 0;
619 pmac->u[3] = 0;
620 pmac->u[4] = 0;
621 pmac->u[5] = 0;
622 pmac->u[6] = 0;
623 pmac->u[7] = 0;
625 for (res = key->md.num, j = 0; j < len; j++) {
626 size_t c = out[j];
627 mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
628 c &= mask;
629 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
630 data->c[res++] = (unsigned char)c;
632 if (res != SHA256_CBLOCK)
633 continue;
635 /* j is not incremented yet */
636 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
637 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
638 sha256_block_data_order(&key->md, data, 1);
639 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
640 pmac->u[0] |= key->md.h[0] & mask;
641 pmac->u[1] |= key->md.h[1] & mask;
642 pmac->u[2] |= key->md.h[2] & mask;
643 pmac->u[3] |= key->md.h[3] & mask;
644 pmac->u[4] |= key->md.h[4] & mask;
645 pmac->u[5] |= key->md.h[5] & mask;
646 pmac->u[6] |= key->md.h[6] & mask;
647 pmac->u[7] |= key->md.h[7] & mask;
648 res = 0;
651 for (i = res; i < SHA256_CBLOCK; i++, j++)
652 data->c[i] = 0;
654 if (res > SHA256_CBLOCK - 8) {
655 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
656 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
657 sha256_block_data_order(&key->md, data, 1);
658 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
659 pmac->u[0] |= key->md.h[0] & mask;
660 pmac->u[1] |= key->md.h[1] & mask;
661 pmac->u[2] |= key->md.h[2] & mask;
662 pmac->u[3] |= key->md.h[3] & mask;
663 pmac->u[4] |= key->md.h[4] & mask;
664 pmac->u[5] |= key->md.h[5] & mask;
665 pmac->u[6] |= key->md.h[6] & mask;
666 pmac->u[7] |= key->md.h[7] & mask;
668 memset(data, 0, SHA256_CBLOCK);
669 j += 64;
671 data->u[SHA_LBLOCK - 1] = bitlen;
672 sha256_block_data_order(&key->md, data, 1);
673 mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
674 pmac->u[0] |= key->md.h[0] & mask;
675 pmac->u[1] |= key->md.h[1] & mask;
676 pmac->u[2] |= key->md.h[2] & mask;
677 pmac->u[3] |= key->md.h[3] & mask;
678 pmac->u[4] |= key->md.h[4] & mask;
679 pmac->u[5] |= key->md.h[5] & mask;
680 pmac->u[6] |= key->md.h[6] & mask;
681 pmac->u[7] |= key->md.h[7] & mask;
683 # ifdef BSWAP4
684 pmac->u[0] = BSWAP4(pmac->u[0]);
685 pmac->u[1] = BSWAP4(pmac->u[1]);
686 pmac->u[2] = BSWAP4(pmac->u[2]);
687 pmac->u[3] = BSWAP4(pmac->u[3]);
688 pmac->u[4] = BSWAP4(pmac->u[4]);
689 pmac->u[5] = BSWAP4(pmac->u[5]);
690 pmac->u[6] = BSWAP4(pmac->u[6]);
691 pmac->u[7] = BSWAP4(pmac->u[7]);
692 # else
693 for (i = 0; i < 8; i++) {
694 res = pmac->u[i];
695 pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
696 pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
697 pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
698 pmac->c[4 * i + 3] = (unsigned char)res;
700 # endif
701 len += SHA256_DIGEST_LENGTH;
702 # else
703 SHA256_Update(&key->md, out, inp_len);
704 res = key->md.num;
705 SHA256_Final(pmac->c, &key->md);
708 unsigned int inp_blocks, pad_blocks;
710 /* but pretend as if we hashed padded payload */
711 inp_blocks =
712 1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
713 res += (unsigned int)(len - inp_len);
714 pad_blocks = res / SHA256_CBLOCK;
715 res %= SHA256_CBLOCK;
716 pad_blocks +=
717 1 + ((SHA256_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
718 for (; inp_blocks < pad_blocks; inp_blocks++)
719 sha1_block_data_order(&key->md, data, 1);
721 # endif
722 key->md = key->tail;
723 SHA256_Update(&key->md, pmac->c, SHA256_DIGEST_LENGTH);
724 SHA256_Final(pmac->c, &key->md);
726 /* verify HMAC */
727 out += inp_len;
728 len -= inp_len;
729 # if 1
731 unsigned char *p =
732 out + len - 1 - maxpad - SHA256_DIGEST_LENGTH;
733 size_t off = out - p;
734 unsigned int c, cmask;
736 maxpad += SHA256_DIGEST_LENGTH;
737 for (res = 0, i = 0, j = 0; j < maxpad; j++) {
738 c = p[j];
739 cmask =
740 ((int)(j - off - SHA256_DIGEST_LENGTH)) >>
741 (sizeof(int) * 8 - 1);
742 res |= (c ^ pad) & ~cmask; /* ... and padding */
743 cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
744 res |= (c ^ pmac->c[i]) & cmask;
745 i += 1 & cmask;
747 maxpad -= SHA256_DIGEST_LENGTH;
749 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
750 ret &= (int)~res;
752 # else
753 for (res = 0, i = 0; i < SHA256_DIGEST_LENGTH; i++)
754 res |= out[i] ^ pmac->c[i];
755 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
756 ret &= (int)~res;
758 /* verify padding */
759 pad = (pad & ~res) | (maxpad & res);
760 out = out + len - 1 - pad;
761 for (res = 0, i = 0; i < pad; i++)
762 res |= out[i] ^ pad;
764 res = (0 - res) >> (sizeof(res) * 8 - 1);
765 ret &= (int)~res;
766 # endif
767 return ret;
768 } else {
769 SHA256_Update(&key->md, out, len);
773 return 1;
776 static int aesni_cbc_hmac_sha256_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
777 void *ptr)
779 EVP_AES_HMAC_SHA256 *key = data(ctx);
781 switch (type) {
782 case EVP_CTRL_AEAD_SET_MAC_KEY:
784 unsigned int i;
785 unsigned char hmac_key[64];
787 memset(hmac_key, 0, sizeof(hmac_key));
789 if (arg > (int)sizeof(hmac_key)) {
790 SHA256_Init(&key->head);
791 SHA256_Update(&key->head, ptr, arg);
792 SHA256_Final(hmac_key, &key->head);
793 } else {
794 memcpy(hmac_key, ptr, arg);
797 for (i = 0; i < sizeof(hmac_key); i++)
798 hmac_key[i] ^= 0x36; /* ipad */
799 SHA256_Init(&key->head);
800 SHA256_Update(&key->head, hmac_key, sizeof(hmac_key));
802 for (i = 0; i < sizeof(hmac_key); i++)
803 hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
804 SHA256_Init(&key->tail);
805 SHA256_Update(&key->tail, hmac_key, sizeof(hmac_key));
807 OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
809 return 1;
811 case EVP_CTRL_AEAD_TLS1_AAD:
813 unsigned char *p = ptr;
814 unsigned int len = p[arg - 2] << 8 | p[arg - 1];
816 if (arg != EVP_AEAD_TLS1_AAD_LEN)
817 return -1;
819 len = p[arg - 2] << 8 | p[arg - 1];
821 if (ctx->encrypt) {
822 key->payload_length = len;
823 if ((key->aux.tls_ver =
824 p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
825 len -= AES_BLOCK_SIZE;
826 p[arg - 2] = len >> 8;
827 p[arg - 1] = len;
829 key->md = key->head;
830 SHA256_Update(&key->md, p, arg);
832 return (int)(((len + SHA256_DIGEST_LENGTH +
833 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
834 - len);
835 } else {
836 memcpy(key->aux.tls_aad, ptr, arg);
837 key->payload_length = arg;
839 return SHA256_DIGEST_LENGTH;
842 # if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
843 case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
844 return (int)(5 + 16 + ((arg + 32 + 16) & -16));
845 case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
847 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
848 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
849 unsigned int n4x = 1, x4;
850 unsigned int frag, last, packlen, inp_len;
852 if (arg < (int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
853 return -1;
855 inp_len = param->inp[11] << 8 | param->inp[12];
857 if (ctx->encrypt) {
858 if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
859 return -1;
861 if (inp_len) {
862 if (inp_len < 4096)
863 return 0; /* too short */
865 if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
866 n4x = 2; /* AVX2 */
867 } else if ((n4x = param->interleave / 4) && n4x <= 2)
868 inp_len = param->len;
869 else
870 return -1;
872 key->md = key->head;
873 SHA256_Update(&key->md, param->inp, 13);
875 x4 = 4 * n4x;
876 n4x += 1;
878 frag = inp_len >> n4x;
879 last = inp_len + frag - (frag << n4x);
880 if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
881 frag++;
882 last -= x4 - 1;
885 packlen = 5 + 16 + ((frag + 32 + 16) & -16);
886 packlen = (packlen << n4x) - packlen;
887 packlen += 5 + 16 + ((last + 32 + 16) & -16);
889 param->interleave = x4;
891 return (int)packlen;
892 } else
893 return -1; /* not yet */
895 case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
897 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
898 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
900 return (int)tls1_1_multi_block_encrypt(key, param->out,
901 param->inp, param->len,
902 param->interleave / 4);
904 case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
905 # endif
906 default:
907 return -1;
911 static EVP_CIPHER aesni_128_cbc_hmac_sha256_cipher = {
912 # ifdef NID_aes_128_cbc_hmac_sha256
913 NID_aes_128_cbc_hmac_sha256,
914 # else
915 NID_undef,
916 # endif
917 16, 16, 16,
918 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
919 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
920 aesni_cbc_hmac_sha256_init_key,
921 aesni_cbc_hmac_sha256_cipher,
922 NULL,
923 sizeof(EVP_AES_HMAC_SHA256),
924 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
925 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
926 aesni_cbc_hmac_sha256_ctrl,
927 NULL
930 static EVP_CIPHER aesni_256_cbc_hmac_sha256_cipher = {
931 # ifdef NID_aes_256_cbc_hmac_sha256
932 NID_aes_256_cbc_hmac_sha256,
933 # else
934 NID_undef,
935 # endif
936 16, 32, 16,
937 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
938 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
939 aesni_cbc_hmac_sha256_init_key,
940 aesni_cbc_hmac_sha256_cipher,
941 NULL,
942 sizeof(EVP_AES_HMAC_SHA256),
943 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
944 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
945 aesni_cbc_hmac_sha256_ctrl,
946 NULL
949 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
951 return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
952 aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
953 &aesni_128_cbc_hmac_sha256_cipher : NULL);
956 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
958 return ((OPENSSL_ia32cap_P[1] & AESNI_CAPABLE) &&
959 aesni_cbc_sha256_enc(NULL, NULL, 0, NULL, NULL, NULL, NULL) ?
960 &aesni_256_cbc_hmac_sha256_cipher : NULL);
962 # else
963 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha256(void)
965 return NULL;
968 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha256(void)
970 return NULL;
972 # endif
973 #endif