1 /* crypto/evp/bio_ok.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
60 From: Arne Ansper <arne@cyber.ee>
64 I wrote function which took BIO* as argument, read data from it
65 and processed it. Then I wanted to store the input file in
66 encrypted form. OK I pushed BIO_f_cipher to the BIO stack
67 and everything was OK. BUT if user types wrong password
68 BIO_f_cipher outputs only garbage and my function crashes. Yes
69 I can and I should fix my function, but BIO_f_cipher is
70 easy way to add encryption support to many existing applications
71 and it's hard to debug and fix them all.
73 So I wanted another BIO which would catch the incorrect passwords and
74 file damages which cause garbage on BIO_f_cipher's output.
76 The easy way is to push the BIO_f_md and save the checksum at
77 the end of the file. However there are several problems with this
80 1) you must somehow separate checksum from actual data.
81 2) you need lot's of memory when reading the file, because you
82 must read to the end of the file and verify the checksum before
83 letting the application to read the data.
85 BIO_f_reliable tries to solve both problems, so that you can
86 read and write arbitrary long streams using only fixed amount
89 BIO_f_reliable splits data stream into blocks. Each block is prefixed
90 with it's length and suffixed with it's digest. So you need only
91 several Kbytes of memory to buffer single block before verifying
94 BIO_f_reliable goes further and adds several important capabilities:
96 1) the digest of the block is computed over the whole stream
97 -- so nobody can rearrange the blocks or remove or replace them.
99 2) to detect invalid passwords right at the start BIO_f_reliable
100 adds special prefix to the stream. In order to avoid known plain-text
101 attacks this prefix is generated as follows:
103 *) digest is initialized with random seed instead of
105 *) same seed is written to output
106 *) well-known text is then hashed and the output
107 of the digest is also written to output.
109 reader can now read the seed from stream, hash the same string
110 and then compare the digest output.
112 Bad things: BIO_f_reliable knows what's going on in EVP_Digest. I
113 initially wrote and tested this code on x86 machine and wrote the
114 digests out in machine-dependent order :( There are people using
115 this code and I cannot change this easily without making existing
116 data files unreadable.
123 #include "cryptlib.h"
124 #include <openssl/buffer.h>
125 #include <openssl/bio.h>
126 #include <openssl/evp.h>
127 #include <openssl/rand.h>
129 static int ok_write(BIO
*h
, const char *buf
, int num
);
130 static int ok_read(BIO
*h
, char *buf
, int size
);
131 static long ok_ctrl(BIO
*h
, int cmd
, long arg1
, void *arg2
);
132 static int ok_new(BIO
*h
);
133 static int ok_free(BIO
*data
);
134 static long ok_callback_ctrl(BIO
*h
, int cmd
, bio_info_cb
*fp
);
136 static int sig_out(BIO
*b
);
137 static int sig_in(BIO
*b
);
138 static int block_out(BIO
*b
);
139 static int block_in(BIO
*b
);
140 #define OK_BLOCK_SIZE (1024*4)
141 #define OK_BLOCK_BLOCK 4
142 #define IOBS (OK_BLOCK_SIZE+ OK_BLOCK_BLOCK+ 3*EVP_MAX_MD_SIZE)
143 #define WELLKNOWN "The quick brown fox jumped over the lazy dog's back."
145 typedef struct ok_struct
{
150 int cont
; /* <= 0 when finished */
153 int blockout
; /* output block is ready */
154 int sigio
; /* must process signature */
155 unsigned char buf
[IOBS
];
158 static BIO_METHOD methods_ok
= {
159 BIO_TYPE_CIPHER
, "reliable",
170 BIO_METHOD
*BIO_f_reliable(void)
172 return (&methods_ok
);
175 static int ok_new(BIO
*bi
)
179 ctx
= (BIO_OK_CTX
*)OPENSSL_malloc(sizeof(BIO_OK_CTX
));
185 ctx
->buf_len_save
= 0;
186 ctx
->buf_off_save
= 0;
192 EVP_MD_CTX_init(&ctx
->md
);
195 bi
->ptr
= (char *)ctx
;
200 static int ok_free(BIO
*a
)
204 EVP_MD_CTX_cleanup(&((BIO_OK_CTX
*)a
->ptr
)->md
);
205 OPENSSL_cleanse(a
->ptr
, sizeof(BIO_OK_CTX
));
206 OPENSSL_free(a
->ptr
);
213 static int ok_read(BIO
*b
, char *out
, int outl
)
220 ctx
= (BIO_OK_CTX
*)b
->ptr
;
222 if ((ctx
== NULL
) || (b
->next_bio
== NULL
) || (b
->init
== 0))
227 /* copy clean bytes to output buffer */
229 i
= ctx
->buf_len
- ctx
->buf_off
;
232 memcpy(out
, &(ctx
->buf
[ctx
->buf_off
]), i
);
238 /* all clean bytes are out */
239 if (ctx
->buf_len
== ctx
->buf_off
) {
243 * copy start of the next block into proper place
245 if (ctx
->buf_len_save
- ctx
->buf_off_save
> 0) {
246 ctx
->buf_len
= ctx
->buf_len_save
- ctx
->buf_off_save
;
247 memmove(ctx
->buf
, &(ctx
->buf
[ctx
->buf_off_save
]),
256 /* output buffer full -- cancel */
260 /* no clean bytes in buffer -- fill it */
261 n
= IOBS
- ctx
->buf_len
;
262 i
= BIO_read(b
->next_bio
, &(ctx
->buf
[ctx
->buf_len
]), n
);
265 break; /* nothing new */
269 /* no signature yet -- check if we got one */
270 if (ctx
->sigio
== 1) {
272 BIO_clear_retry_flags(b
);
277 /* signature ok -- check if we got block */
278 if (ctx
->sigio
== 0) {
280 BIO_clear_retry_flags(b
);
285 /* invalid block -- cancel */
291 BIO_clear_retry_flags(b
);
292 BIO_copy_next_retry(b
);
296 static int ok_write(BIO
*b
, const char *in
, int inl
)
304 ctx
= (BIO_OK_CTX
*)b
->ptr
;
307 if ((ctx
== NULL
) || (b
->next_bio
== NULL
) || (b
->init
== 0))
310 if (ctx
->sigio
&& !sig_out(b
))
314 BIO_clear_retry_flags(b
);
315 n
= ctx
->buf_len
- ctx
->buf_off
;
316 while (ctx
->blockout
&& n
> 0) {
317 i
= BIO_write(b
->next_bio
, &(ctx
->buf
[ctx
->buf_off
]), n
);
319 BIO_copy_next_retry(b
);
320 if (!BIO_should_retry(b
))
328 /* at this point all pending data has been written */
330 if (ctx
->buf_len
== ctx
->buf_off
) {
331 ctx
->buf_len
= OK_BLOCK_BLOCK
;
335 if ((in
== NULL
) || (inl
<= 0))
338 n
= (inl
+ ctx
->buf_len
> OK_BLOCK_SIZE
+ OK_BLOCK_BLOCK
) ?
339 (int)(OK_BLOCK_SIZE
+ OK_BLOCK_BLOCK
- ctx
->buf_len
) : inl
;
341 memcpy((unsigned char *)(&(ctx
->buf
[ctx
->buf_len
])),
342 (unsigned char *)in
, n
);
347 if (ctx
->buf_len
>= OK_BLOCK_SIZE
+ OK_BLOCK_BLOCK
) {
349 BIO_clear_retry_flags(b
);
355 BIO_clear_retry_flags(b
);
356 BIO_copy_next_retry(b
);
360 static long ok_ctrl(BIO
*b
, int cmd
, long num
, void *ptr
)
374 ctx
->buf_len_save
= 0;
375 ctx
->buf_off_save
= 0;
380 ret
= BIO_ctrl(b
->next_bio
, cmd
, num
, ptr
);
382 case BIO_CTRL_EOF
: /* More to read */
386 ret
= BIO_ctrl(b
->next_bio
, cmd
, num
, ptr
);
388 case BIO_CTRL_PENDING
: /* More to read in buffer */
389 case BIO_CTRL_WPENDING
: /* More to read in buffer */
390 ret
= ctx
->blockout
? ctx
->buf_len
- ctx
->buf_off
: 0;
392 ret
= BIO_ctrl(b
->next_bio
, cmd
, num
, ptr
);
395 /* do a final write */
396 if (ctx
->blockout
== 0)
400 while (ctx
->blockout
) {
401 i
= ok_write(b
, NULL
, 0);
409 ctx
->buf_off
= ctx
->buf_len
= 0;
410 ctx
->cont
= (int)ret
;
412 /* Finally flush the underlying BIO */
413 ret
= BIO_ctrl(b
->next_bio
, cmd
, num
, ptr
);
415 case BIO_C_DO_STATE_MACHINE
:
416 BIO_clear_retry_flags(b
);
417 ret
= BIO_ctrl(b
->next_bio
, cmd
, num
, ptr
);
418 BIO_copy_next_retry(b
);
421 ret
= (long)ctx
->cont
;
425 if (!EVP_DigestInit_ex(&ctx
->md
, md
, NULL
))
432 *ppmd
= ctx
->md
.digest
;
437 ret
= BIO_ctrl(b
->next_bio
, cmd
, num
, ptr
);
443 static long ok_callback_ctrl(BIO
*b
, int cmd
, bio_info_cb
*fp
)
447 if (b
->next_bio
== NULL
)
451 ret
= BIO_callback_ctrl(b
->next_bio
, cmd
, fp
);
457 static void longswap(void *_ptr
, size_t len
)
466 if (is_endian
.little
) {
468 unsigned char *p
= _ptr
, c
;
470 for (i
= 0; i
< len
; i
+= 4) {
471 c
= p
[0], p
[0] = p
[3], p
[3] = c
;
472 c
= p
[1], p
[1] = p
[2], p
[2] = c
;
477 static int sig_out(BIO
*b
)
485 if (ctx
->buf_len
+ 2 * md
->digest
->md_size
> OK_BLOCK_SIZE
)
488 if (!EVP_DigestInit_ex(md
, md
->digest
, NULL
))
491 * FIXME: there's absolutely no guarantee this makes any sense at all,
492 * particularly now EVP_MD_CTX has been restructured.
494 if (RAND_pseudo_bytes(md
->md_data
, md
->digest
->md_size
) < 0)
496 memcpy(&(ctx
->buf
[ctx
->buf_len
]), md
->md_data
, md
->digest
->md_size
);
497 longswap(&(ctx
->buf
[ctx
->buf_len
]), md
->digest
->md_size
);
498 ctx
->buf_len
+= md
->digest
->md_size
;
500 if (!EVP_DigestUpdate(md
, WELLKNOWN
, strlen(WELLKNOWN
)))
502 if (!EVP_DigestFinal_ex(md
, &(ctx
->buf
[ctx
->buf_len
]), NULL
))
504 ctx
->buf_len
+= md
->digest
->md_size
;
509 BIO_clear_retry_flags(b
);
513 static int sig_in(BIO
*b
)
517 unsigned char tmp
[EVP_MAX_MD_SIZE
];
523 if ((int)(ctx
->buf_len
- ctx
->buf_off
) < 2 * md
->digest
->md_size
)
526 if (!EVP_DigestInit_ex(md
, md
->digest
, NULL
))
528 memcpy(md
->md_data
, &(ctx
->buf
[ctx
->buf_off
]), md
->digest
->md_size
);
529 longswap(md
->md_data
, md
->digest
->md_size
);
530 ctx
->buf_off
+= md
->digest
->md_size
;
532 if (!EVP_DigestUpdate(md
, WELLKNOWN
, strlen(WELLKNOWN
)))
534 if (!EVP_DigestFinal_ex(md
, tmp
, NULL
))
536 ret
= memcmp(&(ctx
->buf
[ctx
->buf_off
]), tmp
, md
->digest
->md_size
) == 0;
537 ctx
->buf_off
+= md
->digest
->md_size
;
540 if (ctx
->buf_len
!= ctx
->buf_off
) {
541 memmove(ctx
->buf
, &(ctx
->buf
[ctx
->buf_off
]),
542 ctx
->buf_len
- ctx
->buf_off
);
544 ctx
->buf_len
-= ctx
->buf_off
;
551 BIO_clear_retry_flags(b
);
555 static int block_out(BIO
*b
)
564 tl
= ctx
->buf_len
- OK_BLOCK_BLOCK
;
565 ctx
->buf
[0] = (unsigned char)(tl
>> 24);
566 ctx
->buf
[1] = (unsigned char)(tl
>> 16);
567 ctx
->buf
[2] = (unsigned char)(tl
>> 8);
568 ctx
->buf
[3] = (unsigned char)(tl
);
569 if (!EVP_DigestUpdate(md
,
570 (unsigned char *)&(ctx
->buf
[OK_BLOCK_BLOCK
]), tl
))
572 if (!EVP_DigestFinal_ex(md
, &(ctx
->buf
[ctx
->buf_len
]), NULL
))
574 ctx
->buf_len
+= md
->digest
->md_size
;
578 BIO_clear_retry_flags(b
);
582 static int block_in(BIO
*b
)
586 unsigned long tl
= 0;
587 unsigned char tmp
[EVP_MAX_MD_SIZE
];
592 assert(sizeof(tl
) >= OK_BLOCK_BLOCK
); /* always true */
601 if (ctx
->buf_len
< tl
+ OK_BLOCK_BLOCK
+ md
->digest
->md_size
)
604 if (!EVP_DigestUpdate(md
,
605 (unsigned char *)&(ctx
->buf
[OK_BLOCK_BLOCK
]), tl
))
607 if (!EVP_DigestFinal_ex(md
, tmp
, NULL
))
609 if (memcmp(&(ctx
->buf
[tl
+ OK_BLOCK_BLOCK
]), tmp
, md
->digest
->md_size
) ==
611 /* there might be parts from next block lurking around ! */
612 ctx
->buf_off_save
= tl
+ OK_BLOCK_BLOCK
+ md
->digest
->md_size
;
613 ctx
->buf_len_save
= ctx
->buf_len
;
614 ctx
->buf_off
= OK_BLOCK_BLOCK
;
615 ctx
->buf_len
= tl
+ OK_BLOCK_BLOCK
;
622 BIO_clear_retry_flags(b
);