openssl: update to 1.0.2d
[tomato.git] / release / src / router / openssl / crypto / evp / e_aes.c
blob1734a823c1e5c515a43380177544f9f576512bf2
1 /* ====================================================================
2 * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * openssl-core@openssl.org.
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ====================================================================
51 #include <openssl/opensslconf.h>
52 #ifndef OPENSSL_NO_AES
53 #include <openssl/crypto.h>
54 # include <openssl/evp.h>
55 # include <openssl/err.h>
56 # include <string.h>
57 # include <assert.h>
58 # include <openssl/aes.h>
59 # include "evp_locl.h"
60 # include "modes_lcl.h"
61 # include <openssl/rand.h>
63 # undef EVP_CIPH_FLAG_FIPS
64 # define EVP_CIPH_FLAG_FIPS 0
66 typedef struct {
67 union {
68 double align;
69 AES_KEY ks;
70 } ks;
71 block128_f block;
72 union {
73 cbc128_f cbc;
74 ctr128_f ctr;
75 } stream;
76 } EVP_AES_KEY;
78 typedef struct {
79 union {
80 double align;
81 AES_KEY ks;
82 } ks; /* AES key schedule to use */
83 int key_set; /* Set if key initialised */
84 int iv_set; /* Set if an iv is set */
85 GCM128_CONTEXT gcm;
86 unsigned char *iv; /* Temporary IV store */
87 int ivlen; /* IV length */
88 int taglen;
89 int iv_gen; /* It is OK to generate IVs */
90 int tls_aad_len; /* TLS AAD length */
91 ctr128_f ctr;
92 } EVP_AES_GCM_CTX;
94 typedef struct {
95 union {
96 double align;
97 AES_KEY ks;
98 } ks1, ks2; /* AES key schedules to use */
99 XTS128_CONTEXT xts;
100 void (*stream) (const unsigned char *in,
101 unsigned char *out, size_t length,
102 const AES_KEY *key1, const AES_KEY *key2,
103 const unsigned char iv[16]);
104 } EVP_AES_XTS_CTX;
106 typedef struct {
107 union {
108 double align;
109 AES_KEY ks;
110 } ks; /* AES key schedule to use */
111 int key_set; /* Set if key initialised */
112 int iv_set; /* Set if an iv is set */
113 int tag_set; /* Set if tag is valid */
114 int len_set; /* Set if message length set */
115 int L, M; /* L and M parameters from RFC3610 */
116 CCM128_CONTEXT ccm;
117 ccm128_f str;
118 } EVP_AES_CCM_CTX;
120 # define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
122 # ifdef VPAES_ASM
123 int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
124 AES_KEY *key);
125 int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
126 AES_KEY *key);
128 void vpaes_encrypt(const unsigned char *in, unsigned char *out,
129 const AES_KEY *key);
130 void vpaes_decrypt(const unsigned char *in, unsigned char *out,
131 const AES_KEY *key);
133 void vpaes_cbc_encrypt(const unsigned char *in,
134 unsigned char *out,
135 size_t length,
136 const AES_KEY *key, unsigned char *ivec, int enc);
137 # endif
138 # ifdef BSAES_ASM
139 void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
140 size_t length, const AES_KEY *key,
141 unsigned char ivec[16], int enc);
142 void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
143 size_t len, const AES_KEY *key,
144 const unsigned char ivec[16]);
145 void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
146 size_t len, const AES_KEY *key1,
147 const AES_KEY *key2, const unsigned char iv[16]);
148 void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
149 size_t len, const AES_KEY *key1,
150 const AES_KEY *key2, const unsigned char iv[16]);
151 # endif
152 # ifdef AES_CTR_ASM
153 void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
154 size_t blocks, const AES_KEY *key,
155 const unsigned char ivec[AES_BLOCK_SIZE]);
156 # endif
157 # ifdef AES_XTS_ASM
158 void AES_xts_encrypt(const char *inp, char *out, size_t len,
159 const AES_KEY *key1, const AES_KEY *key2,
160 const unsigned char iv[16]);
161 void AES_xts_decrypt(const char *inp, char *out, size_t len,
162 const AES_KEY *key1, const AES_KEY *key2,
163 const unsigned char iv[16]);
164 # endif
166 # if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
167 # include "ppc_arch.h"
168 # ifdef VPAES_ASM
169 # define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC)
170 # endif
171 # define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207)
172 # define HWAES_set_encrypt_key aes_p8_set_encrypt_key
173 # define HWAES_set_decrypt_key aes_p8_set_decrypt_key
174 # define HWAES_encrypt aes_p8_encrypt
175 # define HWAES_decrypt aes_p8_decrypt
176 # define HWAES_cbc_encrypt aes_p8_cbc_encrypt
177 # define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks
178 # endif
180 # if defined(AES_ASM) && !defined(I386_ONLY) && ( \
181 ((defined(__i386) || defined(__i386__) || \
182 defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
183 defined(__x86_64) || defined(__x86_64__) || \
184 defined(_M_AMD64) || defined(_M_X64) || \
185 defined(__INTEL__) )
187 extern unsigned int OPENSSL_ia32cap_P[];
189 # ifdef VPAES_ASM
190 # define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
191 # endif
192 # ifdef BSAES_ASM
193 # define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
194 # endif
196 * AES-NI section
198 # define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32)))
200 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
201 AES_KEY *key);
202 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
203 AES_KEY *key);
205 void aesni_encrypt(const unsigned char *in, unsigned char *out,
206 const AES_KEY *key);
207 void aesni_decrypt(const unsigned char *in, unsigned char *out,
208 const AES_KEY *key);
210 void aesni_ecb_encrypt(const unsigned char *in,
211 unsigned char *out,
212 size_t length, const AES_KEY *key, int enc);
213 void aesni_cbc_encrypt(const unsigned char *in,
214 unsigned char *out,
215 size_t length,
216 const AES_KEY *key, unsigned char *ivec, int enc);
218 void aesni_ctr32_encrypt_blocks(const unsigned char *in,
219 unsigned char *out,
220 size_t blocks,
221 const void *key, const unsigned char *ivec);
223 void aesni_xts_encrypt(const unsigned char *in,
224 unsigned char *out,
225 size_t length,
226 const AES_KEY *key1, const AES_KEY *key2,
227 const unsigned char iv[16]);
229 void aesni_xts_decrypt(const unsigned char *in,
230 unsigned char *out,
231 size_t length,
232 const AES_KEY *key1, const AES_KEY *key2,
233 const unsigned char iv[16]);
235 void aesni_ccm64_encrypt_blocks(const unsigned char *in,
236 unsigned char *out,
237 size_t blocks,
238 const void *key,
239 const unsigned char ivec[16],
240 unsigned char cmac[16]);
242 void aesni_ccm64_decrypt_blocks(const unsigned char *in,
243 unsigned char *out,
244 size_t blocks,
245 const void *key,
246 const unsigned char ivec[16],
247 unsigned char cmac[16]);
249 # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
250 size_t aesni_gcm_encrypt(const unsigned char *in,
251 unsigned char *out,
252 size_t len,
253 const void *key, unsigned char ivec[16], u64 *Xi);
254 # define AES_gcm_encrypt aesni_gcm_encrypt
255 size_t aesni_gcm_decrypt(const unsigned char *in,
256 unsigned char *out,
257 size_t len,
258 const void *key, unsigned char ivec[16], u64 *Xi);
259 # define AES_gcm_decrypt aesni_gcm_decrypt
260 void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in,
261 size_t len);
262 # define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \
263 gctx->gcm.ghash==gcm_ghash_avx)
264 # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \
265 gctx->gcm.ghash==gcm_ghash_avx)
266 # undef AES_GCM_ASM2 /* minor size optimization */
267 # endif
269 static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
270 const unsigned char *iv, int enc)
272 int ret, mode;
273 EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
275 mode = ctx->cipher->flags & EVP_CIPH_MODE;
276 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
277 && !enc) {
278 ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
279 dat->block = (block128_f) aesni_decrypt;
280 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
281 (cbc128_f) aesni_cbc_encrypt : NULL;
282 } else {
283 ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
284 dat->block = (block128_f) aesni_encrypt;
285 if (mode == EVP_CIPH_CBC_MODE)
286 dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
287 else if (mode == EVP_CIPH_CTR_MODE)
288 dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
289 else
290 dat->stream.cbc = NULL;
293 if (ret < 0) {
294 EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
295 return 0;
298 return 1;
301 static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
302 const unsigned char *in, size_t len)
304 aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt);
306 return 1;
309 static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
310 const unsigned char *in, size_t len)
312 size_t bl = ctx->cipher->block_size;
314 if (len < bl)
315 return 1;
317 aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
319 return 1;
322 # define aesni_ofb_cipher aes_ofb_cipher
323 static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
324 const unsigned char *in, size_t len);
326 # define aesni_cfb_cipher aes_cfb_cipher
327 static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
328 const unsigned char *in, size_t len);
330 # define aesni_cfb8_cipher aes_cfb8_cipher
331 static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
332 const unsigned char *in, size_t len);
334 # define aesni_cfb1_cipher aes_cfb1_cipher
335 static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
336 const unsigned char *in, size_t len);
338 # define aesni_ctr_cipher aes_ctr_cipher
339 static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
340 const unsigned char *in, size_t len);
342 static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
343 const unsigned char *iv, int enc)
345 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
346 if (!iv && !key)
347 return 1;
348 if (key) {
349 aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
350 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
351 gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
353 * If we have an iv can set it directly, otherwise use saved IV.
355 if (iv == NULL && gctx->iv_set)
356 iv = gctx->iv;
357 if (iv) {
358 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
359 gctx->iv_set = 1;
361 gctx->key_set = 1;
362 } else {
363 /* If key set use IV, otherwise copy */
364 if (gctx->key_set)
365 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
366 else
367 memcpy(gctx->iv, iv, gctx->ivlen);
368 gctx->iv_set = 1;
369 gctx->iv_gen = 0;
371 return 1;
374 # define aesni_gcm_cipher aes_gcm_cipher
375 static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
376 const unsigned char *in, size_t len);
378 static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
379 const unsigned char *iv, int enc)
381 EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
382 if (!iv && !key)
383 return 1;
385 if (key) {
386 /* key_len is two AES keys */
387 if (enc) {
388 aesni_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks);
389 xctx->xts.block1 = (block128_f) aesni_encrypt;
390 xctx->stream = aesni_xts_encrypt;
391 } else {
392 aesni_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks);
393 xctx->xts.block1 = (block128_f) aesni_decrypt;
394 xctx->stream = aesni_xts_decrypt;
397 aesni_set_encrypt_key(key + ctx->key_len / 2,
398 ctx->key_len * 4, &xctx->ks2.ks);
399 xctx->xts.block2 = (block128_f) aesni_encrypt;
401 xctx->xts.key1 = &xctx->ks1;
404 if (iv) {
405 xctx->xts.key2 = &xctx->ks2;
406 memcpy(ctx->iv, iv, 16);
409 return 1;
412 # define aesni_xts_cipher aes_xts_cipher
413 static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
414 const unsigned char *in, size_t len);
416 static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
417 const unsigned char *iv, int enc)
419 EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
420 if (!iv && !key)
421 return 1;
422 if (key) {
423 aesni_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks);
424 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
425 &cctx->ks, (block128_f) aesni_encrypt);
426 cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
427 (ccm128_f) aesni_ccm64_decrypt_blocks;
428 cctx->key_set = 1;
430 if (iv) {
431 memcpy(ctx->iv, iv, 15 - cctx->L);
432 cctx->iv_set = 1;
434 return 1;
437 # define aesni_ccm_cipher aes_ccm_cipher
438 static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
439 const unsigned char *in, size_t len);
441 # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
442 static const EVP_CIPHER aesni_##keylen##_##mode = { \
443 nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
444 flags|EVP_CIPH_##MODE##_MODE, \
445 aesni_init_key, \
446 aesni_##mode##_cipher, \
447 NULL, \
448 sizeof(EVP_AES_KEY), \
449 NULL,NULL,NULL,NULL }; \
450 static const EVP_CIPHER aes_##keylen##_##mode = { \
451 nid##_##keylen##_##nmode,blocksize, \
452 keylen/8,ivlen, \
453 flags|EVP_CIPH_##MODE##_MODE, \
454 aes_init_key, \
455 aes_##mode##_cipher, \
456 NULL, \
457 sizeof(EVP_AES_KEY), \
458 NULL,NULL,NULL,NULL }; \
459 const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
460 { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
462 # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
463 static const EVP_CIPHER aesni_##keylen##_##mode = { \
464 nid##_##keylen##_##mode,blocksize, \
465 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
466 flags|EVP_CIPH_##MODE##_MODE, \
467 aesni_##mode##_init_key, \
468 aesni_##mode##_cipher, \
469 aes_##mode##_cleanup, \
470 sizeof(EVP_AES_##MODE##_CTX), \
471 NULL,NULL,aes_##mode##_ctrl,NULL }; \
472 static const EVP_CIPHER aes_##keylen##_##mode = { \
473 nid##_##keylen##_##mode,blocksize, \
474 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
475 flags|EVP_CIPH_##MODE##_MODE, \
476 aes_##mode##_init_key, \
477 aes_##mode##_cipher, \
478 aes_##mode##_cleanup, \
479 sizeof(EVP_AES_##MODE##_CTX), \
480 NULL,NULL,aes_##mode##_ctrl,NULL }; \
481 const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
482 { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
484 # elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
486 # include "sparc_arch.h"
488 extern unsigned int OPENSSL_sparcv9cap_P[];
490 # define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES)
492 void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
493 void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
494 void aes_t4_encrypt(const unsigned char *in, unsigned char *out,
495 const AES_KEY *key);
496 void aes_t4_decrypt(const unsigned char *in, unsigned char *out,
497 const AES_KEY *key);
499 * Key-length specific subroutines were chosen for following reason.
500 * Each SPARC T4 core can execute up to 8 threads which share core's
501 * resources. Loading as much key material to registers allows to
502 * minimize references to shared memory interface, as well as amount
503 * of instructions in inner loops [much needed on T4]. But then having
504 * non-key-length specific routines would require conditional branches
505 * either in inner loops or on subroutines' entries. Former is hardly
506 * acceptable, while latter means code size increase to size occupied
507 * by multiple key-length specfic subroutines, so why fight?
509 void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
510 size_t len, const AES_KEY *key,
511 unsigned char *ivec);
512 void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
513 size_t len, const AES_KEY *key,
514 unsigned char *ivec);
515 void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
516 size_t len, const AES_KEY *key,
517 unsigned char *ivec);
518 void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
519 size_t len, const AES_KEY *key,
520 unsigned char *ivec);
521 void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
522 size_t len, const AES_KEY *key,
523 unsigned char *ivec);
524 void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
525 size_t len, const AES_KEY *key,
526 unsigned char *ivec);
527 void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
528 size_t blocks, const AES_KEY *key,
529 unsigned char *ivec);
530 void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
531 size_t blocks, const AES_KEY *key,
532 unsigned char *ivec);
533 void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
534 size_t blocks, const AES_KEY *key,
535 unsigned char *ivec);
536 void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
537 size_t blocks, const AES_KEY *key1,
538 const AES_KEY *key2, const unsigned char *ivec);
539 void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
540 size_t blocks, const AES_KEY *key1,
541 const AES_KEY *key2, const unsigned char *ivec);
542 void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
543 size_t blocks, const AES_KEY *key1,
544 const AES_KEY *key2, const unsigned char *ivec);
545 void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
546 size_t blocks, const AES_KEY *key1,
547 const AES_KEY *key2, const unsigned char *ivec);
549 static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
550 const unsigned char *iv, int enc)
552 int ret, mode, bits;
553 EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
555 mode = ctx->cipher->flags & EVP_CIPH_MODE;
556 bits = ctx->key_len * 8;
557 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
558 && !enc) {
559 ret = 0;
560 aes_t4_set_decrypt_key(key, bits, ctx->cipher_data);
561 dat->block = (block128_f) aes_t4_decrypt;
562 switch (bits) {
563 case 128:
564 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
565 (cbc128_f) aes128_t4_cbc_decrypt : NULL;
566 break;
567 case 192:
568 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
569 (cbc128_f) aes192_t4_cbc_decrypt : NULL;
570 break;
571 case 256:
572 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
573 (cbc128_f) aes256_t4_cbc_decrypt : NULL;
574 break;
575 default:
576 ret = -1;
578 } else {
579 ret = 0;
580 aes_t4_set_encrypt_key(key, bits, ctx->cipher_data);
581 dat->block = (block128_f) aes_t4_encrypt;
582 switch (bits) {
583 case 128:
584 if (mode == EVP_CIPH_CBC_MODE)
585 dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;
586 else if (mode == EVP_CIPH_CTR_MODE)
587 dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
588 else
589 dat->stream.cbc = NULL;
590 break;
591 case 192:
592 if (mode == EVP_CIPH_CBC_MODE)
593 dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;
594 else if (mode == EVP_CIPH_CTR_MODE)
595 dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
596 else
597 dat->stream.cbc = NULL;
598 break;
599 case 256:
600 if (mode == EVP_CIPH_CBC_MODE)
601 dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;
602 else if (mode == EVP_CIPH_CTR_MODE)
603 dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
604 else
605 dat->stream.cbc = NULL;
606 break;
607 default:
608 ret = -1;
612 if (ret < 0) {
613 EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
614 return 0;
617 return 1;
620 # define aes_t4_cbc_cipher aes_cbc_cipher
621 static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
622 const unsigned char *in, size_t len);
624 # define aes_t4_ecb_cipher aes_ecb_cipher
625 static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
626 const unsigned char *in, size_t len);
628 # define aes_t4_ofb_cipher aes_ofb_cipher
629 static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
630 const unsigned char *in, size_t len);
632 # define aes_t4_cfb_cipher aes_cfb_cipher
633 static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
634 const unsigned char *in, size_t len);
636 # define aes_t4_cfb8_cipher aes_cfb8_cipher
637 static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
638 const unsigned char *in, size_t len);
640 # define aes_t4_cfb1_cipher aes_cfb1_cipher
641 static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
642 const unsigned char *in, size_t len);
644 # define aes_t4_ctr_cipher aes_ctr_cipher
645 static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
646 const unsigned char *in, size_t len);
648 static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
649 const unsigned char *iv, int enc)
651 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
652 if (!iv && !key)
653 return 1;
654 if (key) {
655 int bits = ctx->key_len * 8;
656 aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
657 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
658 (block128_f) aes_t4_encrypt);
659 switch (bits) {
660 case 128:
661 gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
662 break;
663 case 192:
664 gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
665 break;
666 case 256:
667 gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
668 break;
669 default:
670 return 0;
673 * If we have an iv can set it directly, otherwise use saved IV.
675 if (iv == NULL && gctx->iv_set)
676 iv = gctx->iv;
677 if (iv) {
678 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
679 gctx->iv_set = 1;
681 gctx->key_set = 1;
682 } else {
683 /* If key set use IV, otherwise copy */
684 if (gctx->key_set)
685 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
686 else
687 memcpy(gctx->iv, iv, gctx->ivlen);
688 gctx->iv_set = 1;
689 gctx->iv_gen = 0;
691 return 1;
694 # define aes_t4_gcm_cipher aes_gcm_cipher
695 static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
696 const unsigned char *in, size_t len);
698 static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
699 const unsigned char *iv, int enc)
701 EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
702 if (!iv && !key)
703 return 1;
705 if (key) {
706 int bits = ctx->key_len * 4;
707 xctx->stream = NULL;
708 /* key_len is two AES keys */
709 if (enc) {
710 aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);
711 xctx->xts.block1 = (block128_f) aes_t4_encrypt;
712 switch (bits) {
713 case 128:
714 xctx->stream = aes128_t4_xts_encrypt;
715 break;
716 # if 0 /* not yet */
717 case 192:
718 xctx->stream = aes192_t4_xts_encrypt;
719 break;
720 # endif
721 case 256:
722 xctx->stream = aes256_t4_xts_encrypt;
723 break;
724 default:
725 return 0;
727 } else {
728 aes_t4_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks);
729 xctx->xts.block1 = (block128_f) aes_t4_decrypt;
730 switch (bits) {
731 case 128:
732 xctx->stream = aes128_t4_xts_decrypt;
733 break;
734 # if 0 /* not yet */
735 case 192:
736 xctx->stream = aes192_t4_xts_decrypt;
737 break;
738 # endif
739 case 256:
740 xctx->stream = aes256_t4_xts_decrypt;
741 break;
742 default:
743 return 0;
747 aes_t4_set_encrypt_key(key + ctx->key_len / 2,
748 ctx->key_len * 4, &xctx->ks2.ks);
749 xctx->xts.block2 = (block128_f) aes_t4_encrypt;
751 xctx->xts.key1 = &xctx->ks1;
754 if (iv) {
755 xctx->xts.key2 = &xctx->ks2;
756 memcpy(ctx->iv, iv, 16);
759 return 1;
762 # define aes_t4_xts_cipher aes_xts_cipher
763 static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
764 const unsigned char *in, size_t len);
766 static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
767 const unsigned char *iv, int enc)
769 EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
770 if (!iv && !key)
771 return 1;
772 if (key) {
773 int bits = ctx->key_len * 8;
774 aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
775 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
776 &cctx->ks, (block128_f) aes_t4_encrypt);
777 # if 0 /* not yet */
778 switch (bits) {
779 case 128:
780 cctx->str = enc ? (ccm128_f) aes128_t4_ccm64_encrypt :
781 (ccm128_f) ae128_t4_ccm64_decrypt;
782 break;
783 case 192:
784 cctx->str = enc ? (ccm128_f) aes192_t4_ccm64_encrypt :
785 (ccm128_f) ae192_t4_ccm64_decrypt;
786 break;
787 case 256:
788 cctx->str = enc ? (ccm128_f) aes256_t4_ccm64_encrypt :
789 (ccm128_f) ae256_t4_ccm64_decrypt;
790 break;
791 default:
792 return 0;
794 # else
795 cctx->str = NULL;
796 # endif
797 cctx->key_set = 1;
799 if (iv) {
800 memcpy(ctx->iv, iv, 15 - cctx->L);
801 cctx->iv_set = 1;
803 return 1;
806 # define aes_t4_ccm_cipher aes_ccm_cipher
807 static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
808 const unsigned char *in, size_t len);
810 # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
811 static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
812 nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
813 flags|EVP_CIPH_##MODE##_MODE, \
814 aes_t4_init_key, \
815 aes_t4_##mode##_cipher, \
816 NULL, \
817 sizeof(EVP_AES_KEY), \
818 NULL,NULL,NULL,NULL }; \
819 static const EVP_CIPHER aes_##keylen##_##mode = { \
820 nid##_##keylen##_##nmode,blocksize, \
821 keylen/8,ivlen, \
822 flags|EVP_CIPH_##MODE##_MODE, \
823 aes_init_key, \
824 aes_##mode##_cipher, \
825 NULL, \
826 sizeof(EVP_AES_KEY), \
827 NULL,NULL,NULL,NULL }; \
828 const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
829 { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
831 # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
832 static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
833 nid##_##keylen##_##mode,blocksize, \
834 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
835 flags|EVP_CIPH_##MODE##_MODE, \
836 aes_t4_##mode##_init_key, \
837 aes_t4_##mode##_cipher, \
838 aes_##mode##_cleanup, \
839 sizeof(EVP_AES_##MODE##_CTX), \
840 NULL,NULL,aes_##mode##_ctrl,NULL }; \
841 static const EVP_CIPHER aes_##keylen##_##mode = { \
842 nid##_##keylen##_##mode,blocksize, \
843 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
844 flags|EVP_CIPH_##MODE##_MODE, \
845 aes_##mode##_init_key, \
846 aes_##mode##_cipher, \
847 aes_##mode##_cleanup, \
848 sizeof(EVP_AES_##MODE##_CTX), \
849 NULL,NULL,aes_##mode##_ctrl,NULL }; \
850 const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
851 { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
853 # else
855 # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
856 static const EVP_CIPHER aes_##keylen##_##mode = { \
857 nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
858 flags|EVP_CIPH_##MODE##_MODE, \
859 aes_init_key, \
860 aes_##mode##_cipher, \
861 NULL, \
862 sizeof(EVP_AES_KEY), \
863 NULL,NULL,NULL,NULL }; \
864 const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
865 { return &aes_##keylen##_##mode; }
867 # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
868 static const EVP_CIPHER aes_##keylen##_##mode = { \
869 nid##_##keylen##_##mode,blocksize, \
870 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
871 flags|EVP_CIPH_##MODE##_MODE, \
872 aes_##mode##_init_key, \
873 aes_##mode##_cipher, \
874 aes_##mode##_cleanup, \
875 sizeof(EVP_AES_##MODE##_CTX), \
876 NULL,NULL,aes_##mode##_ctrl,NULL }; \
877 const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
878 { return &aes_##keylen##_##mode; }
879 # endif
881 # if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__))
882 # include "arm_arch.h"
883 # if __ARM_MAX_ARCH__>=7
884 # if defined(BSAES_ASM)
885 # define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
886 # endif
887 # define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES)
888 # define HWAES_set_encrypt_key aes_v8_set_encrypt_key
889 # define HWAES_set_decrypt_key aes_v8_set_decrypt_key
890 # define HWAES_encrypt aes_v8_encrypt
891 # define HWAES_decrypt aes_v8_decrypt
892 # define HWAES_cbc_encrypt aes_v8_cbc_encrypt
893 # define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks
894 # endif
895 # endif
897 # if defined(HWAES_CAPABLE)
898 int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits,
899 AES_KEY *key);
900 int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits,
901 AES_KEY *key);
902 void HWAES_encrypt(const unsigned char *in, unsigned char *out,
903 const AES_KEY *key);
904 void HWAES_decrypt(const unsigned char *in, unsigned char *out,
905 const AES_KEY *key);
906 void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out,
907 size_t length, const AES_KEY *key,
908 unsigned char *ivec, const int enc);
909 void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
910 size_t len, const AES_KEY *key,
911 const unsigned char ivec[16]);
912 # endif
914 # define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
915 BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
916 BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
917 BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
918 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
919 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
920 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
921 BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
923 static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
924 const unsigned char *iv, int enc)
926 int ret, mode;
927 EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
929 mode = ctx->cipher->flags & EVP_CIPH_MODE;
930 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
931 && !enc)
932 # ifdef HWAES_CAPABLE
933 if (HWAES_CAPABLE) {
934 ret = HWAES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
935 dat->block = (block128_f) HWAES_decrypt;
936 dat->stream.cbc = NULL;
937 # ifdef HWAES_cbc_encrypt
938 if (mode == EVP_CIPH_CBC_MODE)
939 dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
940 # endif
941 } else
942 # endif
943 # ifdef BSAES_CAPABLE
944 if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
945 ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
946 dat->block = (block128_f) AES_decrypt;
947 dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt;
948 } else
949 # endif
950 # ifdef VPAES_CAPABLE
951 if (VPAES_CAPABLE) {
952 ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
953 dat->block = (block128_f) vpaes_decrypt;
954 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
955 (cbc128_f) vpaes_cbc_encrypt : NULL;
956 } else
957 # endif
959 ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
960 dat->block = (block128_f) AES_decrypt;
961 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
962 (cbc128_f) AES_cbc_encrypt : NULL;
963 } else
964 # ifdef HWAES_CAPABLE
965 if (HWAES_CAPABLE) {
966 ret = HWAES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
967 dat->block = (block128_f) HWAES_encrypt;
968 dat->stream.cbc = NULL;
969 # ifdef HWAES_cbc_encrypt
970 if (mode == EVP_CIPH_CBC_MODE)
971 dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
972 else
973 # endif
974 # ifdef HWAES_ctr32_encrypt_blocks
975 if (mode == EVP_CIPH_CTR_MODE)
976 dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
977 else
978 # endif
979 (void)0; /* terminate potentially open 'else' */
980 } else
981 # endif
982 # ifdef BSAES_CAPABLE
983 if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
984 ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
985 dat->block = (block128_f) AES_encrypt;
986 dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
987 } else
988 # endif
989 # ifdef VPAES_CAPABLE
990 if (VPAES_CAPABLE) {
991 ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
992 dat->block = (block128_f) vpaes_encrypt;
993 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
994 (cbc128_f) vpaes_cbc_encrypt : NULL;
995 } else
996 # endif
998 ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
999 dat->block = (block128_f) AES_encrypt;
1000 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
1001 (cbc128_f) AES_cbc_encrypt : NULL;
1002 # ifdef AES_CTR_ASM
1003 if (mode == EVP_CIPH_CTR_MODE)
1004 dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt;
1005 # endif
1008 if (ret < 0) {
1009 EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
1010 return 0;
1013 return 1;
1016 static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1017 const unsigned char *in, size_t len)
1019 EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
1021 if (dat->stream.cbc)
1022 (*dat->stream.cbc) (in, out, len, &dat->ks, ctx->iv, ctx->encrypt);
1023 else if (ctx->encrypt)
1024 CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
1025 else
1026 CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
1028 return 1;
1031 static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1032 const unsigned char *in, size_t len)
1034 size_t bl = ctx->cipher->block_size;
1035 size_t i;
1036 EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
1038 if (len < bl)
1039 return 1;
1041 for (i = 0, len -= bl; i <= len; i += bl)
1042 (*dat->block) (in + i, out + i, &dat->ks);
1044 return 1;
1047 static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1048 const unsigned char *in, size_t len)
1050 EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
1052 CRYPTO_ofb128_encrypt(in, out, len, &dat->ks,
1053 ctx->iv, &ctx->num, dat->block);
1054 return 1;
1057 static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1058 const unsigned char *in, size_t len)
1060 EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
1062 CRYPTO_cfb128_encrypt(in, out, len, &dat->ks,
1063 ctx->iv, &ctx->num, ctx->encrypt, dat->block);
1064 return 1;
1067 static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1068 const unsigned char *in, size_t len)
1070 EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
1072 CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks,
1073 ctx->iv, &ctx->num, ctx->encrypt, dat->block);
1074 return 1;
1077 static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1078 const unsigned char *in, size_t len)
1080 EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
1082 if (ctx->flags & EVP_CIPH_FLAG_LENGTH_BITS) {
1083 CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks,
1084 ctx->iv, &ctx->num, ctx->encrypt, dat->block);
1085 return 1;
1088 while (len >= MAXBITCHUNK) {
1089 CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks,
1090 ctx->iv, &ctx->num, ctx->encrypt, dat->block);
1091 len -= MAXBITCHUNK;
1093 if (len)
1094 CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks,
1095 ctx->iv, &ctx->num, ctx->encrypt, dat->block);
1097 return 1;
1100 static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1101 const unsigned char *in, size_t len)
1103 unsigned int num = ctx->num;
1104 EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
1106 if (dat->stream.ctr)
1107 CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
1108 ctx->iv, ctx->buf, &num, dat->stream.ctr);
1109 else
1110 CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
1111 ctx->iv, ctx->buf, &num, dat->block);
1112 ctx->num = (size_t)num;
1113 return 1;
1116 BLOCK_CIPHER_generic_pack(NID_aes, 128, EVP_CIPH_FLAG_FIPS)
1117 BLOCK_CIPHER_generic_pack(NID_aes, 192, EVP_CIPH_FLAG_FIPS)
1118 BLOCK_CIPHER_generic_pack(NID_aes, 256, EVP_CIPH_FLAG_FIPS)
1120 static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
1122 EVP_AES_GCM_CTX *gctx = c->cipher_data;
1123 OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
1124 if (gctx->iv != c->iv)
1125 OPENSSL_free(gctx->iv);
1126 return 1;
1129 /* increment counter (64-bit int) by 1 */
1130 static void ctr64_inc(unsigned char *counter)
1132 int n = 8;
1133 unsigned char c;
1135 do {
1136 --n;
1137 c = counter[n];
1138 ++c;
1139 counter[n] = c;
1140 if (c)
1141 return;
1142 } while (n);
1145 static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1147 EVP_AES_GCM_CTX *gctx = c->cipher_data;
1148 switch (type) {
1149 case EVP_CTRL_INIT:
1150 gctx->key_set = 0;
1151 gctx->iv_set = 0;
1152 gctx->ivlen = c->cipher->iv_len;
1153 gctx->iv = c->iv;
1154 gctx->taglen = -1;
1155 gctx->iv_gen = 0;
1156 gctx->tls_aad_len = -1;
1157 return 1;
1159 case EVP_CTRL_GCM_SET_IVLEN:
1160 if (arg <= 0)
1161 return 0;
1162 /* Allocate memory for IV if needed */
1163 if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
1164 if (gctx->iv != c->iv)
1165 OPENSSL_free(gctx->iv);
1166 gctx->iv = OPENSSL_malloc(arg);
1167 if (!gctx->iv)
1168 return 0;
1170 gctx->ivlen = arg;
1171 return 1;
1173 case EVP_CTRL_GCM_SET_TAG:
1174 if (arg <= 0 || arg > 16 || c->encrypt)
1175 return 0;
1176 memcpy(c->buf, ptr, arg);
1177 gctx->taglen = arg;
1178 return 1;
1180 case EVP_CTRL_GCM_GET_TAG:
1181 if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0)
1182 return 0;
1183 memcpy(ptr, c->buf, arg);
1184 return 1;
1186 case EVP_CTRL_GCM_SET_IV_FIXED:
1187 /* Special case: -1 length restores whole IV */
1188 if (arg == -1) {
1189 memcpy(gctx->iv, ptr, gctx->ivlen);
1190 gctx->iv_gen = 1;
1191 return 1;
1194 * Fixed field must be at least 4 bytes and invocation field at least
1195 * 8.
1197 if ((arg < 4) || (gctx->ivlen - arg) < 8)
1198 return 0;
1199 if (arg)
1200 memcpy(gctx->iv, ptr, arg);
1201 if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
1202 return 0;
1203 gctx->iv_gen = 1;
1204 return 1;
1206 case EVP_CTRL_GCM_IV_GEN:
1207 if (gctx->iv_gen == 0 || gctx->key_set == 0)
1208 return 0;
1209 CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
1210 if (arg <= 0 || arg > gctx->ivlen)
1211 arg = gctx->ivlen;
1212 memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
1214 * Invocation field will be at least 8 bytes in size and so no need
1215 * to check wrap around or increment more than last 8 bytes.
1217 ctr64_inc(gctx->iv + gctx->ivlen - 8);
1218 gctx->iv_set = 1;
1219 return 1;
1221 case EVP_CTRL_GCM_SET_IV_INV:
1222 if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
1223 return 0;
1224 memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
1225 CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
1226 gctx->iv_set = 1;
1227 return 1;
1229 case EVP_CTRL_AEAD_TLS1_AAD:
1230 /* Save the AAD for later use */
1231 if (arg != EVP_AEAD_TLS1_AAD_LEN)
1232 return 0;
1233 memcpy(c->buf, ptr, arg);
1234 gctx->tls_aad_len = arg;
1236 unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1];
1237 /* Correct length for explicit IV */
1238 len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
1239 /* If decrypting correct for tag too */
1240 if (!c->encrypt)
1241 len -= EVP_GCM_TLS_TAG_LEN;
1242 c->buf[arg - 2] = len >> 8;
1243 c->buf[arg - 1] = len & 0xff;
1245 /* Extra padding: tag appended to record */
1246 return EVP_GCM_TLS_TAG_LEN;
1248 case EVP_CTRL_COPY:
1250 EVP_CIPHER_CTX *out = ptr;
1251 EVP_AES_GCM_CTX *gctx_out = out->cipher_data;
1252 if (gctx->gcm.key) {
1253 if (gctx->gcm.key != &gctx->ks)
1254 return 0;
1255 gctx_out->gcm.key = &gctx_out->ks;
1257 if (gctx->iv == c->iv)
1258 gctx_out->iv = out->iv;
1259 else {
1260 gctx_out->iv = OPENSSL_malloc(gctx->ivlen);
1261 if (!gctx_out->iv)
1262 return 0;
1263 memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
1265 return 1;
1268 default:
1269 return -1;
1274 static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1275 const unsigned char *iv, int enc)
1277 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
1278 if (!iv && !key)
1279 return 1;
1280 if (key) {
1281 do {
1282 # ifdef HWAES_CAPABLE
1283 if (HWAES_CAPABLE) {
1284 HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
1285 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
1286 (block128_f) HWAES_encrypt);
1287 # ifdef HWAES_ctr32_encrypt_blocks
1288 gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
1289 # else
1290 gctx->ctr = NULL;
1291 # endif
1292 break;
1293 } else
1294 # endif
1295 # ifdef BSAES_CAPABLE
1296 if (BSAES_CAPABLE) {
1297 AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
1298 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
1299 (block128_f) AES_encrypt);
1300 gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
1301 break;
1302 } else
1303 # endif
1304 # ifdef VPAES_CAPABLE
1305 if (VPAES_CAPABLE) {
1306 vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
1307 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
1308 (block128_f) vpaes_encrypt);
1309 gctx->ctr = NULL;
1310 break;
1311 } else
1312 # endif
1313 (void)0; /* terminate potentially open 'else' */
1315 AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
1316 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
1317 (block128_f) AES_encrypt);
1318 # ifdef AES_CTR_ASM
1319 gctx->ctr = (ctr128_f) AES_ctr32_encrypt;
1320 # else
1321 gctx->ctr = NULL;
1322 # endif
1323 } while (0);
1326 * If we have an iv can set it directly, otherwise use saved IV.
1328 if (iv == NULL && gctx->iv_set)
1329 iv = gctx->iv;
1330 if (iv) {
1331 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
1332 gctx->iv_set = 1;
1334 gctx->key_set = 1;
1335 } else {
1336 /* If key set use IV, otherwise copy */
1337 if (gctx->key_set)
1338 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
1339 else
1340 memcpy(gctx->iv, iv, gctx->ivlen);
1341 gctx->iv_set = 1;
1342 gctx->iv_gen = 0;
1344 return 1;
1348 * Handle TLS GCM packet format. This consists of the last portion of the IV
1349 * followed by the payload and finally the tag. On encrypt generate IV,
1350 * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
1351 * and verify tag.
1354 static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1355 const unsigned char *in, size_t len)
1357 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
1358 int rv = -1;
1359 /* Encrypt/decrypt must be performed in place */
1360 if (out != in
1361 || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
1362 return -1;
1364 * Set IV from start of buffer or generate IV and write to start of
1365 * buffer.
1367 if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ?
1368 EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV,
1369 EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
1370 goto err;
1371 /* Use saved AAD */
1372 if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
1373 goto err;
1374 /* Fix buffer and length to point to payload */
1375 in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
1376 out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
1377 len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
1378 if (ctx->encrypt) {
1379 /* Encrypt payload */
1380 if (gctx->ctr) {
1381 size_t bulk = 0;
1382 # if defined(AES_GCM_ASM)
1383 if (len >= 32 && AES_GCM_ASM(gctx)) {
1384 if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
1385 return -1;
1387 bulk = AES_gcm_encrypt(in, out, len,
1388 gctx->gcm.key,
1389 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
1390 gctx->gcm.len.u[1] += bulk;
1392 # endif
1393 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
1394 in + bulk,
1395 out + bulk,
1396 len - bulk, gctx->ctr))
1397 goto err;
1398 } else {
1399 size_t bulk = 0;
1400 # if defined(AES_GCM_ASM2)
1401 if (len >= 32 && AES_GCM_ASM2(gctx)) {
1402 if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
1403 return -1;
1405 bulk = AES_gcm_encrypt(in, out, len,
1406 gctx->gcm.key,
1407 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
1408 gctx->gcm.len.u[1] += bulk;
1410 # endif
1411 if (CRYPTO_gcm128_encrypt(&gctx->gcm,
1412 in + bulk, out + bulk, len - bulk))
1413 goto err;
1415 out += len;
1416 /* Finally write tag */
1417 CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
1418 rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
1419 } else {
1420 /* Decrypt */
1421 if (gctx->ctr) {
1422 size_t bulk = 0;
1423 # if defined(AES_GCM_ASM)
1424 if (len >= 16 && AES_GCM_ASM(gctx)) {
1425 if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
1426 return -1;
1428 bulk = AES_gcm_decrypt(in, out, len,
1429 gctx->gcm.key,
1430 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
1431 gctx->gcm.len.u[1] += bulk;
1433 # endif
1434 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
1435 in + bulk,
1436 out + bulk,
1437 len - bulk, gctx->ctr))
1438 goto err;
1439 } else {
1440 size_t bulk = 0;
1441 # if defined(AES_GCM_ASM2)
1442 if (len >= 16 && AES_GCM_ASM2(gctx)) {
1443 if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
1444 return -1;
1446 bulk = AES_gcm_decrypt(in, out, len,
1447 gctx->gcm.key,
1448 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
1449 gctx->gcm.len.u[1] += bulk;
1451 # endif
1452 if (CRYPTO_gcm128_decrypt(&gctx->gcm,
1453 in + bulk, out + bulk, len - bulk))
1454 goto err;
1456 /* Retrieve tag */
1457 CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
1458 /* If tag mismatch wipe buffer */
1459 if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
1460 OPENSSL_cleanse(out, len);
1461 goto err;
1463 rv = len;
1466 err:
1467 gctx->iv_set = 0;
1468 gctx->tls_aad_len = -1;
1469 return rv;
1472 static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1473 const unsigned char *in, size_t len)
1475 EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
1476 /* If not set up, return error */
1477 if (!gctx->key_set)
1478 return -1;
1480 if (gctx->tls_aad_len >= 0)
1481 return aes_gcm_tls_cipher(ctx, out, in, len);
1483 if (!gctx->iv_set)
1484 return -1;
1485 if (in) {
1486 if (out == NULL) {
1487 if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
1488 return -1;
1489 } else if (ctx->encrypt) {
1490 if (gctx->ctr) {
1491 size_t bulk = 0;
1492 # if defined(AES_GCM_ASM)
1493 if (len >= 32 && AES_GCM_ASM(gctx)) {
1494 size_t res = (16 - gctx->gcm.mres) % 16;
1496 if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
1497 return -1;
1499 bulk = AES_gcm_encrypt(in + res,
1500 out + res, len - res,
1501 gctx->gcm.key, gctx->gcm.Yi.c,
1502 gctx->gcm.Xi.u);
1503 gctx->gcm.len.u[1] += bulk;
1504 bulk += res;
1506 # endif
1507 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
1508 in + bulk,
1509 out + bulk,
1510 len - bulk, gctx->ctr))
1511 return -1;
1512 } else {
1513 size_t bulk = 0;
1514 # if defined(AES_GCM_ASM2)
1515 if (len >= 32 && AES_GCM_ASM2(gctx)) {
1516 size_t res = (16 - gctx->gcm.mres) % 16;
1518 if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
1519 return -1;
1521 bulk = AES_gcm_encrypt(in + res,
1522 out + res, len - res,
1523 gctx->gcm.key, gctx->gcm.Yi.c,
1524 gctx->gcm.Xi.u);
1525 gctx->gcm.len.u[1] += bulk;
1526 bulk += res;
1528 # endif
1529 if (CRYPTO_gcm128_encrypt(&gctx->gcm,
1530 in + bulk, out + bulk, len - bulk))
1531 return -1;
1533 } else {
1534 if (gctx->ctr) {
1535 size_t bulk = 0;
1536 # if defined(AES_GCM_ASM)
1537 if (len >= 16 && AES_GCM_ASM(gctx)) {
1538 size_t res = (16 - gctx->gcm.mres) % 16;
1540 if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
1541 return -1;
1543 bulk = AES_gcm_decrypt(in + res,
1544 out + res, len - res,
1545 gctx->gcm.key,
1546 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
1547 gctx->gcm.len.u[1] += bulk;
1548 bulk += res;
1550 # endif
1551 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
1552 in + bulk,
1553 out + bulk,
1554 len - bulk, gctx->ctr))
1555 return -1;
1556 } else {
1557 size_t bulk = 0;
1558 # if defined(AES_GCM_ASM2)
1559 if (len >= 16 && AES_GCM_ASM2(gctx)) {
1560 size_t res = (16 - gctx->gcm.mres) % 16;
1562 if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
1563 return -1;
1565 bulk = AES_gcm_decrypt(in + res,
1566 out + res, len - res,
1567 gctx->gcm.key,
1568 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
1569 gctx->gcm.len.u[1] += bulk;
1570 bulk += res;
1572 # endif
1573 if (CRYPTO_gcm128_decrypt(&gctx->gcm,
1574 in + bulk, out + bulk, len - bulk))
1575 return -1;
1578 return len;
1579 } else {
1580 if (!ctx->encrypt) {
1581 if (gctx->taglen < 0)
1582 return -1;
1583 if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0)
1584 return -1;
1585 gctx->iv_set = 0;
1586 return 0;
1588 CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
1589 gctx->taglen = 16;
1590 /* Don't reuse the IV */
1591 gctx->iv_set = 0;
1592 return 0;
1597 # define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \
1598 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
1599 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
1600 | EVP_CIPH_CUSTOM_COPY)
1602 BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
1603 EVP_CIPH_FLAG_FIPS | EVP_CIPH_FLAG_AEAD_CIPHER |
1604 CUSTOM_FLAGS)
1605 BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
1606 EVP_CIPH_FLAG_FIPS | EVP_CIPH_FLAG_AEAD_CIPHER |
1607 CUSTOM_FLAGS)
1608 BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
1609 EVP_CIPH_FLAG_FIPS | EVP_CIPH_FLAG_AEAD_CIPHER |
1610 CUSTOM_FLAGS)
1612 static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1614 EVP_AES_XTS_CTX *xctx = c->cipher_data;
1615 if (type == EVP_CTRL_COPY) {
1616 EVP_CIPHER_CTX *out = ptr;
1617 EVP_AES_XTS_CTX *xctx_out = out->cipher_data;
1618 if (xctx->xts.key1) {
1619 if (xctx->xts.key1 != &xctx->ks1)
1620 return 0;
1621 xctx_out->xts.key1 = &xctx_out->ks1;
1623 if (xctx->xts.key2) {
1624 if (xctx->xts.key2 != &xctx->ks2)
1625 return 0;
1626 xctx_out->xts.key2 = &xctx_out->ks2;
1628 return 1;
1629 } else if (type != EVP_CTRL_INIT)
1630 return -1;
1631 /* key1 and key2 are used as an indicator both key and IV are set */
1632 xctx->xts.key1 = NULL;
1633 xctx->xts.key2 = NULL;
1634 return 1;
1637 static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1638 const unsigned char *iv, int enc)
1640 EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
1641 if (!iv && !key)
1642 return 1;
1644 if (key)
1645 do {
1646 # ifdef AES_XTS_ASM
1647 xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
1648 # else
1649 xctx->stream = NULL;
1650 # endif
1651 /* key_len is two AES keys */
1652 # ifdef HWAES_CAPABLE
1653 if (HWAES_CAPABLE) {
1654 if (enc) {
1655 HWAES_set_encrypt_key(key, ctx->key_len * 4,
1656 &xctx->ks1.ks);
1657 xctx->xts.block1 = (block128_f) HWAES_encrypt;
1658 } else {
1659 HWAES_set_decrypt_key(key, ctx->key_len * 4,
1660 &xctx->ks1.ks);
1661 xctx->xts.block1 = (block128_f) HWAES_decrypt;
1664 HWAES_set_encrypt_key(key + ctx->key_len / 2,
1665 ctx->key_len * 4, &xctx->ks2.ks);
1666 xctx->xts.block2 = (block128_f) HWAES_encrypt;
1668 xctx->xts.key1 = &xctx->ks1;
1669 break;
1670 } else
1671 # endif
1672 # ifdef BSAES_CAPABLE
1673 if (BSAES_CAPABLE)
1674 xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt;
1675 else
1676 # endif
1677 # ifdef VPAES_CAPABLE
1678 if (VPAES_CAPABLE) {
1679 if (enc) {
1680 vpaes_set_encrypt_key(key, ctx->key_len * 4,
1681 &xctx->ks1.ks);
1682 xctx->xts.block1 = (block128_f) vpaes_encrypt;
1683 } else {
1684 vpaes_set_decrypt_key(key, ctx->key_len * 4,
1685 &xctx->ks1.ks);
1686 xctx->xts.block1 = (block128_f) vpaes_decrypt;
1689 vpaes_set_encrypt_key(key + ctx->key_len / 2,
1690 ctx->key_len * 4, &xctx->ks2.ks);
1691 xctx->xts.block2 = (block128_f) vpaes_encrypt;
1693 xctx->xts.key1 = &xctx->ks1;
1694 break;
1695 } else
1696 # endif
1697 (void)0; /* terminate potentially open 'else' */
1699 if (enc) {
1700 AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks);
1701 xctx->xts.block1 = (block128_f) AES_encrypt;
1702 } else {
1703 AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks);
1704 xctx->xts.block1 = (block128_f) AES_decrypt;
1707 AES_set_encrypt_key(key + ctx->key_len / 2,
1708 ctx->key_len * 4, &xctx->ks2.ks);
1709 xctx->xts.block2 = (block128_f) AES_encrypt;
1711 xctx->xts.key1 = &xctx->ks1;
1712 } while (0);
1714 if (iv) {
1715 xctx->xts.key2 = &xctx->ks2;
1716 memcpy(ctx->iv, iv, 16);
1719 return 1;
1722 static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1723 const unsigned char *in, size_t len)
1725 EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
1726 if (!xctx->xts.key1 || !xctx->xts.key2)
1727 return 0;
1728 if (!out || !in || len < AES_BLOCK_SIZE)
1729 return 0;
1730 if (xctx->stream)
1731 (*xctx->stream) (in, out, len,
1732 xctx->xts.key1, xctx->xts.key2, ctx->iv);
1733 else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len,
1734 ctx->encrypt))
1735 return 0;
1736 return 1;
1739 # define aes_xts_cleanup NULL
1741 # define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \
1742 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
1743 | EVP_CIPH_CUSTOM_COPY)
1745 BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS,
1746 EVP_CIPH_FLAG_FIPS | XTS_FLAGS)
1747 BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS,
1748 EVP_CIPH_FLAG_FIPS | XTS_FLAGS)
1750 static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1752 EVP_AES_CCM_CTX *cctx = c->cipher_data;
1753 switch (type) {
1754 case EVP_CTRL_INIT:
1755 cctx->key_set = 0;
1756 cctx->iv_set = 0;
1757 cctx->L = 8;
1758 cctx->M = 12;
1759 cctx->tag_set = 0;
1760 cctx->len_set = 0;
1761 return 1;
1763 case EVP_CTRL_CCM_SET_IVLEN:
1764 arg = 15 - arg;
1765 case EVP_CTRL_CCM_SET_L:
1766 if (arg < 2 || arg > 8)
1767 return 0;
1768 cctx->L = arg;
1769 return 1;
1771 case EVP_CTRL_CCM_SET_TAG:
1772 if ((arg & 1) || arg < 4 || arg > 16)
1773 return 0;
1774 if (c->encrypt && ptr)
1775 return 0;
1776 if (ptr) {
1777 cctx->tag_set = 1;
1778 memcpy(c->buf, ptr, arg);
1780 cctx->M = arg;
1781 return 1;
1783 case EVP_CTRL_CCM_GET_TAG:
1784 if (!c->encrypt || !cctx->tag_set)
1785 return 0;
1786 if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
1787 return 0;
1788 cctx->tag_set = 0;
1789 cctx->iv_set = 0;
1790 cctx->len_set = 0;
1791 return 1;
1793 case EVP_CTRL_COPY:
1795 EVP_CIPHER_CTX *out = ptr;
1796 EVP_AES_CCM_CTX *cctx_out = out->cipher_data;
1797 if (cctx->ccm.key) {
1798 if (cctx->ccm.key != &cctx->ks)
1799 return 0;
1800 cctx_out->ccm.key = &cctx_out->ks;
1802 return 1;
1805 default:
1806 return -1;
1811 static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1812 const unsigned char *iv, int enc)
1814 EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
1815 if (!iv && !key)
1816 return 1;
1817 if (key)
1818 do {
1819 # ifdef HWAES_CAPABLE
1820 if (HWAES_CAPABLE) {
1821 HWAES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks);
1823 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
1824 &cctx->ks, (block128_f) HWAES_encrypt);
1825 cctx->str = NULL;
1826 cctx->key_set = 1;
1827 break;
1828 } else
1829 # endif
1830 # ifdef VPAES_CAPABLE
1831 if (VPAES_CAPABLE) {
1832 vpaes_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks);
1833 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
1834 &cctx->ks, (block128_f) vpaes_encrypt);
1835 cctx->str = NULL;
1836 cctx->key_set = 1;
1837 break;
1839 # endif
1840 AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks);
1841 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
1842 &cctx->ks, (block128_f) AES_encrypt);
1843 cctx->str = NULL;
1844 cctx->key_set = 1;
1845 } while (0);
1846 if (iv) {
1847 memcpy(ctx->iv, iv, 15 - cctx->L);
1848 cctx->iv_set = 1;
1850 return 1;
1853 static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1854 const unsigned char *in, size_t len)
1856 EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
1857 CCM128_CONTEXT *ccm = &cctx->ccm;
1858 /* If not set up, return error */
1859 if (!cctx->iv_set && !cctx->key_set)
1860 return -1;
1861 if (!ctx->encrypt && !cctx->tag_set)
1862 return -1;
1863 if (!out) {
1864 if (!in) {
1865 if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))
1866 return -1;
1867 cctx->len_set = 1;
1868 return len;
1870 /* If have AAD need message length */
1871 if (!cctx->len_set && len)
1872 return -1;
1873 CRYPTO_ccm128_aad(ccm, in, len);
1874 return len;
1876 /* EVP_*Final() doesn't return any data */
1877 if (!in)
1878 return 0;
1879 /* If not set length yet do it */
1880 if (!cctx->len_set) {
1881 if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))
1882 return -1;
1883 cctx->len_set = 1;
1885 if (ctx->encrypt) {
1886 if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
1887 cctx->str) :
1888 CRYPTO_ccm128_encrypt(ccm, in, out, len))
1889 return -1;
1890 cctx->tag_set = 1;
1891 return len;
1892 } else {
1893 int rv = -1;
1894 if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
1895 cctx->str) :
1896 !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
1897 unsigned char tag[16];
1898 if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
1899 if (!CRYPTO_memcmp(tag, ctx->buf, cctx->M))
1900 rv = len;
1903 if (rv == -1)
1904 OPENSSL_cleanse(out, len);
1905 cctx->iv_set = 0;
1906 cctx->tag_set = 0;
1907 cctx->len_set = 0;
1908 return rv;
1913 # define aes_ccm_cleanup NULL
1915 BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
1916 EVP_CIPH_FLAG_FIPS | CUSTOM_FLAGS)
1917 BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
1918 EVP_CIPH_FLAG_FIPS | CUSTOM_FLAGS)
1919 BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
1920 EVP_CIPH_FLAG_FIPS | CUSTOM_FLAGS)
1921 #endif
1922 typedef struct {
1923 union {
1924 double align;
1925 AES_KEY ks;
1926 } ks;
1927 /* Indicates if IV has been set */
1928 unsigned char *iv;
1929 } EVP_AES_WRAP_CTX;
1931 static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1932 const unsigned char *iv, int enc)
1934 EVP_AES_WRAP_CTX *wctx = ctx->cipher_data;
1935 if (!iv && !key)
1936 return 1;
1937 if (key) {
1938 if (ctx->encrypt)
1939 AES_set_encrypt_key(key, ctx->key_len * 8, &wctx->ks.ks);
1940 else
1941 AES_set_decrypt_key(key, ctx->key_len * 8, &wctx->ks.ks);
1942 if (!iv)
1943 wctx->iv = NULL;
1945 if (iv) {
1946 memcpy(ctx->iv, iv, 8);
1947 wctx->iv = ctx->iv;
1949 return 1;
1952 static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1953 const unsigned char *in, size_t inlen)
1955 EVP_AES_WRAP_CTX *wctx = ctx->cipher_data;
1956 size_t rv;
1957 if (!in)
1958 return 0;
1959 if (inlen % 8)
1960 return -1;
1961 if (ctx->encrypt && inlen < 8)
1962 return -1;
1963 if (!ctx->encrypt && inlen < 16)
1964 return -1;
1965 if (!out) {
1966 if (ctx->encrypt)
1967 return inlen + 8;
1968 else
1969 return inlen - 8;
1971 if (ctx->encrypt)
1972 rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv, out, in, inlen,
1973 (block128_f) AES_encrypt);
1974 else
1975 rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv, out, in, inlen,
1976 (block128_f) AES_decrypt);
1977 return rv ? (int)rv : -1;
1980 #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \
1981 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
1982 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1)
1984 static const EVP_CIPHER aes_128_wrap = {
1985 NID_id_aes128_wrap,
1986 8, 16, 8, WRAP_FLAGS,
1987 aes_wrap_init_key, aes_wrap_cipher,
1988 NULL,
1989 sizeof(EVP_AES_WRAP_CTX),
1990 NULL, NULL, NULL, NULL
1993 const EVP_CIPHER *EVP_aes_128_wrap(void)
1995 return &aes_128_wrap;
1998 static const EVP_CIPHER aes_192_wrap = {
1999 NID_id_aes192_wrap,
2000 8, 24, 8, WRAP_FLAGS,
2001 aes_wrap_init_key, aes_wrap_cipher,
2002 NULL,
2003 sizeof(EVP_AES_WRAP_CTX),
2004 NULL, NULL, NULL, NULL
2007 const EVP_CIPHER *EVP_aes_192_wrap(void)
2009 return &aes_192_wrap;
2012 static const EVP_CIPHER aes_256_wrap = {
2013 NID_id_aes256_wrap,
2014 8, 32, 8, WRAP_FLAGS,
2015 aes_wrap_init_key, aes_wrap_cipher,
2016 NULL,
2017 sizeof(EVP_AES_WRAP_CTX),
2018 NULL, NULL, NULL, NULL
2021 const EVP_CIPHER *EVP_aes_256_wrap(void)
2023 return &aes_256_wrap;