OpenSSL: update to 1.0.2a
[tomato.git] / release / src-rt-6.x.4708 / router / openssl / crypto / modes / asm / ghash-armv4.pl
blob77fbf34465db48fc011a4060d610e05d48f6dbb2
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5 # project. The module is, however, dual licensed under OpenSSL and
6 # CRYPTOGAMS licenses depending on where you obtain it. For further
7 # details see http://www.openssl.org/~appro/cryptogams/.
8 # ====================================================================
10 # April 2010
12 # The module implements "4-bit" GCM GHASH function and underlying
13 # single multiplication operation in GF(2^128). "4-bit" means that it
14 # uses 256 bytes per-key table [+32 bytes shared table]. There is no
15 # experimental performance data available yet. The only approximation
16 # that can be made at this point is based on code size. Inner loop is
17 # 32 instructions long and on single-issue core should execute in <40
18 # cycles. Having verified that gcc 3.4 didn't unroll corresponding
19 # loop, this assembler loop body was found to be ~3x smaller than
20 # compiler-generated one...
22 # July 2010
24 # Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
25 # Cortex A8 core and ~25 cycles per processed byte (which was observed
26 # to be ~3 times faster than gcc-generated code:-)
28 # February 2011
30 # Profiler-assisted and platform-specific optimization resulted in 7%
31 # improvement on Cortex A8 core and ~23.5 cycles per byte.
33 # March 2011
35 # Add NEON implementation featuring polynomial multiplication, i.e. no
36 # lookup tables involved. On Cortex A8 it was measured to process one
37 # byte in 15 cycles or 55% faster than integer-only code.
39 # April 2014
41 # Switch to multiplication algorithm suggested in paper referred
42 # below and combine it with reduction algorithm from x86 module.
43 # Performance improvement over previous version varies from 65% on
44 # Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8
45 # processes one byte in 8.45 cycles, A9 - in 10.2, Snapdragon S4 -
46 # in 9.33.
48 # Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software
49 # Polynomial Multiplication on ARM Processors using the NEON Engine.
51 # http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf
53 # ====================================================================
54 # Note about "528B" variant. In ARM case it makes lesser sense to
55 # implement it for following reasons:
57 # - performance improvement won't be anywhere near 50%, because 128-
58 # bit shift operation is neatly fused with 128-bit xor here, and
59 # "538B" variant would eliminate only 4-5 instructions out of 32
60 # in the inner loop (meaning that estimated improvement is ~15%);
61 # - ARM-based systems are often embedded ones and extra memory
62 # consumption might be unappreciated (for so little improvement);
64 # Byte order [in]dependence. =========================================
66 # Caller is expected to maintain specific *dword* order in Htable,
67 # namely with *least* significant dword of 128-bit value at *lower*
68 # address. This differs completely from C code and has everything to
69 # do with ldm instruction and order in which dwords are "consumed" by
70 # algorithm. *Byte* order within these dwords in turn is whatever
71 # *native* byte order on current platform. See gcm128.c for working
72 # example...
74 while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
75 open STDOUT,">$output";
77 $Xi="r0"; # argument block
78 $Htbl="r1";
79 $inp="r2";
80 $len="r3";
82 $Zll="r4"; # variables
83 $Zlh="r5";
84 $Zhl="r6";
85 $Zhh="r7";
86 $Tll="r8";
87 $Tlh="r9";
88 $Thl="r10";
89 $Thh="r11";
90 $nlo="r12";
91 ################# r13 is stack pointer
92 $nhi="r14";
93 ################# r15 is program counter
95 $rem_4bit=$inp; # used in gcm_gmult_4bit
96 $cnt=$len;
98 sub Zsmash() {
99 my $i=12;
100 my @args=@_;
101 for ($Zll,$Zlh,$Zhl,$Zhh) {
102 $code.=<<___;
103 #if __ARM_ARCH__>=7 && defined(__ARMEL__)
104 rev $_,$_
105 str $_,[$Xi,#$i]
106 #elif defined(__ARMEB__)
107 str $_,[$Xi,#$i]
108 #else
109 mov $Tlh,$_,lsr#8
110 strb $_,[$Xi,#$i+3]
111 mov $Thl,$_,lsr#16
112 strb $Tlh,[$Xi,#$i+2]
113 mov $Thh,$_,lsr#24
114 strb $Thl,[$Xi,#$i+1]
115 strb $Thh,[$Xi,#$i]
116 #endif
118 $code.="\t".shift(@args)."\n";
119 $i-=4;
123 $code=<<___;
124 #include "arm_arch.h"
126 .text
127 .code 32
129 .type rem_4bit,%object
130 .align 5
131 rem_4bit:
132 .short 0x0000,0x1C20,0x3840,0x2460
133 .short 0x7080,0x6CA0,0x48C0,0x54E0
134 .short 0xE100,0xFD20,0xD940,0xC560
135 .short 0x9180,0x8DA0,0xA9C0,0xB5E0
136 .size rem_4bit,.-rem_4bit
138 .type rem_4bit_get,%function
139 rem_4bit_get:
140 sub $rem_4bit,pc,#8
141 sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit
142 b .Lrem_4bit_got
144 .size rem_4bit_get,.-rem_4bit_get
146 .global gcm_ghash_4bit
147 .type gcm_ghash_4bit,%function
148 gcm_ghash_4bit:
149 sub r12,pc,#8
150 add $len,$inp,$len @ $len to point at the end
151 stmdb sp!,{r3-r11,lr} @ save $len/end too
152 sub r12,r12,#48 @ &rem_4bit
154 ldmia r12,{r4-r11} @ copy rem_4bit ...
155 stmdb sp!,{r4-r11} @ ... to stack
157 ldrb $nlo,[$inp,#15]
158 ldrb $nhi,[$Xi,#15]
159 .Louter:
160 eor $nlo,$nlo,$nhi
161 and $nhi,$nlo,#0xf0
162 and $nlo,$nlo,#0x0f
163 mov $cnt,#14
165 add $Zhh,$Htbl,$nlo,lsl#4
166 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
167 add $Thh,$Htbl,$nhi
168 ldrb $nlo,[$inp,#14]
170 and $nhi,$Zll,#0xf @ rem
171 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
172 add $nhi,$nhi,$nhi
173 eor $Zll,$Tll,$Zll,lsr#4
174 ldrh $Tll,[sp,$nhi] @ rem_4bit[rem]
175 eor $Zll,$Zll,$Zlh,lsl#28
176 ldrb $nhi,[$Xi,#14]
177 eor $Zlh,$Tlh,$Zlh,lsr#4
178 eor $Zlh,$Zlh,$Zhl,lsl#28
179 eor $Zhl,$Thl,$Zhl,lsr#4
180 eor $Zhl,$Zhl,$Zhh,lsl#28
181 eor $Zhh,$Thh,$Zhh,lsr#4
182 eor $nlo,$nlo,$nhi
183 and $nhi,$nlo,#0xf0
184 and $nlo,$nlo,#0x0f
185 eor $Zhh,$Zhh,$Tll,lsl#16
187 .Linner:
188 add $Thh,$Htbl,$nlo,lsl#4
189 and $nlo,$Zll,#0xf @ rem
190 subs $cnt,$cnt,#1
191 add $nlo,$nlo,$nlo
192 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
193 eor $Zll,$Tll,$Zll,lsr#4
194 eor $Zll,$Zll,$Zlh,lsl#28
195 eor $Zlh,$Tlh,$Zlh,lsr#4
196 eor $Zlh,$Zlh,$Zhl,lsl#28
197 ldrh $Tll,[sp,$nlo] @ rem_4bit[rem]
198 eor $Zhl,$Thl,$Zhl,lsr#4
199 ldrplb $nlo,[$inp,$cnt]
200 eor $Zhl,$Zhl,$Zhh,lsl#28
201 eor $Zhh,$Thh,$Zhh,lsr#4
203 add $Thh,$Htbl,$nhi
204 and $nhi,$Zll,#0xf @ rem
205 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
206 add $nhi,$nhi,$nhi
207 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
208 eor $Zll,$Tll,$Zll,lsr#4
209 ldrplb $Tll,[$Xi,$cnt]
210 eor $Zll,$Zll,$Zlh,lsl#28
211 eor $Zlh,$Tlh,$Zlh,lsr#4
212 ldrh $Tlh,[sp,$nhi]
213 eor $Zlh,$Zlh,$Zhl,lsl#28
214 eor $Zhl,$Thl,$Zhl,lsr#4
215 eor $Zhl,$Zhl,$Zhh,lsl#28
216 eorpl $nlo,$nlo,$Tll
217 eor $Zhh,$Thh,$Zhh,lsr#4
218 andpl $nhi,$nlo,#0xf0
219 andpl $nlo,$nlo,#0x0f
220 eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem]
221 bpl .Linner
223 ldr $len,[sp,#32] @ re-load $len/end
224 add $inp,$inp,#16
225 mov $nhi,$Zll
227 &Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]");
228 $code.=<<___;
229 bne .Louter
231 add sp,sp,#36
232 #if __ARM_ARCH__>=5
233 ldmia sp!,{r4-r11,pc}
234 #else
235 ldmia sp!,{r4-r11,lr}
236 tst lr,#1
237 moveq pc,lr @ be binary compatible with V4, yet
238 bx lr @ interoperable with Thumb ISA:-)
239 #endif
240 .size gcm_ghash_4bit,.-gcm_ghash_4bit
242 .global gcm_gmult_4bit
243 .type gcm_gmult_4bit,%function
244 gcm_gmult_4bit:
245 stmdb sp!,{r4-r11,lr}
246 ldrb $nlo,[$Xi,#15]
247 b rem_4bit_get
248 .Lrem_4bit_got:
249 and $nhi,$nlo,#0xf0
250 and $nlo,$nlo,#0x0f
251 mov $cnt,#14
253 add $Zhh,$Htbl,$nlo,lsl#4
254 ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
255 ldrb $nlo,[$Xi,#14]
257 add $Thh,$Htbl,$nhi
258 and $nhi,$Zll,#0xf @ rem
259 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
260 add $nhi,$nhi,$nhi
261 eor $Zll,$Tll,$Zll,lsr#4
262 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
263 eor $Zll,$Zll,$Zlh,lsl#28
264 eor $Zlh,$Tlh,$Zlh,lsr#4
265 eor $Zlh,$Zlh,$Zhl,lsl#28
266 eor $Zhl,$Thl,$Zhl,lsr#4
267 eor $Zhl,$Zhl,$Zhh,lsl#28
268 eor $Zhh,$Thh,$Zhh,lsr#4
269 and $nhi,$nlo,#0xf0
270 eor $Zhh,$Zhh,$Tll,lsl#16
271 and $nlo,$nlo,#0x0f
273 .Loop:
274 add $Thh,$Htbl,$nlo,lsl#4
275 and $nlo,$Zll,#0xf @ rem
276 subs $cnt,$cnt,#1
277 add $nlo,$nlo,$nlo
278 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
279 eor $Zll,$Tll,$Zll,lsr#4
280 eor $Zll,$Zll,$Zlh,lsl#28
281 eor $Zlh,$Tlh,$Zlh,lsr#4
282 eor $Zlh,$Zlh,$Zhl,lsl#28
283 ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem]
284 eor $Zhl,$Thl,$Zhl,lsr#4
285 ldrplb $nlo,[$Xi,$cnt]
286 eor $Zhl,$Zhl,$Zhh,lsl#28
287 eor $Zhh,$Thh,$Zhh,lsr#4
289 add $Thh,$Htbl,$nhi
290 and $nhi,$Zll,#0xf @ rem
291 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
292 add $nhi,$nhi,$nhi
293 ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
294 eor $Zll,$Tll,$Zll,lsr#4
295 eor $Zll,$Zll,$Zlh,lsl#28
296 eor $Zlh,$Tlh,$Zlh,lsr#4
297 ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
298 eor $Zlh,$Zlh,$Zhl,lsl#28
299 eor $Zhl,$Thl,$Zhl,lsr#4
300 eor $Zhl,$Zhl,$Zhh,lsl#28
301 eor $Zhh,$Thh,$Zhh,lsr#4
302 andpl $nhi,$nlo,#0xf0
303 andpl $nlo,$nlo,#0x0f
304 eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
305 bpl .Loop
307 &Zsmash();
308 $code.=<<___;
309 #if __ARM_ARCH__>=5
310 ldmia sp!,{r4-r11,pc}
311 #else
312 ldmia sp!,{r4-r11,lr}
313 tst lr,#1
314 moveq pc,lr @ be binary compatible with V4, yet
315 bx lr @ interoperable with Thumb ISA:-)
316 #endif
317 .size gcm_gmult_4bit,.-gcm_gmult_4bit
320 my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
321 my ($t0,$t1,$t2,$t3)=map("q$_",(8..12));
322 my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31));
324 sub clmul64x64 {
325 my ($r,$a,$b)=@_;
326 $code.=<<___;
327 vext.8 $t0#lo, $a, $a, #1 @ A1
328 vmull.p8 $t0, $t0#lo, $b @ F = A1*B
329 vext.8 $r#lo, $b, $b, #1 @ B1
330 vmull.p8 $r, $a, $r#lo @ E = A*B1
331 vext.8 $t1#lo, $a, $a, #2 @ A2
332 vmull.p8 $t1, $t1#lo, $b @ H = A2*B
333 vext.8 $t3#lo, $b, $b, #2 @ B2
334 vmull.p8 $t3, $a, $t3#lo @ G = A*B2
335 vext.8 $t2#lo, $a, $a, #3 @ A3
336 veor $t0, $t0, $r @ L = E + F
337 vmull.p8 $t2, $t2#lo, $b @ J = A3*B
338 vext.8 $r#lo, $b, $b, #3 @ B3
339 veor $t1, $t1, $t3 @ M = G + H
340 vmull.p8 $r, $a, $r#lo @ I = A*B3
341 veor $t0#lo, $t0#lo, $t0#hi @ t0 = (L) (P0 + P1) << 8
342 vand $t0#hi, $t0#hi, $k48
343 vext.8 $t3#lo, $b, $b, #4 @ B4
344 veor $t1#lo, $t1#lo, $t1#hi @ t1 = (M) (P2 + P3) << 16
345 vand $t1#hi, $t1#hi, $k32
346 vmull.p8 $t3, $a, $t3#lo @ K = A*B4
347 veor $t2, $t2, $r @ N = I + J
348 veor $t0#lo, $t0#lo, $t0#hi
349 veor $t1#lo, $t1#lo, $t1#hi
350 veor $t2#lo, $t2#lo, $t2#hi @ t2 = (N) (P4 + P5) << 24
351 vand $t2#hi, $t2#hi, $k16
352 vext.8 $t0, $t0, $t0, #15
353 veor $t3#lo, $t3#lo, $t3#hi @ t3 = (K) (P6 + P7) << 32
354 vmov.i64 $t3#hi, #0
355 vext.8 $t1, $t1, $t1, #14
356 veor $t2#lo, $t2#lo, $t2#hi
357 vmull.p8 $r, $a, $b @ D = A*B
358 vext.8 $t3, $t3, $t3, #12
359 vext.8 $t2, $t2, $t2, #13
360 veor $t0, $t0, $t1
361 veor $t2, $t2, $t3
362 veor $r, $r, $t0
363 veor $r, $r, $t2
367 $code.=<<___;
368 #if __ARM_MAX_ARCH__>=7
369 .arch armv7-a
370 .fpu neon
372 .global gcm_init_neon
373 .type gcm_init_neon,%function
374 .align 4
375 gcm_init_neon:
376 vld1.64 $IN#hi,[r1,:64]! @ load H
377 vmov.i8 $t0,#0xe1
378 vld1.64 $IN#lo,[r1,:64]
379 vshl.i64 $t0#hi,#57
380 vshr.u64 $t0#lo,#63 @ t0=0xc2....01
381 vdup.8 $t1,$IN#hi[7]
382 vshr.u64 $Hlo,$IN#lo,#63
383 vshr.s8 $t1,#7 @ broadcast carry bit
384 vshl.i64 $IN,$IN,#1
385 vand $t0,$t0,$t1
386 vorr $IN#hi,$Hlo @ H<<<=1
387 veor $IN,$IN,$t0 @ twisted H
388 vstmia r0,{$IN}
390 ret @ bx lr
391 .size gcm_init_neon,.-gcm_init_neon
393 .global gcm_gmult_neon
394 .type gcm_gmult_neon,%function
395 .align 4
396 gcm_gmult_neon:
397 vld1.64 $IN#hi,[$Xi,:64]! @ load Xi
398 vld1.64 $IN#lo,[$Xi,:64]!
399 vmov.i64 $k48,#0x0000ffffffffffff
400 vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H
401 vmov.i64 $k32,#0x00000000ffffffff
402 #ifdef __ARMEL__
403 vrev64.8 $IN,$IN
404 #endif
405 vmov.i64 $k16,#0x000000000000ffff
406 veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing
407 mov $len,#16
408 b .Lgmult_neon
409 .size gcm_gmult_neon,.-gcm_gmult_neon
411 .global gcm_ghash_neon
412 .type gcm_ghash_neon,%function
413 .align 4
414 gcm_ghash_neon:
415 vld1.64 $Xl#hi,[$Xi,:64]! @ load Xi
416 vld1.64 $Xl#lo,[$Xi,:64]!
417 vmov.i64 $k48,#0x0000ffffffffffff
418 vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H
419 vmov.i64 $k32,#0x00000000ffffffff
420 #ifdef __ARMEL__
421 vrev64.8 $Xl,$Xl
422 #endif
423 vmov.i64 $k16,#0x000000000000ffff
424 veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing
426 .Loop_neon:
427 vld1.64 $IN#hi,[$inp]! @ load inp
428 vld1.64 $IN#lo,[$inp]!
429 #ifdef __ARMEL__
430 vrev64.8 $IN,$IN
431 #endif
432 veor $IN,$Xl @ inp^=Xi
433 .Lgmult_neon:
435 &clmul64x64 ($Xl,$Hlo,"$IN#lo"); # H.lo·Xi.lo
436 $code.=<<___;
437 veor $IN#lo,$IN#lo,$IN#hi @ Karatsuba pre-processing
439 &clmul64x64 ($Xm,$Hhl,"$IN#lo"); # (H.lo+H.hi)·(Xi.lo+Xi.hi)
440 &clmul64x64 ($Xh,$Hhi,"$IN#hi"); # H.hi·Xi.hi
441 $code.=<<___;
442 veor $Xm,$Xm,$Xl @ Karatsuba post-processing
443 veor $Xm,$Xm,$Xh
444 veor $Xl#hi,$Xl#hi,$Xm#lo
445 veor $Xh#lo,$Xh#lo,$Xm#hi @ Xh|Xl - 256-bit result
447 @ equivalent of reduction_avx from ghash-x86_64.pl
448 vshl.i64 $t1,$Xl,#57 @ 1st phase
449 vshl.i64 $t2,$Xl,#62
450 veor $t2,$t2,$t1 @
451 vshl.i64 $t1,$Xl,#63
452 veor $t2, $t2, $t1 @
453 veor $Xl#hi,$Xl#hi,$t2#lo @
454 veor $Xh#lo,$Xh#lo,$t2#hi
456 vshr.u64 $t2,$Xl,#1 @ 2nd phase
457 veor $Xh,$Xh,$Xl
458 veor $Xl,$Xl,$t2 @
459 vshr.u64 $t2,$t2,#6
460 vshr.u64 $Xl,$Xl,#1 @
461 veor $Xl,$Xl,$Xh @
462 veor $Xl,$Xl,$t2 @
464 subs $len,#16
465 bne .Loop_neon
467 #ifdef __ARMEL__
468 vrev64.8 $Xl,$Xl
469 #endif
470 sub $Xi,#16
471 vst1.64 $Xl#hi,[$Xi,:64]! @ write out Xi
472 vst1.64 $Xl#lo,[$Xi,:64]
474 ret @ bx lr
475 .size gcm_ghash_neon,.-gcm_ghash_neon
476 #endif
479 $code.=<<___;
480 .asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
481 .align 2
484 foreach (split("\n",$code)) {
485 s/\`([^\`]*)\`/eval $1/geo;
487 s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or
488 s/\bret\b/bx lr/go or
489 s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4
491 print $_,"\n";
493 close STDOUT; # enforce flush