OpenSSL 1.0.2h
[tomato.git] / release / src / router / openssl / crypto / evp / e_aes_cbc_hmac_sha1.c
blob6dfd590a4a2c8e2d58ac40927a62874cdd3720df
1 /* ====================================================================
2 * Copyright (c) 2011-2013 The OpenSSL Project. All rights reserved.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ====================================================================
50 #include <openssl/opensslconf.h>
52 #include <stdio.h>
53 #include <string.h>
55 #if !defined(OPENSSL_NO_AES) && !defined(OPENSSL_NO_SHA1)
57 # include <openssl/evp.h>
58 # include <openssl/objects.h>
59 # include <openssl/aes.h>
60 # include <openssl/sha.h>
61 # include <openssl/rand.h>
62 # include "modes_lcl.h"
63 # include "constant_time_locl.h"
65 # ifndef EVP_CIPH_FLAG_AEAD_CIPHER
66 # define EVP_CIPH_FLAG_AEAD_CIPHER 0x200000
67 # define EVP_CTRL_AEAD_TLS1_AAD 0x16
68 # define EVP_CTRL_AEAD_SET_MAC_KEY 0x17
69 # endif
71 # if !defined(EVP_CIPH_FLAG_DEFAULT_ASN1)
72 # define EVP_CIPH_FLAG_DEFAULT_ASN1 0
73 # endif
75 # if !defined(EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)
76 # define EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK 0
77 # endif
79 # define TLS1_1_VERSION 0x0302
81 typedef struct {
82 AES_KEY ks;
83 SHA_CTX head, tail, md;
84 size_t payload_length; /* AAD length in decrypt case */
85 union {
86 unsigned int tls_ver;
87 unsigned char tls_aad[16]; /* 13 used */
88 } aux;
89 } EVP_AES_HMAC_SHA1;
91 # define NO_PAYLOAD_LENGTH ((size_t)-1)
93 # if defined(AES_ASM) && ( \
94 defined(__x86_64) || defined(__x86_64__) || \
95 defined(_M_AMD64) || defined(_M_X64) || \
96 defined(__INTEL__) )
98 extern unsigned int OPENSSL_ia32cap_P[];
99 # define AESNI_CAPABLE (1<<(57-32))
101 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
102 AES_KEY *key);
103 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
104 AES_KEY *key);
106 void aesni_cbc_encrypt(const unsigned char *in,
107 unsigned char *out,
108 size_t length,
109 const AES_KEY *key, unsigned char *ivec, int enc);
111 void aesni_cbc_sha1_enc(const void *inp, void *out, size_t blocks,
112 const AES_KEY *key, unsigned char iv[16],
113 SHA_CTX *ctx, const void *in0);
115 void aesni256_cbc_sha1_dec(const void *inp, void *out, size_t blocks,
116 const AES_KEY *key, unsigned char iv[16],
117 SHA_CTX *ctx, const void *in0);
119 # define data(ctx) ((EVP_AES_HMAC_SHA1 *)(ctx)->cipher_data)
121 static int aesni_cbc_hmac_sha1_init_key(EVP_CIPHER_CTX *ctx,
122 const unsigned char *inkey,
123 const unsigned char *iv, int enc)
125 EVP_AES_HMAC_SHA1 *key = data(ctx);
126 int ret;
128 if (enc)
129 ret = aesni_set_encrypt_key(inkey, ctx->key_len * 8, &key->ks);
130 else
131 ret = aesni_set_decrypt_key(inkey, ctx->key_len * 8, &key->ks);
133 SHA1_Init(&key->head); /* handy when benchmarking */
134 key->tail = key->head;
135 key->md = key->head;
137 key->payload_length = NO_PAYLOAD_LENGTH;
139 return ret < 0 ? 0 : 1;
142 # define STITCHED_CALL
143 # undef STITCHED_DECRYPT_CALL
145 # if !defined(STITCHED_CALL)
146 # define aes_off 0
147 # endif
149 void sha1_block_data_order(void *c, const void *p, size_t len);
151 static void sha1_update(SHA_CTX *c, const void *data, size_t len)
153 const unsigned char *ptr = data;
154 size_t res;
156 if ((res = c->num)) {
157 res = SHA_CBLOCK - res;
158 if (len < res)
159 res = len;
160 SHA1_Update(c, ptr, res);
161 ptr += res;
162 len -= res;
165 res = len % SHA_CBLOCK;
166 len -= res;
168 if (len) {
169 sha1_block_data_order(c, ptr, len / SHA_CBLOCK);
171 ptr += len;
172 c->Nh += len >> 29;
173 c->Nl += len <<= 3;
174 if (c->Nl < (unsigned int)len)
175 c->Nh++;
178 if (res)
179 SHA1_Update(c, ptr, res);
182 # ifdef SHA1_Update
183 # undef SHA1_Update
184 # endif
185 # define SHA1_Update sha1_update
187 # if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
189 typedef struct {
190 unsigned int A[8], B[8], C[8], D[8], E[8];
191 } SHA1_MB_CTX;
192 typedef struct {
193 const unsigned char *ptr;
194 int blocks;
195 } HASH_DESC;
197 void sha1_multi_block(SHA1_MB_CTX *, const HASH_DESC *, int);
199 typedef struct {
200 const unsigned char *inp;
201 unsigned char *out;
202 int blocks;
203 u64 iv[2];
204 } CIPH_DESC;
206 void aesni_multi_cbc_encrypt(CIPH_DESC *, void *, int);
208 static size_t tls1_1_multi_block_encrypt(EVP_AES_HMAC_SHA1 *key,
209 unsigned char *out,
210 const unsigned char *inp,
211 size_t inp_len, int n4x)
212 { /* n4x is 1 or 2 */
213 HASH_DESC hash_d[8], edges[8];
214 CIPH_DESC ciph_d[8];
215 unsigned char storage[sizeof(SHA1_MB_CTX) + 32];
216 union {
217 u64 q[16];
218 u32 d[32];
219 u8 c[128];
220 } blocks[8];
221 SHA1_MB_CTX *ctx;
222 unsigned int frag, last, packlen, i, x4 = 4 * n4x, minblocks, processed =
224 size_t ret = 0;
225 u8 *IVs;
226 # if defined(BSWAP8)
227 u64 seqnum;
228 # endif
230 /* ask for IVs in bulk */
231 if (RAND_bytes((IVs = blocks[0].c), 16 * x4) <= 0)
232 return 0;
234 ctx = (SHA1_MB_CTX *) (storage + 32 - ((size_t)storage % 32)); /* align */
236 frag = (unsigned int)inp_len >> (1 + n4x);
237 last = (unsigned int)inp_len + frag - (frag << (1 + n4x));
238 if (last > frag && ((last + 13 + 9) % 64) < (x4 - 1)) {
239 frag++;
240 last -= x4 - 1;
243 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
245 /* populate descriptors with pointers and IVs */
246 hash_d[0].ptr = inp;
247 ciph_d[0].inp = inp;
248 /* 5+16 is place for header and explicit IV */
249 ciph_d[0].out = out + 5 + 16;
250 memcpy(ciph_d[0].out - 16, IVs, 16);
251 memcpy(ciph_d[0].iv, IVs, 16);
252 IVs += 16;
254 for (i = 1; i < x4; i++) {
255 ciph_d[i].inp = hash_d[i].ptr = hash_d[i - 1].ptr + frag;
256 ciph_d[i].out = ciph_d[i - 1].out + packlen;
257 memcpy(ciph_d[i].out - 16, IVs, 16);
258 memcpy(ciph_d[i].iv, IVs, 16);
259 IVs += 16;
262 # if defined(BSWAP8)
263 memcpy(blocks[0].c, key->md.data, 8);
264 seqnum = BSWAP8(blocks[0].q[0]);
265 # endif
266 for (i = 0; i < x4; i++) {
267 unsigned int len = (i == (x4 - 1) ? last : frag);
268 # if !defined(BSWAP8)
269 unsigned int carry, j;
270 # endif
272 ctx->A[i] = key->md.h0;
273 ctx->B[i] = key->md.h1;
274 ctx->C[i] = key->md.h2;
275 ctx->D[i] = key->md.h3;
276 ctx->E[i] = key->md.h4;
278 /* fix seqnum */
279 # if defined(BSWAP8)
280 blocks[i].q[0] = BSWAP8(seqnum + i);
281 # else
282 for (carry = i, j = 8; j--;) {
283 blocks[i].c[j] = ((u8 *)key->md.data)[j] + carry;
284 carry = (blocks[i].c[j] - carry) >> (sizeof(carry) * 8 - 1);
286 # endif
287 blocks[i].c[8] = ((u8 *)key->md.data)[8];
288 blocks[i].c[9] = ((u8 *)key->md.data)[9];
289 blocks[i].c[10] = ((u8 *)key->md.data)[10];
290 /* fix length */
291 blocks[i].c[11] = (u8)(len >> 8);
292 blocks[i].c[12] = (u8)(len);
294 memcpy(blocks[i].c + 13, hash_d[i].ptr, 64 - 13);
295 hash_d[i].ptr += 64 - 13;
296 hash_d[i].blocks = (len - (64 - 13)) / 64;
298 edges[i].ptr = blocks[i].c;
299 edges[i].blocks = 1;
302 /* hash 13-byte headers and first 64-13 bytes of inputs */
303 sha1_multi_block(ctx, edges, n4x);
304 /* hash bulk inputs */
305 # define MAXCHUNKSIZE 2048
306 # if MAXCHUNKSIZE%64
307 # error "MAXCHUNKSIZE is not divisible by 64"
308 # elif MAXCHUNKSIZE
310 * goal is to minimize pressure on L1 cache by moving in shorter steps,
311 * so that hashed data is still in the cache by the time we encrypt it
313 minblocks = ((frag <= last ? frag : last) - (64 - 13)) / 64;
314 if (minblocks > MAXCHUNKSIZE / 64) {
315 for (i = 0; i < x4; i++) {
316 edges[i].ptr = hash_d[i].ptr;
317 edges[i].blocks = MAXCHUNKSIZE / 64;
318 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
320 do {
321 sha1_multi_block(ctx, edges, n4x);
322 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
324 for (i = 0; i < x4; i++) {
325 edges[i].ptr = hash_d[i].ptr += MAXCHUNKSIZE;
326 hash_d[i].blocks -= MAXCHUNKSIZE / 64;
327 edges[i].blocks = MAXCHUNKSIZE / 64;
328 ciph_d[i].inp += MAXCHUNKSIZE;
329 ciph_d[i].out += MAXCHUNKSIZE;
330 ciph_d[i].blocks = MAXCHUNKSIZE / 16;
331 memcpy(ciph_d[i].iv, ciph_d[i].out - 16, 16);
333 processed += MAXCHUNKSIZE;
334 minblocks -= MAXCHUNKSIZE / 64;
335 } while (minblocks > MAXCHUNKSIZE / 64);
337 # endif
338 # undef MAXCHUNKSIZE
339 sha1_multi_block(ctx, hash_d, n4x);
341 memset(blocks, 0, sizeof(blocks));
342 for (i = 0; i < x4; i++) {
343 unsigned int len = (i == (x4 - 1) ? last : frag),
344 off = hash_d[i].blocks * 64;
345 const unsigned char *ptr = hash_d[i].ptr + off;
347 off = (len - processed) - (64 - 13) - off; /* remainder actually */
348 memcpy(blocks[i].c, ptr, off);
349 blocks[i].c[off] = 0x80;
350 len += 64 + 13; /* 64 is HMAC header */
351 len *= 8; /* convert to bits */
352 if (off < (64 - 8)) {
353 # ifdef BSWAP4
354 blocks[i].d[15] = BSWAP4(len);
355 # else
356 PUTU32(blocks[i].c + 60, len);
357 # endif
358 edges[i].blocks = 1;
359 } else {
360 # ifdef BSWAP4
361 blocks[i].d[31] = BSWAP4(len);
362 # else
363 PUTU32(blocks[i].c + 124, len);
364 # endif
365 edges[i].blocks = 2;
367 edges[i].ptr = blocks[i].c;
370 /* hash input tails and finalize */
371 sha1_multi_block(ctx, edges, n4x);
373 memset(blocks, 0, sizeof(blocks));
374 for (i = 0; i < x4; i++) {
375 # ifdef BSWAP4
376 blocks[i].d[0] = BSWAP4(ctx->A[i]);
377 ctx->A[i] = key->tail.h0;
378 blocks[i].d[1] = BSWAP4(ctx->B[i]);
379 ctx->B[i] = key->tail.h1;
380 blocks[i].d[2] = BSWAP4(ctx->C[i]);
381 ctx->C[i] = key->tail.h2;
382 blocks[i].d[3] = BSWAP4(ctx->D[i]);
383 ctx->D[i] = key->tail.h3;
384 blocks[i].d[4] = BSWAP4(ctx->E[i]);
385 ctx->E[i] = key->tail.h4;
386 blocks[i].c[20] = 0x80;
387 blocks[i].d[15] = BSWAP4((64 + 20) * 8);
388 # else
389 PUTU32(blocks[i].c + 0, ctx->A[i]);
390 ctx->A[i] = key->tail.h0;
391 PUTU32(blocks[i].c + 4, ctx->B[i]);
392 ctx->B[i] = key->tail.h1;
393 PUTU32(blocks[i].c + 8, ctx->C[i]);
394 ctx->C[i] = key->tail.h2;
395 PUTU32(blocks[i].c + 12, ctx->D[i]);
396 ctx->D[i] = key->tail.h3;
397 PUTU32(blocks[i].c + 16, ctx->E[i]);
398 ctx->E[i] = key->tail.h4;
399 blocks[i].c[20] = 0x80;
400 PUTU32(blocks[i].c + 60, (64 + 20) * 8);
401 # endif
402 edges[i].ptr = blocks[i].c;
403 edges[i].blocks = 1;
406 /* finalize MACs */
407 sha1_multi_block(ctx, edges, n4x);
409 for (i = 0; i < x4; i++) {
410 unsigned int len = (i == (x4 - 1) ? last : frag), pad, j;
411 unsigned char *out0 = out;
413 memcpy(ciph_d[i].out, ciph_d[i].inp, len - processed);
414 ciph_d[i].inp = ciph_d[i].out;
416 out += 5 + 16 + len;
418 /* write MAC */
419 PUTU32(out + 0, ctx->A[i]);
420 PUTU32(out + 4, ctx->B[i]);
421 PUTU32(out + 8, ctx->C[i]);
422 PUTU32(out + 12, ctx->D[i]);
423 PUTU32(out + 16, ctx->E[i]);
424 out += 20;
425 len += 20;
427 /* pad */
428 pad = 15 - len % 16;
429 for (j = 0; j <= pad; j++)
430 *(out++) = pad;
431 len += pad + 1;
433 ciph_d[i].blocks = (len - processed) / 16;
434 len += 16; /* account for explicit iv */
436 /* arrange header */
437 out0[0] = ((u8 *)key->md.data)[8];
438 out0[1] = ((u8 *)key->md.data)[9];
439 out0[2] = ((u8 *)key->md.data)[10];
440 out0[3] = (u8)(len >> 8);
441 out0[4] = (u8)(len);
443 ret += len + 5;
444 inp += frag;
447 aesni_multi_cbc_encrypt(ciph_d, &key->ks, n4x);
449 OPENSSL_cleanse(blocks, sizeof(blocks));
450 OPENSSL_cleanse(ctx, sizeof(*ctx));
452 return ret;
454 # endif
456 static int aesni_cbc_hmac_sha1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
457 const unsigned char *in, size_t len)
459 EVP_AES_HMAC_SHA1 *key = data(ctx);
460 unsigned int l;
461 size_t plen = key->payload_length, iv = 0, /* explicit IV in TLS 1.1 and
462 * later */
463 sha_off = 0;
464 # if defined(STITCHED_CALL)
465 size_t aes_off = 0, blocks;
467 sha_off = SHA_CBLOCK - key->md.num;
468 # endif
470 key->payload_length = NO_PAYLOAD_LENGTH;
472 if (len % AES_BLOCK_SIZE)
473 return 0;
475 if (ctx->encrypt) {
476 if (plen == NO_PAYLOAD_LENGTH)
477 plen = len;
478 else if (len !=
479 ((plen + SHA_DIGEST_LENGTH +
480 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE))
481 return 0;
482 else if (key->aux.tls_ver >= TLS1_1_VERSION)
483 iv = AES_BLOCK_SIZE;
485 # if defined(STITCHED_CALL)
486 if (plen > (sha_off + iv)
487 && (blocks = (plen - (sha_off + iv)) / SHA_CBLOCK)) {
488 SHA1_Update(&key->md, in + iv, sha_off);
490 aesni_cbc_sha1_enc(in, out, blocks, &key->ks,
491 ctx->iv, &key->md, in + iv + sha_off);
492 blocks *= SHA_CBLOCK;
493 aes_off += blocks;
494 sha_off += blocks;
495 key->md.Nh += blocks >> 29;
496 key->md.Nl += blocks <<= 3;
497 if (key->md.Nl < (unsigned int)blocks)
498 key->md.Nh++;
499 } else {
500 sha_off = 0;
502 # endif
503 sha_off += iv;
504 SHA1_Update(&key->md, in + sha_off, plen - sha_off);
506 if (plen != len) { /* "TLS" mode of operation */
507 if (in != out)
508 memcpy(out + aes_off, in + aes_off, plen - aes_off);
510 /* calculate HMAC and append it to payload */
511 SHA1_Final(out + plen, &key->md);
512 key->md = key->tail;
513 SHA1_Update(&key->md, out + plen, SHA_DIGEST_LENGTH);
514 SHA1_Final(out + plen, &key->md);
516 /* pad the payload|hmac */
517 plen += SHA_DIGEST_LENGTH;
518 for (l = len - plen - 1; plen < len; plen++)
519 out[plen] = l;
520 /* encrypt HMAC|padding at once */
521 aesni_cbc_encrypt(out + aes_off, out + aes_off, len - aes_off,
522 &key->ks, ctx->iv, 1);
523 } else {
524 aesni_cbc_encrypt(in + aes_off, out + aes_off, len - aes_off,
525 &key->ks, ctx->iv, 1);
527 } else {
528 union {
529 unsigned int u[SHA_DIGEST_LENGTH / sizeof(unsigned int)];
530 unsigned char c[32 + SHA_DIGEST_LENGTH];
531 } mac, *pmac;
533 /* arrange cache line alignment */
534 pmac = (void *)(((size_t)mac.c + 31) & ((size_t)0 - 32));
536 if (plen != NO_PAYLOAD_LENGTH) { /* "TLS" mode of operation */
537 size_t inp_len, mask, j, i;
538 unsigned int res, maxpad, pad, bitlen;
539 int ret = 1;
540 union {
541 unsigned int u[SHA_LBLOCK];
542 unsigned char c[SHA_CBLOCK];
543 } *data = (void *)key->md.data;
544 # if defined(STITCHED_DECRYPT_CALL)
545 unsigned char tail_iv[AES_BLOCK_SIZE];
546 int stitch = 0;
547 # endif
549 if ((key->aux.tls_aad[plen - 4] << 8 | key->aux.tls_aad[plen - 3])
550 >= TLS1_1_VERSION) {
551 if (len < (AES_BLOCK_SIZE + SHA_DIGEST_LENGTH + 1))
552 return 0;
554 /* omit explicit iv */
555 memcpy(ctx->iv, in, AES_BLOCK_SIZE);
556 in += AES_BLOCK_SIZE;
557 out += AES_BLOCK_SIZE;
558 len -= AES_BLOCK_SIZE;
559 } else if (len < (SHA_DIGEST_LENGTH + 1))
560 return 0;
562 # if defined(STITCHED_DECRYPT_CALL)
563 if (len >= 1024 && ctx->key_len == 32) {
564 /* decrypt last block */
565 memcpy(tail_iv, in + len - 2 * AES_BLOCK_SIZE,
566 AES_BLOCK_SIZE);
567 aesni_cbc_encrypt(in + len - AES_BLOCK_SIZE,
568 out + len - AES_BLOCK_SIZE, AES_BLOCK_SIZE,
569 &key->ks, tail_iv, 0);
570 stitch = 1;
571 } else
572 # endif
573 /* decrypt HMAC|padding at once */
574 aesni_cbc_encrypt(in, out, len, &key->ks, ctx->iv, 0);
576 /* figure out payload length */
577 pad = out[len - 1];
578 maxpad = len - (SHA_DIGEST_LENGTH + 1);
579 maxpad |= (255 - maxpad) >> (sizeof(maxpad) * 8 - 8);
580 maxpad &= 255;
582 ret &= constant_time_ge(maxpad, pad);
584 inp_len = len - (SHA_DIGEST_LENGTH + pad + 1);
585 mask = (0 - ((inp_len - len) >> (sizeof(inp_len) * 8 - 1)));
586 inp_len &= mask;
587 ret &= (int)mask;
589 key->aux.tls_aad[plen - 2] = inp_len >> 8;
590 key->aux.tls_aad[plen - 1] = inp_len;
592 /* calculate HMAC */
593 key->md = key->head;
594 SHA1_Update(&key->md, key->aux.tls_aad, plen);
596 # if defined(STITCHED_DECRYPT_CALL)
597 if (stitch) {
598 blocks = (len - (256 + 32 + SHA_CBLOCK)) / SHA_CBLOCK;
599 aes_off = len - AES_BLOCK_SIZE - blocks * SHA_CBLOCK;
600 sha_off = SHA_CBLOCK - plen;
602 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
604 SHA1_Update(&key->md, out, sha_off);
605 aesni256_cbc_sha1_dec(in + aes_off,
606 out + aes_off, blocks, &key->ks,
607 ctx->iv, &key->md, out + sha_off);
609 sha_off += blocks *= SHA_CBLOCK;
610 out += sha_off;
611 len -= sha_off;
612 inp_len -= sha_off;
614 key->md.Nl += (blocks << 3); /* at most 18 bits */
615 memcpy(ctx->iv, tail_iv, AES_BLOCK_SIZE);
617 # endif
619 # if 1
620 len -= SHA_DIGEST_LENGTH; /* amend mac */
621 if (len >= (256 + SHA_CBLOCK)) {
622 j = (len - (256 + SHA_CBLOCK)) & (0 - SHA_CBLOCK);
623 j += SHA_CBLOCK - key->md.num;
624 SHA1_Update(&key->md, out, j);
625 out += j;
626 len -= j;
627 inp_len -= j;
630 /* but pretend as if we hashed padded payload */
631 bitlen = key->md.Nl + (inp_len << 3); /* at most 18 bits */
632 # ifdef BSWAP4
633 bitlen = BSWAP4(bitlen);
634 # else
635 mac.c[0] = 0;
636 mac.c[1] = (unsigned char)(bitlen >> 16);
637 mac.c[2] = (unsigned char)(bitlen >> 8);
638 mac.c[3] = (unsigned char)bitlen;
639 bitlen = mac.u[0];
640 # endif
642 pmac->u[0] = 0;
643 pmac->u[1] = 0;
644 pmac->u[2] = 0;
645 pmac->u[3] = 0;
646 pmac->u[4] = 0;
648 for (res = key->md.num, j = 0; j < len; j++) {
649 size_t c = out[j];
650 mask = (j - inp_len) >> (sizeof(j) * 8 - 8);
651 c &= mask;
652 c |= 0x80 & ~mask & ~((inp_len - j) >> (sizeof(j) * 8 - 8));
653 data->c[res++] = (unsigned char)c;
655 if (res != SHA_CBLOCK)
656 continue;
658 /* j is not incremented yet */
659 mask = 0 - ((inp_len + 7 - j) >> (sizeof(j) * 8 - 1));
660 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
661 sha1_block_data_order(&key->md, data, 1);
662 mask &= 0 - ((j - inp_len - 72) >> (sizeof(j) * 8 - 1));
663 pmac->u[0] |= key->md.h0 & mask;
664 pmac->u[1] |= key->md.h1 & mask;
665 pmac->u[2] |= key->md.h2 & mask;
666 pmac->u[3] |= key->md.h3 & mask;
667 pmac->u[4] |= key->md.h4 & mask;
668 res = 0;
671 for (i = res; i < SHA_CBLOCK; i++, j++)
672 data->c[i] = 0;
674 if (res > SHA_CBLOCK - 8) {
675 mask = 0 - ((inp_len + 8 - j) >> (sizeof(j) * 8 - 1));
676 data->u[SHA_LBLOCK - 1] |= bitlen & mask;
677 sha1_block_data_order(&key->md, data, 1);
678 mask &= 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
679 pmac->u[0] |= key->md.h0 & mask;
680 pmac->u[1] |= key->md.h1 & mask;
681 pmac->u[2] |= key->md.h2 & mask;
682 pmac->u[3] |= key->md.h3 & mask;
683 pmac->u[4] |= key->md.h4 & mask;
685 memset(data, 0, SHA_CBLOCK);
686 j += 64;
688 data->u[SHA_LBLOCK - 1] = bitlen;
689 sha1_block_data_order(&key->md, data, 1);
690 mask = 0 - ((j - inp_len - 73) >> (sizeof(j) * 8 - 1));
691 pmac->u[0] |= key->md.h0 & mask;
692 pmac->u[1] |= key->md.h1 & mask;
693 pmac->u[2] |= key->md.h2 & mask;
694 pmac->u[3] |= key->md.h3 & mask;
695 pmac->u[4] |= key->md.h4 & mask;
697 # ifdef BSWAP4
698 pmac->u[0] = BSWAP4(pmac->u[0]);
699 pmac->u[1] = BSWAP4(pmac->u[1]);
700 pmac->u[2] = BSWAP4(pmac->u[2]);
701 pmac->u[3] = BSWAP4(pmac->u[3]);
702 pmac->u[4] = BSWAP4(pmac->u[4]);
703 # else
704 for (i = 0; i < 5; i++) {
705 res = pmac->u[i];
706 pmac->c[4 * i + 0] = (unsigned char)(res >> 24);
707 pmac->c[4 * i + 1] = (unsigned char)(res >> 16);
708 pmac->c[4 * i + 2] = (unsigned char)(res >> 8);
709 pmac->c[4 * i + 3] = (unsigned char)res;
711 # endif
712 len += SHA_DIGEST_LENGTH;
713 # else
714 SHA1_Update(&key->md, out, inp_len);
715 res = key->md.num;
716 SHA1_Final(pmac->c, &key->md);
719 unsigned int inp_blocks, pad_blocks;
721 /* but pretend as if we hashed padded payload */
722 inp_blocks =
723 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
724 res += (unsigned int)(len - inp_len);
725 pad_blocks = res / SHA_CBLOCK;
726 res %= SHA_CBLOCK;
727 pad_blocks +=
728 1 + ((SHA_CBLOCK - 9 - res) >> (sizeof(res) * 8 - 1));
729 for (; inp_blocks < pad_blocks; inp_blocks++)
730 sha1_block_data_order(&key->md, data, 1);
732 # endif
733 key->md = key->tail;
734 SHA1_Update(&key->md, pmac->c, SHA_DIGEST_LENGTH);
735 SHA1_Final(pmac->c, &key->md);
737 /* verify HMAC */
738 out += inp_len;
739 len -= inp_len;
740 # if 1
742 unsigned char *p = out + len - 1 - maxpad - SHA_DIGEST_LENGTH;
743 size_t off = out - p;
744 unsigned int c, cmask;
746 maxpad += SHA_DIGEST_LENGTH;
747 for (res = 0, i = 0, j = 0; j < maxpad; j++) {
748 c = p[j];
749 cmask =
750 ((int)(j - off - SHA_DIGEST_LENGTH)) >> (sizeof(int) *
751 8 - 1);
752 res |= (c ^ pad) & ~cmask; /* ... and padding */
753 cmask &= ((int)(off - 1 - j)) >> (sizeof(int) * 8 - 1);
754 res |= (c ^ pmac->c[i]) & cmask;
755 i += 1 & cmask;
757 maxpad -= SHA_DIGEST_LENGTH;
759 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
760 ret &= (int)~res;
762 # else
763 for (res = 0, i = 0; i < SHA_DIGEST_LENGTH; i++)
764 res |= out[i] ^ pmac->c[i];
765 res = 0 - ((0 - res) >> (sizeof(res) * 8 - 1));
766 ret &= (int)~res;
768 /* verify padding */
769 pad = (pad & ~res) | (maxpad & res);
770 out = out + len - 1 - pad;
771 for (res = 0, i = 0; i < pad; i++)
772 res |= out[i] ^ pad;
774 res = (0 - res) >> (sizeof(res) * 8 - 1);
775 ret &= (int)~res;
776 # endif
777 return ret;
778 } else {
779 # if defined(STITCHED_DECRYPT_CALL)
780 if (len >= 1024 && ctx->key_len == 32) {
781 if (sha_off %= SHA_CBLOCK)
782 blocks = (len - 3 * SHA_CBLOCK) / SHA_CBLOCK;
783 else
784 blocks = (len - 2 * SHA_CBLOCK) / SHA_CBLOCK;
785 aes_off = len - blocks * SHA_CBLOCK;
787 aesni_cbc_encrypt(in, out, aes_off, &key->ks, ctx->iv, 0);
788 SHA1_Update(&key->md, out, sha_off);
789 aesni256_cbc_sha1_dec(in + aes_off,
790 out + aes_off, blocks, &key->ks,
791 ctx->iv, &key->md, out + sha_off);
793 sha_off += blocks *= SHA_CBLOCK;
794 out += sha_off;
795 len -= sha_off;
797 key->md.Nh += blocks >> 29;
798 key->md.Nl += blocks <<= 3;
799 if (key->md.Nl < (unsigned int)blocks)
800 key->md.Nh++;
801 } else
802 # endif
803 /* decrypt HMAC|padding at once */
804 aesni_cbc_encrypt(in, out, len, &key->ks, ctx->iv, 0);
806 SHA1_Update(&key->md, out, len);
810 return 1;
813 static int aesni_cbc_hmac_sha1_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
814 void *ptr)
816 EVP_AES_HMAC_SHA1 *key = data(ctx);
818 switch (type) {
819 case EVP_CTRL_AEAD_SET_MAC_KEY:
821 unsigned int i;
822 unsigned char hmac_key[64];
824 memset(hmac_key, 0, sizeof(hmac_key));
826 if (arg > (int)sizeof(hmac_key)) {
827 SHA1_Init(&key->head);
828 SHA1_Update(&key->head, ptr, arg);
829 SHA1_Final(hmac_key, &key->head);
830 } else {
831 memcpy(hmac_key, ptr, arg);
834 for (i = 0; i < sizeof(hmac_key); i++)
835 hmac_key[i] ^= 0x36; /* ipad */
836 SHA1_Init(&key->head);
837 SHA1_Update(&key->head, hmac_key, sizeof(hmac_key));
839 for (i = 0; i < sizeof(hmac_key); i++)
840 hmac_key[i] ^= 0x36 ^ 0x5c; /* opad */
841 SHA1_Init(&key->tail);
842 SHA1_Update(&key->tail, hmac_key, sizeof(hmac_key));
844 OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
846 return 1;
848 case EVP_CTRL_AEAD_TLS1_AAD:
850 unsigned char *p = ptr;
851 unsigned int len;
853 if (arg != EVP_AEAD_TLS1_AAD_LEN)
854 return -1;
856 len = p[arg - 2] << 8 | p[arg - 1];
858 if (ctx->encrypt) {
859 key->payload_length = len;
860 if ((key->aux.tls_ver =
861 p[arg - 4] << 8 | p[arg - 3]) >= TLS1_1_VERSION) {
862 len -= AES_BLOCK_SIZE;
863 p[arg - 2] = len >> 8;
864 p[arg - 1] = len;
866 key->md = key->head;
867 SHA1_Update(&key->md, p, arg);
869 return (int)(((len + SHA_DIGEST_LENGTH +
870 AES_BLOCK_SIZE) & -AES_BLOCK_SIZE)
871 - len);
872 } else {
873 memcpy(key->aux.tls_aad, ptr, arg);
874 key->payload_length = arg;
876 return SHA_DIGEST_LENGTH;
879 # if !defined(OPENSSL_NO_MULTIBLOCK) && EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
880 case EVP_CTRL_TLS1_1_MULTIBLOCK_MAX_BUFSIZE:
881 return (int)(5 + 16 + ((arg + 20 + 16) & -16));
882 case EVP_CTRL_TLS1_1_MULTIBLOCK_AAD:
884 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
885 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
886 unsigned int n4x = 1, x4;
887 unsigned int frag, last, packlen, inp_len;
889 if (arg < (int)sizeof(EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM))
890 return -1;
892 inp_len = param->inp[11] << 8 | param->inp[12];
894 if (ctx->encrypt) {
895 if ((param->inp[9] << 8 | param->inp[10]) < TLS1_1_VERSION)
896 return -1;
898 if (inp_len) {
899 if (inp_len < 4096)
900 return 0; /* too short */
902 if (inp_len >= 8192 && OPENSSL_ia32cap_P[2] & (1 << 5))
903 n4x = 2; /* AVX2 */
904 } else if ((n4x = param->interleave / 4) && n4x <= 2)
905 inp_len = param->len;
906 else
907 return -1;
909 key->md = key->head;
910 SHA1_Update(&key->md, param->inp, 13);
912 x4 = 4 * n4x;
913 n4x += 1;
915 frag = inp_len >> n4x;
916 last = inp_len + frag - (frag << n4x);
917 if (last > frag && ((last + 13 + 9) % 64 < (x4 - 1))) {
918 frag++;
919 last -= x4 - 1;
922 packlen = 5 + 16 + ((frag + 20 + 16) & -16);
923 packlen = (packlen << n4x) - packlen;
924 packlen += 5 + 16 + ((last + 20 + 16) & -16);
926 param->interleave = x4;
928 return (int)packlen;
929 } else
930 return -1; /* not yet */
932 case EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT:
934 EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *param =
935 (EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM *) ptr;
937 return (int)tls1_1_multi_block_encrypt(key, param->out,
938 param->inp, param->len,
939 param->interleave / 4);
941 case EVP_CTRL_TLS1_1_MULTIBLOCK_DECRYPT:
942 # endif
943 default:
944 return -1;
948 static EVP_CIPHER aesni_128_cbc_hmac_sha1_cipher = {
949 # ifdef NID_aes_128_cbc_hmac_sha1
950 NID_aes_128_cbc_hmac_sha1,
951 # else
952 NID_undef,
953 # endif
954 16, 16, 16,
955 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
956 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
957 aesni_cbc_hmac_sha1_init_key,
958 aesni_cbc_hmac_sha1_cipher,
959 NULL,
960 sizeof(EVP_AES_HMAC_SHA1),
961 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
962 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
963 aesni_cbc_hmac_sha1_ctrl,
964 NULL
967 static EVP_CIPHER aesni_256_cbc_hmac_sha1_cipher = {
968 # ifdef NID_aes_256_cbc_hmac_sha1
969 NID_aes_256_cbc_hmac_sha1,
970 # else
971 NID_undef,
972 # endif
973 16, 32, 16,
974 EVP_CIPH_CBC_MODE | EVP_CIPH_FLAG_DEFAULT_ASN1 |
975 EVP_CIPH_FLAG_AEAD_CIPHER | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK,
976 aesni_cbc_hmac_sha1_init_key,
977 aesni_cbc_hmac_sha1_cipher,
978 NULL,
979 sizeof(EVP_AES_HMAC_SHA1),
980 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_set_asn1_iv,
981 EVP_CIPH_FLAG_DEFAULT_ASN1 ? NULL : EVP_CIPHER_get_asn1_iv,
982 aesni_cbc_hmac_sha1_ctrl,
983 NULL
986 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
988 return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
989 &aesni_128_cbc_hmac_sha1_cipher : NULL);
992 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
994 return (OPENSSL_ia32cap_P[1] & AESNI_CAPABLE ?
995 &aesni_256_cbc_hmac_sha1_cipher : NULL);
997 # else
998 const EVP_CIPHER *EVP_aes_128_cbc_hmac_sha1(void)
1000 return NULL;
1003 const EVP_CIPHER *EVP_aes_256_cbc_hmac_sha1(void)
1005 return NULL;
1007 # endif
1008 #endif