[MTD] Updates from 2.6 upstream
[tomato.git] / release / src-rt / linux / linux-2.6 / drivers / mtd / mtdpart.c
bloba08712ac323a38043d630ddd39d420e08247bf63
1 /*
2 * Simple MTD partitioning layer
4 * (C) 2000 Nicolas Pitre <nico@cam.org>
6 * This code is GPL
8 * $Id: mtdpart.c,v 1.55 2005/11/07 11:14:20 gleixner Exp $
10 * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
11 * added support for read_oob, write_oob
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/list.h>
19 #include <linux/kmod.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/mtd/compatmac.h>
24 /* Our partition linked list */
25 static LIST_HEAD(mtd_partitions);
27 /* Our partition node structure */
28 struct mtd_part {
29 struct mtd_info mtd;
30 struct mtd_info *master;
31 u_int32_t offset;
32 int index;
33 struct list_head list;
34 int registered;
38 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
39 * the pointer to that structure with this macro.
41 #define PART(x) ((struct mtd_part *)(x))
45 * MTD methods which simply translate the effective address and pass through
46 * to the _real_ device.
49 static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
50 size_t *retlen, u_char *buf)
52 struct mtd_part *part = PART(mtd);
53 int res;
55 if (from >= mtd->size)
56 len = 0;
57 else if (from + len > mtd->size)
58 len = mtd->size - from;
59 res = part->master->read (part->master, from + part->offset,
60 len, retlen, buf);
61 if (unlikely(res)) {
62 if (res == -EUCLEAN)
63 mtd->ecc_stats.corrected++;
64 if (res == -EBADMSG)
65 mtd->ecc_stats.failed++;
67 return res;
70 static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
71 size_t *retlen, u_char **buf)
73 struct mtd_part *part = PART(mtd);
74 if (from >= mtd->size)
75 len = 0;
76 else if (from + len > mtd->size)
77 len = mtd->size - from;
78 return part->master->point (part->master, from + part->offset,
79 len, retlen, buf);
82 static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
84 struct mtd_part *part = PART(mtd);
86 part->master->unpoint (part->master, addr, from + part->offset, len);
89 static int part_read_oob(struct mtd_info *mtd, loff_t from,
90 struct mtd_oob_ops *ops)
92 struct mtd_part *part = PART(mtd);
93 int res;
95 if (from >= mtd->size)
96 return -EINVAL;
97 if (ops->datbuf && from + ops->len > mtd->size)
98 return -EINVAL;
99 res = part->master->read_oob(part->master, from + part->offset, ops);
101 if (unlikely(res)) {
102 if (res == -EUCLEAN)
103 mtd->ecc_stats.corrected++;
104 if (res == -EBADMSG)
105 mtd->ecc_stats.failed++;
107 return res;
110 static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
111 size_t *retlen, u_char *buf)
113 struct mtd_part *part = PART(mtd);
114 return part->master->read_user_prot_reg (part->master, from,
115 len, retlen, buf);
118 static int part_get_user_prot_info (struct mtd_info *mtd,
119 struct otp_info *buf, size_t len)
121 struct mtd_part *part = PART(mtd);
122 return part->master->get_user_prot_info (part->master, buf, len);
125 static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
126 size_t *retlen, u_char *buf)
128 struct mtd_part *part = PART(mtd);
129 return part->master->read_fact_prot_reg (part->master, from,
130 len, retlen, buf);
133 static int part_get_fact_prot_info (struct mtd_info *mtd,
134 struct otp_info *buf, size_t len)
136 struct mtd_part *part = PART(mtd);
137 return part->master->get_fact_prot_info (part->master, buf, len);
140 static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
141 size_t *retlen, const u_char *buf)
143 struct mtd_part *part = PART(mtd);
144 if (!(mtd->flags & MTD_WRITEABLE))
145 return -EROFS;
146 if (to >= mtd->size)
147 len = 0;
148 else if (to + len > mtd->size)
149 len = mtd->size - to;
150 return part->master->write (part->master, to + part->offset,
151 len, retlen, buf);
154 static int part_write_oob(struct mtd_info *mtd, loff_t to,
155 struct mtd_oob_ops *ops)
157 struct mtd_part *part = PART(mtd);
159 if (!(mtd->flags & MTD_WRITEABLE))
160 return -EROFS;
162 if (to >= mtd->size)
163 return -EINVAL;
164 if (ops->datbuf && to + ops->len > mtd->size)
165 return -EINVAL;
166 return part->master->write_oob(part->master, to + part->offset, ops);
169 static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
170 size_t *retlen, u_char *buf)
172 struct mtd_part *part = PART(mtd);
173 return part->master->write_user_prot_reg (part->master, from,
174 len, retlen, buf);
177 static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len)
179 struct mtd_part *part = PART(mtd);
180 return part->master->lock_user_prot_reg (part->master, from, len);
183 static int part_writev (struct mtd_info *mtd, const struct kvec *vecs,
184 unsigned long count, loff_t to, size_t *retlen)
186 struct mtd_part *part = PART(mtd);
187 if (!(mtd->flags & MTD_WRITEABLE))
188 return -EROFS;
189 return part->master->writev (part->master, vecs, count,
190 to + part->offset, retlen);
193 static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
195 struct mtd_part *part = PART(mtd);
196 int ret;
197 if (!(mtd->flags & MTD_WRITEABLE))
198 return -EROFS;
199 if (instr->addr >= mtd->size)
200 return -EINVAL;
201 instr->addr += part->offset;
202 ret = part->master->erase(part->master, instr);
203 if (ret) {
204 if (instr->fail_addr != 0xffffffff)
205 instr->fail_addr -= part->offset;
206 instr->addr -= part->offset;
208 return ret;
211 void mtd_erase_callback(struct erase_info *instr)
213 if (instr->mtd->erase == part_erase) {
214 struct mtd_part *part = PART(instr->mtd);
216 if (instr->fail_addr != 0xffffffff)
217 instr->fail_addr -= part->offset;
218 instr->addr -= part->offset;
220 if (instr->callback)
221 instr->callback(instr);
223 EXPORT_SYMBOL_GPL(mtd_erase_callback);
225 static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
227 struct mtd_part *part = PART(mtd);
228 if ((len + ofs) > mtd->size)
229 return -EINVAL;
230 return part->master->lock(part->master, ofs + part->offset, len);
233 static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
235 struct mtd_part *part = PART(mtd);
236 if ((len + ofs) > mtd->size)
237 return -EINVAL;
238 return part->master->unlock(part->master, ofs + part->offset, len);
241 static void part_sync(struct mtd_info *mtd)
243 struct mtd_part *part = PART(mtd);
244 part->master->sync(part->master);
247 static int part_suspend(struct mtd_info *mtd)
249 struct mtd_part *part = PART(mtd);
250 return part->master->suspend(part->master);
253 static void part_resume(struct mtd_info *mtd)
255 struct mtd_part *part = PART(mtd);
256 part->master->resume(part->master);
259 static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
261 struct mtd_part *part = PART(mtd);
262 if (ofs >= mtd->size)
263 return -EINVAL;
264 ofs += part->offset;
265 return part->master->block_isbad(part->master, ofs);
268 static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
270 struct mtd_part *part = PART(mtd);
271 int res;
273 if (!(mtd->flags & MTD_WRITEABLE))
274 return -EROFS;
275 if (ofs >= mtd->size)
276 return -EINVAL;
277 ofs += part->offset;
278 res = part->master->block_markbad(part->master, ofs);
279 if (!res)
280 mtd->ecc_stats.badblocks++;
281 return res;
285 * This function unregisters and destroy all slave MTD objects which are
286 * attached to the given master MTD object.
289 int del_mtd_partitions(struct mtd_info *master)
291 struct mtd_part *slave, *next;
293 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
294 if (slave->master == master) {
295 list_del(&slave->list);
296 if(slave->registered)
297 del_mtd_device(&slave->mtd);
298 kfree(slave);
301 return 0;
305 * This function, given a master MTD object and a partition table, creates
306 * and registers slave MTD objects which are bound to the master according to
307 * the partition definitions.
308 * (Q: should we register the master MTD object as well?)
311 int add_mtd_partitions(struct mtd_info *master,
312 const struct mtd_partition *parts,
313 int nbparts)
315 struct mtd_part *slave;
316 u_int32_t cur_offset = 0;
317 int i;
319 printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
321 for (i = 0; i < nbparts; i++) {
323 /* allocate the partition structure */
324 slave = kzalloc (sizeof(*slave), GFP_KERNEL);
325 if (!slave) {
326 printk ("memory allocation error while creating partitions for \"%s\"\n",
327 master->name);
328 del_mtd_partitions(master);
329 return -ENOMEM;
331 list_add(&slave->list, &mtd_partitions);
333 /* set up the MTD object for this partition */
334 slave->mtd.type = master->type;
335 slave->mtd.flags = master->flags & ~parts[i].mask_flags;
336 slave->mtd.size = parts[i].size;
337 slave->mtd.writesize = master->writesize;
338 slave->mtd.oobsize = master->oobsize;
339 slave->mtd.oobavail = master->oobavail;
340 slave->mtd.subpage_sft = master->subpage_sft;
342 slave->mtd.name = parts[i].name;
343 slave->mtd.owner = master->owner;
345 slave->mtd.read = part_read;
346 slave->mtd.write = part_write;
348 if(master->point && master->unpoint){
349 slave->mtd.point = part_point;
350 slave->mtd.unpoint = part_unpoint;
353 if (master->read_oob)
354 slave->mtd.read_oob = part_read_oob;
355 if (master->write_oob)
356 slave->mtd.write_oob = part_write_oob;
357 if(master->read_user_prot_reg)
358 slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
359 if(master->read_fact_prot_reg)
360 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
361 if(master->write_user_prot_reg)
362 slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
363 if(master->lock_user_prot_reg)
364 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
365 if(master->get_user_prot_info)
366 slave->mtd.get_user_prot_info = part_get_user_prot_info;
367 if(master->get_fact_prot_info)
368 slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
369 if (master->sync)
370 slave->mtd.sync = part_sync;
371 if (!i && master->suspend && master->resume) {
372 slave->mtd.suspend = part_suspend;
373 slave->mtd.resume = part_resume;
375 if (master->writev)
376 slave->mtd.writev = part_writev;
377 if (master->lock)
378 slave->mtd.lock = part_lock;
379 if (master->unlock)
380 slave->mtd.unlock = part_unlock;
381 if (master->block_isbad)
382 slave->mtd.block_isbad = part_block_isbad;
383 if (master->block_markbad)
384 slave->mtd.block_markbad = part_block_markbad;
385 slave->mtd.erase = part_erase;
386 slave->master = master;
387 slave->offset = parts[i].offset;
388 slave->index = i;
390 if (slave->offset == MTDPART_OFS_APPEND)
391 slave->offset = cur_offset;
392 if (slave->offset == MTDPART_OFS_NXTBLK) {
393 slave->offset = cur_offset;
394 if ((cur_offset % master->erasesize) != 0) {
395 /* Round up to next erasesize */
396 slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize;
397 printk(KERN_NOTICE "Moving partition %d: "
398 "0x%08x -> 0x%08x\n", i,
399 cur_offset, slave->offset);
402 if (slave->mtd.size == MTDPART_SIZ_FULL)
403 slave->mtd.size = master->size - slave->offset;
404 cur_offset = slave->offset + slave->mtd.size;
406 printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
407 slave->offset + slave->mtd.size, slave->mtd.name);
409 /* let's do some sanity checks */
410 if (slave->offset >= master->size) {
411 /* let's register it anyway to preserve ordering */
412 slave->offset = 0;
413 slave->mtd.size = 0;
414 printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
415 parts[i].name);
417 if (slave->offset + slave->mtd.size > master->size) {
418 slave->mtd.size = master->size - slave->offset;
419 printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
420 parts[i].name, master->name, slave->mtd.size);
422 if (master->numeraseregions>1) {
423 /* Deal with variable erase size stuff */
424 int i;
425 struct mtd_erase_region_info *regions = master->eraseregions;
427 /* Find the first erase regions which is part of this partition. */
428 for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
431 for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
432 if (slave->mtd.erasesize < regions[i].erasesize) {
433 slave->mtd.erasesize = regions[i].erasesize;
436 } else {
437 /* Single erase size */
438 slave->mtd.erasesize = master->erasesize;
441 if ((slave->mtd.flags & MTD_WRITEABLE) &&
442 (slave->offset % slave->mtd.erasesize)) {
443 /* Doesn't start on a boundary of major erase size */
444 /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
445 slave->mtd.flags &= ~MTD_WRITEABLE;
446 printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
447 parts[i].name);
449 if ((slave->mtd.flags & MTD_WRITEABLE) &&
450 (slave->mtd.size % slave->mtd.erasesize)) {
451 slave->mtd.flags &= ~MTD_WRITEABLE;
452 printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
453 parts[i].name);
456 slave->mtd.ecclayout = master->ecclayout;
457 if (master->block_isbad) {
458 uint32_t offs = 0;
460 while(offs < slave->mtd.size) {
461 if (master->block_isbad(master,
462 offs + slave->offset))
463 slave->mtd.ecc_stats.badblocks++;
464 offs += slave->mtd.erasesize;
468 if(parts[i].mtdp)
469 { /* store the object pointer (caller may or may not register it */
470 *parts[i].mtdp = &slave->mtd;
471 slave->registered = 0;
473 else
475 /* register our partition */
476 add_mtd_device(&slave->mtd);
477 slave->registered = 1;
481 return 0;
484 EXPORT_SYMBOL(add_mtd_partitions);
485 EXPORT_SYMBOL(del_mtd_partitions);
487 static DEFINE_SPINLOCK(part_parser_lock);
488 static LIST_HEAD(part_parsers);
490 static struct mtd_part_parser *get_partition_parser(const char *name)
492 struct mtd_part_parser *p, *ret = NULL;
494 spin_lock(&part_parser_lock);
496 list_for_each_entry(p, &part_parsers, list)
497 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
498 ret = p;
499 break;
502 spin_unlock(&part_parser_lock);
504 return ret;
507 int register_mtd_parser(struct mtd_part_parser *p)
509 spin_lock(&part_parser_lock);
510 list_add(&p->list, &part_parsers);
511 spin_unlock(&part_parser_lock);
513 return 0;
516 int deregister_mtd_parser(struct mtd_part_parser *p)
518 spin_lock(&part_parser_lock);
519 list_del(&p->list);
520 spin_unlock(&part_parser_lock);
521 return 0;
524 int parse_mtd_partitions(struct mtd_info *master, const char **types,
525 struct mtd_partition **pparts, unsigned long origin)
527 struct mtd_part_parser *parser;
528 int ret = 0;
530 for ( ; ret <= 0 && *types; types++) {
531 parser = get_partition_parser(*types);
532 #ifdef CONFIG_KMOD
533 if (!parser && !request_module("%s", *types))
534 parser = get_partition_parser(*types);
535 #endif
536 if (!parser) {
537 printk(KERN_NOTICE "%s partition parsing not available\n",
538 *types);
539 continue;
541 ret = (*parser->parse_fn)(master, pparts, origin);
542 if (ret > 0) {
543 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
544 ret, parser->name, master->name);
546 put_partition_parser(parser);
548 return ret;
551 EXPORT_SYMBOL_GPL(parse_mtd_partitions);
552 EXPORT_SYMBOL_GPL(register_mtd_parser);
553 EXPORT_SYMBOL_GPL(deregister_mtd_parser);