toolchain: binary K26 toolchain (binutils 2.20.1, uClibc patches, updated kernel...
[tomato.git] / tools / brcm / K26 / hndtools-mipsel-uclibc-4.2.4 / include / linux / skbuff.h
blob993ec18a3fe7a9891d575bdb73a3bec040abf711
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* A. Checksumming of received packets by device.
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
67 * B. Checksumming on output.
69 * NONE: skb is checksummed by protocol or csum is not required.
71 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
72 * from skb->transport_header to the end and to record the checksum
73 * at skb->transport_header + skb->csum.
75 * Device must show its capabilities in dev->features, set
76 * at device setup time.
77 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
78 * everything.
79 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
80 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
81 * TCP/UDP over IPv4. Sigh. Vendors like this
82 * way by an unknown reason. Though, see comment above
83 * about CHECKSUM_UNNECESSARY. 8)
85 * Any questions? No questions, good. --ANK
88 struct net_device;
89 struct scatterlist;
90 struct pipe_inode_info;
92 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
93 struct nf_conntrack {
94 atomic_t use;
96 #endif
98 #ifdef CONFIG_BRIDGE_NETFILTER
99 struct nf_bridge_info {
100 atomic_t use;
101 struct net_device *physindev;
102 struct net_device *physoutdev;
103 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
104 struct net_device *netoutdev;
105 #endif
106 unsigned int mask;
107 unsigned long data[32 / sizeof(unsigned long)];
109 #endif
111 struct sk_buff_head {
112 /* These two members must be first. */
113 struct sk_buff *next;
114 struct sk_buff *prev;
116 __u32 qlen;
117 spinlock_t lock;
120 struct sk_buff;
122 /* To allow 64K frame to be packed as single skb without frag_list */
123 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
125 typedef struct skb_frag_struct skb_frag_t;
127 struct skb_frag_struct {
128 struct page *page;
129 __u16 page_offset;
130 __u16 size;
133 /* This data is invariant across clones and lives at
134 * the end of the header data, ie. at skb->end.
136 struct skb_shared_info {
137 atomic_t dataref;
138 unsigned short nr_frags;
139 unsigned short gso_size;
140 /* Warning: this field is not always filled in (UFO)! */
141 unsigned short gso_segs;
142 unsigned short gso_type;
143 __be32 ip6_frag_id;
144 struct sk_buff *frag_list;
145 skb_frag_t frags[MAX_SKB_FRAGS];
148 /* We divide dataref into two halves. The higher 16 bits hold references
149 * to the payload part of skb->data. The lower 16 bits hold references to
150 * the entire skb->data. A clone of a headerless skb holds the length of
151 * the header in skb->hdr_len.
153 * All users must obey the rule that the skb->data reference count must be
154 * greater than or equal to the payload reference count.
156 * Holding a reference to the payload part means that the user does not
157 * care about modifications to the header part of skb->data.
159 #define SKB_DATAREF_SHIFT 16
160 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
163 enum {
164 SKB_FCLONE_UNAVAILABLE,
165 SKB_FCLONE_ORIG,
166 SKB_FCLONE_CLONE,
169 enum {
170 SKB_GSO_TCPV4 = 1 << 0,
171 SKB_GSO_UDP = 1 << 1,
173 /* This indicates the skb is from an untrusted source. */
174 SKB_GSO_DODGY = 1 << 2,
176 /* This indicates the tcp segment has CWR set. */
177 SKB_GSO_TCP_ECN = 1 << 3,
179 SKB_GSO_TCPV6 = 1 << 4,
182 #if BITS_PER_LONG > 32
183 #define NET_SKBUFF_DATA_USES_OFFSET 1
184 #endif
186 #ifdef NET_SKBUFF_DATA_USES_OFFSET
187 typedef unsigned int sk_buff_data_t;
188 #else
189 typedef unsigned char *sk_buff_data_t;
190 #endif
192 /**
193 * struct sk_buff - socket buffer
194 * @next: Next buffer in list
195 * @prev: Previous buffer in list
196 * @sk: Socket we are owned by
197 * @tstamp: Time we arrived
198 * @dev: Device we arrived on/are leaving by
199 * @iif: ifindex of device we arrived on
200 * @transport_header: Transport layer header
201 * @network_header: Network layer header
202 * @mac_header: Link layer header
203 * @dst: destination entry
204 * @sp: the security path, used for xfrm
205 * @cb: Control buffer. Free for use by every layer. Put private vars here
206 * @len: Length of actual data
207 * @data_len: Data length
208 * @mac_len: Length of link layer header
209 * @hdr_len: writable header length of cloned skb
210 * @csum: Checksum (must include start/offset pair)
211 * @csum_start: Offset from skb->head where checksumming should start
212 * @csum_offset: Offset from csum_start where checksum should be stored
213 * @local_df: allow local fragmentation
214 * @cloned: Head may be cloned (check refcnt to be sure)
215 * @nohdr: Payload reference only, must not modify header
216 * @pkt_type: Packet class
217 * @fclone: skbuff clone status
218 * @ip_summed: Driver fed us an IP checksum
219 * @priority: Packet queueing priority
220 * @users: User count - see {datagram,tcp}.c
221 * @protocol: Packet protocol from driver
222 * @truesize: Buffer size
223 * @head: Head of buffer
224 * @data: Data head pointer
225 * @tail: Tail pointer
226 * @end: End pointer
227 * @destructor: Destruct function
228 * @mark: Generic packet mark
229 * @nfct: Associated connection, if any
230 * @ipvs_property: skbuff is owned by ipvs
231 * @nfctinfo: Relationship of this skb to the connection
232 * @nfct_reasm: netfilter conntrack re-assembly pointer
233 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
234 * @tc_index: Traffic control index
235 * @tc_verd: traffic control verdict
236 * @dma_cookie: a cookie to one of several possible DMA operations
237 * done by skb DMA functions
238 * @secmark: security marking
241 struct sk_buff {
242 /* These two members must be first. */
243 struct sk_buff *next;
244 struct sk_buff *prev;
246 struct sock *sk;
247 ktime_t tstamp;
248 struct net_device *dev;
249 int iif;
250 /* 4 byte hole on 64 bit*/
252 struct dst_entry *dst;
253 struct sec_path *sp;
256 * This is the control buffer. It is free to use for every
257 * layer. Please put your private variables there. If you
258 * want to keep them across layers you have to do a skb_clone()
259 * first. This is owned by whoever has the skb queued ATM.
261 char cb[48];
263 unsigned int len,
264 data_len;
265 __u16 mac_len,
266 hdr_len;
267 union {
268 __wsum csum;
269 struct {
270 __u16 csum_start;
271 __u16 csum_offset;
274 __u32 priority;
275 __u8 local_df:1,
276 cloned:1,
277 ip_summed:2,
278 nohdr:1,
279 nfctinfo:3;
280 __u8 pkt_type:3,
281 fclone:2,
282 ipvs_property:1;
283 __be16 protocol;
285 void (*destructor)(struct sk_buff *skb);
286 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
287 struct nf_conntrack *nfct;
288 struct sk_buff *nfct_reasm;
289 #endif
290 #ifdef CONFIG_BRIDGE_NETFILTER
291 struct nf_bridge_info *nf_bridge;
292 #endif
293 #ifdef CONFIG_NET_SCHED
294 __u16 tc_index; /* traffic control index */
295 //#ifdef CONFIG_NET_CLS_ACT
296 __u16 tc_verd; /* traffic control verdict */
297 //#endif
298 #endif
299 #ifdef CONFIG_NET_DMA
300 dma_cookie_t dma_cookie;
301 #endif
302 #ifdef CONFIG_NETWORK_SECMARK
303 __u32 secmark;
304 #endif
306 __u32 mark;
308 sk_buff_data_t transport_header;
309 sk_buff_data_t network_header;
310 sk_buff_data_t mac_header;
311 /* These elements must be at the end, see alloc_skb() for details. */
312 sk_buff_data_t tail;
313 sk_buff_data_t end;
314 unsigned char *head,
315 *data;
316 unsigned int truesize;
317 atomic_t users;
318 unsigned char wl_idx; /* Jiahao: index of wireless interface */
319 #if defined(CONFIG_IMQ) || defined(CONFIG_IMQ_MODULE)
320 unsigned char imq_flags;
321 struct nf_info *nf_info;
322 #endif
323 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
324 /* Cache info */
325 __u32 nfcache;
326 #endif
329 #ifdef __KERNEL__
331 * Handling routines are only of interest to the kernel
333 #include <linux/slab.h>
335 #include <asm/system.h>
337 extern void kfree_skb(struct sk_buff *skb);
338 extern void __kfree_skb(struct sk_buff *skb);
339 extern struct sk_buff *__alloc_skb(unsigned int size,
340 gfp_t priority, int fclone, int node);
341 static inline struct sk_buff *alloc_skb(unsigned int size,
342 gfp_t priority)
344 return __alloc_skb(size, priority, 0, -1);
347 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
348 gfp_t priority)
350 return __alloc_skb(size, priority, 1, -1);
353 extern void kfree_skbmem(struct sk_buff *skb);
354 extern struct sk_buff *skb_clone(struct sk_buff *skb,
355 gfp_t priority);
356 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
357 gfp_t priority);
358 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
359 gfp_t gfp_mask);
360 extern int pskb_expand_head(struct sk_buff *skb,
361 int nhead, int ntail,
362 gfp_t gfp_mask);
363 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
364 unsigned int headroom);
365 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
366 int newheadroom, int newtailroom,
367 gfp_t priority);
368 extern int skb_to_sgvec(struct sk_buff *skb,
369 struct scatterlist *sg, int offset,
370 int len);
371 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
372 struct sk_buff **trailer);
373 extern int skb_pad(struct sk_buff *skb, int pad);
374 #define dev_kfree_skb(a) kfree_skb(a)
375 extern void skb_over_panic(struct sk_buff *skb, int len,
376 void *here);
377 extern void skb_under_panic(struct sk_buff *skb, int len,
378 void *here);
379 extern void skb_truesize_bug(struct sk_buff *skb);
381 static inline void skb_truesize_check(struct sk_buff *skb)
383 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
384 skb_truesize_bug(skb);
387 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
388 int getfrag(void *from, char *to, int offset,
389 int len,int odd, struct sk_buff *skb),
390 void *from, int length);
392 struct skb_seq_state
394 __u32 lower_offset;
395 __u32 upper_offset;
396 __u32 frag_idx;
397 __u32 stepped_offset;
398 struct sk_buff *root_skb;
399 struct sk_buff *cur_skb;
400 __u8 *frag_data;
403 extern void skb_prepare_seq_read(struct sk_buff *skb,
404 unsigned int from, unsigned int to,
405 struct skb_seq_state *st);
406 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
407 struct skb_seq_state *st);
408 extern void skb_abort_seq_read(struct skb_seq_state *st);
410 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
411 unsigned int to, struct ts_config *config,
412 struct ts_state *state);
414 #ifdef NET_SKBUFF_DATA_USES_OFFSET
415 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
417 return skb->head + skb->end;
419 #else
420 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
422 return skb->end;
424 #endif
426 /* Internal */
427 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
430 * skb_queue_empty - check if a queue is empty
431 * @list: queue head
433 * Returns true if the queue is empty, false otherwise.
435 static inline int skb_queue_empty(const struct sk_buff_head *list)
437 return list->next == (struct sk_buff *)list;
441 * skb_get - reference buffer
442 * @skb: buffer to reference
444 * Makes another reference to a socket buffer and returns a pointer
445 * to the buffer.
447 static inline struct sk_buff *skb_get(struct sk_buff *skb)
449 atomic_inc(&skb->users);
450 return skb;
454 * If users == 1, we are the only owner and are can avoid redundant
455 * atomic change.
459 * skb_cloned - is the buffer a clone
460 * @skb: buffer to check
462 * Returns true if the buffer was generated with skb_clone() and is
463 * one of multiple shared copies of the buffer. Cloned buffers are
464 * shared data so must not be written to under normal circumstances.
466 static inline int skb_cloned(const struct sk_buff *skb)
468 return skb->cloned &&
469 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
473 * skb_header_cloned - is the header a clone
474 * @skb: buffer to check
476 * Returns true if modifying the header part of the buffer requires
477 * the data to be copied.
479 static inline int skb_header_cloned(const struct sk_buff *skb)
481 int dataref;
483 if (!skb->cloned)
484 return 0;
486 dataref = atomic_read(&skb_shinfo(skb)->dataref);
487 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
488 return dataref != 1;
492 * skb_header_release - release reference to header
493 * @skb: buffer to operate on
495 * Drop a reference to the header part of the buffer. This is done
496 * by acquiring a payload reference. You must not read from the header
497 * part of skb->data after this.
499 static inline void skb_header_release(struct sk_buff *skb)
501 BUG_ON(skb->nohdr);
502 skb->nohdr = 1;
503 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
507 * skb_shared - is the buffer shared
508 * @skb: buffer to check
510 * Returns true if more than one person has a reference to this
511 * buffer.
513 static inline int skb_shared(const struct sk_buff *skb)
515 return atomic_read(&skb->users) != 1;
519 * skb_share_check - check if buffer is shared and if so clone it
520 * @skb: buffer to check
521 * @pri: priority for memory allocation
523 * If the buffer is shared the buffer is cloned and the old copy
524 * drops a reference. A new clone with a single reference is returned.
525 * If the buffer is not shared the original buffer is returned. When
526 * being called from interrupt status or with spinlocks held pri must
527 * be GFP_ATOMIC.
529 * NULL is returned on a memory allocation failure.
531 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
532 gfp_t pri)
534 might_sleep_if(pri & __GFP_WAIT);
535 if (skb_shared(skb)) {
536 struct sk_buff *nskb = skb_clone(skb, pri);
537 kfree_skb(skb);
538 skb = nskb;
540 return skb;
544 * Copy shared buffers into a new sk_buff. We effectively do COW on
545 * packets to handle cases where we have a local reader and forward
546 * and a couple of other messy ones. The normal one is tcpdumping
547 * a packet thats being forwarded.
551 * skb_unshare - make a copy of a shared buffer
552 * @skb: buffer to check
553 * @pri: priority for memory allocation
555 * If the socket buffer is a clone then this function creates a new
556 * copy of the data, drops a reference count on the old copy and returns
557 * the new copy with the reference count at 1. If the buffer is not a clone
558 * the original buffer is returned. When called with a spinlock held or
559 * from interrupt state @pri must be %GFP_ATOMIC
561 * %NULL is returned on a memory allocation failure.
563 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
564 gfp_t pri)
566 might_sleep_if(pri & __GFP_WAIT);
567 if (skb_cloned(skb)) {
568 struct sk_buff *nskb = skb_copy(skb, pri);
569 kfree_skb(skb); /* Free our shared copy */
570 skb = nskb;
572 return skb;
576 * skb_peek
577 * @list_: list to peek at
579 * Peek an &sk_buff. Unlike most other operations you _MUST_
580 * be careful with this one. A peek leaves the buffer on the
581 * list and someone else may run off with it. You must hold
582 * the appropriate locks or have a private queue to do this.
584 * Returns %NULL for an empty list or a pointer to the head element.
585 * The reference count is not incremented and the reference is therefore
586 * volatile. Use with caution.
588 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
590 struct sk_buff *list = ((struct sk_buff *)list_)->next;
591 if (list == (struct sk_buff *)list_)
592 list = NULL;
593 return list;
597 * skb_peek_tail
598 * @list_: list to peek at
600 * Peek an &sk_buff. Unlike most other operations you _MUST_
601 * be careful with this one. A peek leaves the buffer on the
602 * list and someone else may run off with it. You must hold
603 * the appropriate locks or have a private queue to do this.
605 * Returns %NULL for an empty list or a pointer to the tail element.
606 * The reference count is not incremented and the reference is therefore
607 * volatile. Use with caution.
609 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
611 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
612 if (list == (struct sk_buff *)list_)
613 list = NULL;
614 return list;
618 * skb_queue_len - get queue length
619 * @list_: list to measure
621 * Return the length of an &sk_buff queue.
623 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
625 return list_->qlen;
629 * This function creates a split out lock class for each invocation;
630 * this is needed for now since a whole lot of users of the skb-queue
631 * infrastructure in drivers have different locking usage (in hardirq)
632 * than the networking core (in softirq only). In the long run either the
633 * network layer or drivers should need annotation to consolidate the
634 * main types of usage into 3 classes.
636 static inline void skb_queue_head_init(struct sk_buff_head *list)
638 spin_lock_init(&list->lock);
639 list->prev = list->next = (struct sk_buff *)list;
640 list->qlen = 0;
643 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
644 struct lock_class_key *class)
646 skb_queue_head_init(list);
647 lockdep_set_class(&list->lock, class);
651 * Insert an sk_buff at the start of a list.
653 * The "__skb_xxxx()" functions are the non-atomic ones that
654 * can only be called with interrupts disabled.
658 * __skb_queue_after - queue a buffer at the list head
659 * @list: list to use
660 * @prev: place after this buffer
661 * @newsk: buffer to queue
663 * Queue a buffer int the middle of a list. This function takes no locks
664 * and you must therefore hold required locks before calling it.
666 * A buffer cannot be placed on two lists at the same time.
668 static inline void __skb_queue_after(struct sk_buff_head *list,
669 struct sk_buff *prev,
670 struct sk_buff *newsk)
672 struct sk_buff *next;
673 list->qlen++;
675 next = prev->next;
676 newsk->next = next;
677 newsk->prev = prev;
678 next->prev = prev->next = newsk;
682 * __skb_queue_head - queue a buffer at the list head
683 * @list: list to use
684 * @newsk: buffer to queue
686 * Queue a buffer at the start of a list. This function takes no locks
687 * and you must therefore hold required locks before calling it.
689 * A buffer cannot be placed on two lists at the same time.
691 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
692 static inline void __skb_queue_head(struct sk_buff_head *list,
693 struct sk_buff *newsk)
695 __skb_queue_after(list, (struct sk_buff *)list, newsk);
699 * __skb_queue_tail - queue a buffer at the list tail
700 * @list: list to use
701 * @newsk: buffer to queue
703 * Queue a buffer at the end of a list. This function takes no locks
704 * and you must therefore hold required locks before calling it.
706 * A buffer cannot be placed on two lists at the same time.
708 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
709 static inline void __skb_queue_tail(struct sk_buff_head *list,
710 struct sk_buff *newsk)
712 struct sk_buff *prev, *next;
714 list->qlen++;
715 next = (struct sk_buff *)list;
716 prev = next->prev;
717 newsk->next = next;
718 newsk->prev = prev;
719 next->prev = prev->next = newsk;
724 * __skb_dequeue - remove from the head of the queue
725 * @list: list to dequeue from
727 * Remove the head of the list. This function does not take any locks
728 * so must be used with appropriate locks held only. The head item is
729 * returned or %NULL if the list is empty.
731 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
732 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
734 struct sk_buff *next, *prev, *result;
736 prev = (struct sk_buff *) list;
737 next = prev->next;
738 result = NULL;
739 if (next != prev) {
740 result = next;
741 next = next->next;
742 list->qlen--;
743 next->prev = prev;
744 prev->next = next;
745 result->next = result->prev = NULL;
747 return result;
752 * Insert a packet on a list.
754 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
755 static inline void __skb_insert(struct sk_buff *newsk,
756 struct sk_buff *prev, struct sk_buff *next,
757 struct sk_buff_head *list)
759 newsk->next = next;
760 newsk->prev = prev;
761 next->prev = prev->next = newsk;
762 list->qlen++;
766 * Place a packet after a given packet in a list.
768 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
769 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
771 __skb_insert(newsk, old, old->next, list);
775 * remove sk_buff from list. _Must_ be called atomically, and with
776 * the list known..
778 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
779 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
781 struct sk_buff *next, *prev;
783 list->qlen--;
784 next = skb->next;
785 prev = skb->prev;
786 skb->next = skb->prev = NULL;
787 next->prev = prev;
788 prev->next = next;
792 /* XXX: more streamlined implementation */
795 * __skb_dequeue_tail - remove from the tail of the queue
796 * @list: list to dequeue from
798 * Remove the tail of the list. This function does not take any locks
799 * so must be used with appropriate locks held only. The tail item is
800 * returned or %NULL if the list is empty.
802 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
803 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
805 struct sk_buff *skb = skb_peek_tail(list);
806 if (skb)
807 __skb_unlink(skb, list);
808 return skb;
812 static inline int skb_is_nonlinear(const struct sk_buff *skb)
814 return skb->data_len;
817 static inline unsigned int skb_headlen(const struct sk_buff *skb)
819 return skb->len - skb->data_len;
822 static inline int skb_pagelen(const struct sk_buff *skb)
824 int i, len = 0;
826 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
827 len += skb_shinfo(skb)->frags[i].size;
828 return len + skb_headlen(skb);
831 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
832 struct page *page, int off, int size)
834 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
836 frag->page = page;
837 frag->page_offset = off;
838 frag->size = size;
839 skb_shinfo(skb)->nr_frags = i + 1;
842 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
843 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
844 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
846 #ifdef NET_SKBUFF_DATA_USES_OFFSET
847 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
849 return skb->head + skb->tail;
852 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
854 skb->tail = skb->data - skb->head;
857 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
859 skb_reset_tail_pointer(skb);
860 skb->tail += offset;
862 #else /* NET_SKBUFF_DATA_USES_OFFSET */
863 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
865 return skb->tail;
868 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
870 skb->tail = skb->data;
873 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
875 skb->tail = skb->data + offset;
878 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
881 * Add data to an sk_buff
883 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
885 unsigned char *tmp = skb_tail_pointer(skb);
886 SKB_LINEAR_ASSERT(skb);
887 skb->tail += len;
888 skb->len += len;
889 return tmp;
893 * skb_put - add data to a buffer
894 * @skb: buffer to use
895 * @len: amount of data to add
897 * This function extends the used data area of the buffer. If this would
898 * exceed the total buffer size the kernel will panic. A pointer to the
899 * first byte of the extra data is returned.
901 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
903 unsigned char *tmp = skb_tail_pointer(skb);
904 SKB_LINEAR_ASSERT(skb);
905 skb->tail += len;
906 skb->len += len;
907 if (unlikely(skb->tail > skb->end))
908 skb_over_panic(skb, len, current_text_addr());
909 return tmp;
912 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
914 skb->data -= len;
915 skb->len += len;
916 return skb->data;
920 * skb_push - add data to the start of a buffer
921 * @skb: buffer to use
922 * @len: amount of data to add
924 * This function extends the used data area of the buffer at the buffer
925 * start. If this would exceed the total buffer headroom the kernel will
926 * panic. A pointer to the first byte of the extra data is returned.
928 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
930 skb->data -= len;
931 skb->len += len;
932 if (unlikely(skb->data<skb->head))
933 skb_under_panic(skb, len, current_text_addr());
934 return skb->data;
937 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
939 skb->len -= len;
940 BUG_ON(skb->len < skb->data_len);
941 return skb->data += len;
945 * skb_pull - remove data from the start of a buffer
946 * @skb: buffer to use
947 * @len: amount of data to remove
949 * This function removes data from the start of a buffer, returning
950 * the memory to the headroom. A pointer to the next data in the buffer
951 * is returned. Once the data has been pulled future pushes will overwrite
952 * the old data.
954 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
956 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
959 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
961 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
963 if (len > skb_headlen(skb) &&
964 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
965 return NULL;
966 skb->len -= len;
967 return skb->data += len;
970 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
972 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
975 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
977 if (likely(len <= skb_headlen(skb)))
978 return 1;
979 if (unlikely(len > skb->len))
980 return 0;
981 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
985 * skb_headroom - bytes at buffer head
986 * @skb: buffer to check
988 * Return the number of bytes of free space at the head of an &sk_buff.
990 static inline int skb_headroom(const struct sk_buff *skb)
992 return skb->data - skb->head;
996 * skb_tailroom - bytes at buffer end
997 * @skb: buffer to check
999 * Return the number of bytes of free space at the tail of an sk_buff
1001 static inline int skb_tailroom(const struct sk_buff *skb)
1003 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1007 * skb_reserve - adjust headroom
1008 * @skb: buffer to alter
1009 * @len: bytes to move
1011 * Increase the headroom of an empty &sk_buff by reducing the tail
1012 * room. This is only allowed for an empty buffer.
1014 static inline void skb_reserve(struct sk_buff *skb, int len)
1016 skb->data += len;
1017 skb->tail += len;
1020 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1021 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1023 return skb->head + skb->transport_header;
1026 static inline void skb_reset_transport_header(struct sk_buff *skb)
1028 skb->transport_header = skb->data - skb->head;
1031 static inline void skb_set_transport_header(struct sk_buff *skb,
1032 const int offset)
1034 skb_reset_transport_header(skb);
1035 skb->transport_header += offset;
1038 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1040 return skb->head + skb->network_header;
1043 static inline void skb_reset_network_header(struct sk_buff *skb)
1045 skb->network_header = skb->data - skb->head;
1048 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1050 skb_reset_network_header(skb);
1051 skb->network_header += offset;
1054 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1056 return skb->head + skb->mac_header;
1059 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1061 return skb->mac_header != ~0U;
1064 static inline void skb_reset_mac_header(struct sk_buff *skb)
1066 skb->mac_header = skb->data - skb->head;
1069 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1071 skb_reset_mac_header(skb);
1072 skb->mac_header += offset;
1075 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1077 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1079 return skb->transport_header;
1082 static inline void skb_reset_transport_header(struct sk_buff *skb)
1084 skb->transport_header = skb->data;
1087 static inline void skb_set_transport_header(struct sk_buff *skb,
1088 const int offset)
1090 skb->transport_header = skb->data + offset;
1093 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1095 return skb->network_header;
1098 static inline void skb_reset_network_header(struct sk_buff *skb)
1100 skb->network_header = skb->data;
1103 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1105 skb->network_header = skb->data + offset;
1108 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1110 return skb->mac_header;
1113 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1115 return skb->mac_header != NULL;
1118 static inline void skb_reset_mac_header(struct sk_buff *skb)
1120 skb->mac_header = skb->data;
1123 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1125 skb->mac_header = skb->data + offset;
1127 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1129 static inline int skb_transport_offset(const struct sk_buff *skb)
1131 return skb_transport_header(skb) - skb->data;
1134 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1136 return skb->transport_header - skb->network_header;
1139 static inline int skb_network_offset(const struct sk_buff *skb)
1141 return skb_network_header(skb) - skb->data;
1145 * CPUs often take a performance hit when accessing unaligned memory
1146 * locations. The actual performance hit varies, it can be small if the
1147 * hardware handles it or large if we have to take an exception and fix it
1148 * in software.
1150 * Since an ethernet header is 14 bytes network drivers often end up with
1151 * the IP header at an unaligned offset. The IP header can be aligned by
1152 * shifting the start of the packet by 2 bytes. Drivers should do this
1153 * with:
1155 * skb_reserve(NET_IP_ALIGN);
1157 * The downside to this alignment of the IP header is that the DMA is now
1158 * unaligned. On some architectures the cost of an unaligned DMA is high
1159 * and this cost outweighs the gains made by aligning the IP header.
1161 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1162 * to be overridden.
1164 #ifndef NET_IP_ALIGN
1165 #define NET_IP_ALIGN 2
1166 #endif
1169 * The networking layer reserves some headroom in skb data (via
1170 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1171 * the header has to grow. In the default case, if the header has to grow
1172 * 32 bytes or less we avoid the reallocation.
1174 * Unfortunately this headroom changes the DMA alignment of the resulting
1175 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1176 * on some architectures. An architecture can override this value,
1177 * perhaps setting it to a cacheline in size (since that will maintain
1178 * cacheline alignment of the DMA). It must be a power of 2.
1180 * Various parts of the networking layer expect at least 32 bytes of
1181 * headroom, you should not reduce this.
1183 * This has been changed to 64 to acommodate for routing between ethernet
1184 * and wireless, but only for new allocations
1186 #ifndef NET_SKB_PAD
1187 #define NET_SKB_PAD 32
1188 #endif
1190 #ifndef NET_SKB_PAD_ALLOC
1191 #define NET_SKB_PAD_ALLOC 64
1192 #endif
1194 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1196 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1198 if (unlikely(skb->data_len)) {
1199 WARN_ON(1);
1200 return;
1202 skb->len = len;
1203 skb_set_tail_pointer(skb, len);
1207 * skb_trim - remove end from a buffer
1208 * @skb: buffer to alter
1209 * @len: new length
1211 * Cut the length of a buffer down by removing data from the tail. If
1212 * the buffer is already under the length specified it is not modified.
1213 * The skb must be linear.
1215 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1217 if (skb->len > len)
1218 __skb_trim(skb, len);
1222 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1224 if (skb->data_len)
1225 return ___pskb_trim(skb, len);
1226 __skb_trim(skb, len);
1227 return 0;
1230 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1232 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1236 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1237 * @skb: buffer to alter
1238 * @len: new length
1240 * This is identical to pskb_trim except that the caller knows that
1241 * the skb is not cloned so we should never get an error due to out-
1242 * of-memory.
1244 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1246 int err = pskb_trim(skb, len);
1247 BUG_ON(err);
1251 * skb_orphan - orphan a buffer
1252 * @skb: buffer to orphan
1254 * If a buffer currently has an owner then we call the owner's
1255 * destructor function and make the @skb unowned. The buffer continues
1256 * to exist but is no longer charged to its former owner.
1258 static inline void skb_orphan(struct sk_buff *skb)
1260 if (skb->destructor)
1261 skb->destructor(skb);
1262 skb->destructor = NULL;
1263 skb->sk = NULL;
1267 * __skb_queue_purge - empty a list
1268 * @list: list to empty
1270 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1271 * the list and one reference dropped. This function does not take the
1272 * list lock and the caller must hold the relevant locks to use it.
1274 extern void skb_queue_purge(struct sk_buff_head *list);
1275 static inline void __skb_queue_purge(struct sk_buff_head *list)
1277 struct sk_buff *skb;
1278 while ((skb = __skb_dequeue(list)) != NULL)
1279 kfree_skb(skb);
1283 * __dev_alloc_skb - allocate an skbuff for receiving
1284 * @length: length to allocate
1285 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1287 * Allocate a new &sk_buff and assign it a usage count of one. The
1288 * buffer has unspecified headroom built in. Users should allocate
1289 * the headroom they think they need without accounting for the
1290 * built in space. The built in space is used for optimisations.
1292 * %NULL is returned if there is no free memory.
1294 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1295 gfp_t gfp_mask)
1297 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD_ALLOC, gfp_mask);
1298 if (likely(skb))
1299 skb_reserve(skb, NET_SKB_PAD_ALLOC);
1300 return skb;
1304 * dev_alloc_skb - allocate an skbuff for receiving
1305 * @length: length to allocate
1307 * Allocate a new &sk_buff and assign it a usage count of one. The
1308 * buffer has unspecified headroom built in. Users should allocate
1309 * the headroom they think they need without accounting for the
1310 * built in space. The built in space is used for optimisations.
1312 * %NULL is returned if there is no free memory. Although this function
1313 * allocates memory it can be called from an interrupt.
1315 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1317 return __dev_alloc_skb(length, GFP_ATOMIC);
1320 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1321 unsigned int length, gfp_t gfp_mask);
1324 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1325 * @dev: network device to receive on
1326 * @length: length to allocate
1328 * Allocate a new &sk_buff and assign it a usage count of one. The
1329 * buffer has unspecified headroom built in. Users should allocate
1330 * the headroom they think they need without accounting for the
1331 * built in space. The built in space is used for optimisations.
1333 * %NULL is returned if there is no free memory. Although this function
1334 * allocates memory it can be called from an interrupt.
1336 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1337 unsigned int length)
1339 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1343 * skb_clone_writable - is the header of a clone writable
1344 * @skb: buffer to check
1345 * @len: length up to which to write
1347 * Returns true if modifying the header part of the cloned buffer
1348 * does not requires the data to be copied.
1350 static inline int skb_clone_writable(struct sk_buff *skb, int len)
1352 return !skb_header_cloned(skb) &&
1353 skb_headroom(skb) + len <= skb->hdr_len;
1356 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1357 int cloned)
1359 int delta = 0;
1361 if (headroom < NET_SKB_PAD)
1362 headroom = NET_SKB_PAD;
1363 if (headroom > skb_headroom(skb))
1364 delta = headroom - skb_headroom(skb);
1366 if (delta || cloned)
1367 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD_ALLOC), 0,
1368 GFP_ATOMIC);
1369 return 0;
1373 * skb_cow - copy header of skb when it is required
1374 * @skb: buffer to cow
1375 * @headroom: needed headroom
1377 * If the skb passed lacks sufficient headroom or its data part
1378 * is shared, data is reallocated. If reallocation fails, an error
1379 * is returned and original skb is not changed.
1381 * The result is skb with writable area skb->head...skb->tail
1382 * and at least @headroom of space at head.
1384 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1386 return __skb_cow(skb, headroom, skb_cloned(skb));
1390 * skb_cow_head - skb_cow but only making the head writable
1391 * @skb: buffer to cow
1392 * @headroom: needed headroom
1394 * This function is identical to skb_cow except that we replace the
1395 * skb_cloned check by skb_header_cloned. It should be used when
1396 * you only need to push on some header and do not need to modify
1397 * the data.
1399 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1401 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1405 * skb_padto - pad an skbuff up to a minimal size
1406 * @skb: buffer to pad
1407 * @len: minimal length
1409 * Pads up a buffer to ensure the trailing bytes exist and are
1410 * blanked. If the buffer already contains sufficient data it
1411 * is untouched. Otherwise it is extended. Returns zero on
1412 * success. The skb is freed on error.
1415 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1417 unsigned int size = skb->len;
1418 if (likely(size >= len))
1419 return 0;
1420 return skb_pad(skb, len-size);
1423 static inline int skb_add_data(struct sk_buff *skb,
1424 char __user *from, int copy)
1426 const int off = skb->len;
1428 if (skb->ip_summed == CHECKSUM_NONE) {
1429 int err = 0;
1430 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1431 copy, 0, &err);
1432 if (!err) {
1433 skb->csum = csum_block_add(skb->csum, csum, off);
1434 return 0;
1436 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1437 return 0;
1439 __skb_trim(skb, off);
1440 return -EFAULT;
1443 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1444 struct page *page, int off)
1446 if (i) {
1447 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1449 return page == frag->page &&
1450 off == frag->page_offset + frag->size;
1452 return 0;
1455 static inline int __skb_linearize(struct sk_buff *skb)
1457 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1461 * skb_linearize - convert paged skb to linear one
1462 * @skb: buffer to linarize
1464 * If there is no free memory -ENOMEM is returned, otherwise zero
1465 * is returned and the old skb data released.
1467 static inline int skb_linearize(struct sk_buff *skb)
1469 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1473 * skb_linearize_cow - make sure skb is linear and writable
1474 * @skb: buffer to process
1476 * If there is no free memory -ENOMEM is returned, otherwise zero
1477 * is returned and the old skb data released.
1479 static inline int skb_linearize_cow(struct sk_buff *skb)
1481 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1482 __skb_linearize(skb) : 0;
1486 * skb_postpull_rcsum - update checksum for received skb after pull
1487 * @skb: buffer to update
1488 * @start: start of data before pull
1489 * @len: length of data pulled
1491 * After doing a pull on a received packet, you need to call this to
1492 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1493 * CHECKSUM_NONE so that it can be recomputed from scratch.
1496 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1497 const void *start, unsigned int len)
1499 if (skb->ip_summed == CHECKSUM_COMPLETE)
1500 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1503 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1506 * pskb_trim_rcsum - trim received skb and update checksum
1507 * @skb: buffer to trim
1508 * @len: new length
1510 * This is exactly the same as pskb_trim except that it ensures the
1511 * checksum of received packets are still valid after the operation.
1514 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1516 if (likely(len >= skb->len))
1517 return 0;
1518 if (skb->ip_summed == CHECKSUM_COMPLETE)
1519 skb->ip_summed = CHECKSUM_NONE;
1520 return __pskb_trim(skb, len);
1523 #define skb_queue_walk(queue, skb) \
1524 for (skb = (queue)->next; \
1525 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1526 skb = skb->next)
1528 #define skb_queue_walk_safe(queue, skb, tmp) \
1529 for (skb = (queue)->next, tmp = skb->next; \
1530 skb != (struct sk_buff *)(queue); \
1531 skb = tmp, tmp = skb->next)
1533 #define skb_queue_reverse_walk(queue, skb) \
1534 for (skb = (queue)->prev; \
1535 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1536 skb = skb->prev)
1539 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1540 int noblock, int *err);
1541 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1542 struct poll_table_struct *wait);
1543 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1544 int offset, struct iovec *to,
1545 int size);
1546 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1547 int hlen,
1548 struct iovec *iov);
1549 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1550 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1551 unsigned int flags);
1552 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1553 int len, __wsum csum);
1554 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1555 void *to, int len);
1556 extern int skb_store_bits(struct sk_buff *skb, int offset,
1557 const void *from, int len);
1558 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1559 int offset, u8 *to, int len,
1560 __wsum csum);
1561 extern int skb_splice_bits(struct sk_buff *skb,
1562 unsigned int offset,
1563 struct pipe_inode_info *pipe,
1564 unsigned int len,
1565 unsigned int flags);
1566 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1567 extern void skb_split(struct sk_buff *skb,
1568 struct sk_buff *skb1, const u32 len);
1570 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1572 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1573 int len, void *buffer)
1575 int hlen = skb_headlen(skb);
1577 if (hlen - offset >= len)
1578 return skb->data + offset;
1580 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1581 return NULL;
1583 return buffer;
1586 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1587 void *to,
1588 const unsigned int len)
1590 memcpy(to, skb->data, len);
1593 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1594 const int offset, void *to,
1595 const unsigned int len)
1597 memcpy(to, skb->data + offset, len);
1600 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1601 const void *from,
1602 const unsigned int len)
1604 memcpy(skb->data, from, len);
1607 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1608 const int offset,
1609 const void *from,
1610 const unsigned int len)
1612 memcpy(skb->data + offset, from, len);
1615 extern void skb_init(void);
1618 * skb_get_timestamp - get timestamp from a skb
1619 * @skb: skb to get stamp from
1620 * @stamp: pointer to struct timeval to store stamp in
1622 * Timestamps are stored in the skb as offsets to a base timestamp.
1623 * This function converts the offset back to a struct timeval and stores
1624 * it in stamp.
1626 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1628 *stamp = ktime_to_timeval(skb->tstamp);
1631 static inline void __net_timestamp(struct sk_buff *skb)
1633 skb->tstamp = ktime_get_real();
1636 static inline ktime_t net_timedelta(ktime_t t)
1638 return ktime_sub(ktime_get_real(), t);
1641 static inline ktime_t net_invalid_timestamp(void)
1643 return ktime_set(0, 0);
1646 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1647 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1649 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1651 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1655 * skb_checksum_complete - Calculate checksum of an entire packet
1656 * @skb: packet to process
1658 * This function calculates the checksum over the entire packet plus
1659 * the value of skb->csum. The latter can be used to supply the
1660 * checksum of a pseudo header as used by TCP/UDP. It returns the
1661 * checksum.
1663 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1664 * this function can be used to verify that checksum on received
1665 * packets. In that case the function should return zero if the
1666 * checksum is correct. In particular, this function will return zero
1667 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1668 * hardware has already verified the correctness of the checksum.
1670 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1672 return skb_csum_unnecessary(skb) ?
1673 0 : __skb_checksum_complete(skb);
1676 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1677 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1678 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1680 if (nfct && atomic_dec_and_test(&nfct->use))
1681 nf_conntrack_destroy(nfct);
1683 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1685 if (nfct)
1686 atomic_inc(&nfct->use);
1688 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1690 if (skb)
1691 atomic_inc(&skb->users);
1693 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1695 if (skb)
1696 kfree_skb(skb);
1698 #endif
1699 #ifdef CONFIG_BRIDGE_NETFILTER
1700 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1702 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1703 kfree(nf_bridge);
1705 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1707 if (nf_bridge)
1708 atomic_inc(&nf_bridge->use);
1710 #endif /* CONFIG_BRIDGE_NETFILTER */
1711 static inline void nf_reset(struct sk_buff *skb)
1713 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1714 nf_conntrack_put(skb->nfct);
1715 skb->nfct = NULL;
1716 nf_conntrack_put_reasm(skb->nfct_reasm);
1717 skb->nfct_reasm = NULL;
1718 #endif
1719 #ifdef CONFIG_BRIDGE_NETFILTER
1720 nf_bridge_put(skb->nf_bridge);
1721 skb->nf_bridge = NULL;
1722 #endif
1725 /* Note: This doesn't put any conntrack and bridge info in dst. */
1726 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1728 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1729 dst->nfct = src->nfct;
1730 nf_conntrack_get(src->nfct);
1731 dst->nfctinfo = src->nfctinfo;
1732 dst->nfct_reasm = src->nfct_reasm;
1733 nf_conntrack_get_reasm(src->nfct_reasm);
1734 #endif
1735 #ifdef CONFIG_BRIDGE_NETFILTER
1736 dst->nf_bridge = src->nf_bridge;
1737 nf_bridge_get(src->nf_bridge);
1738 #endif
1739 #if defined(CONFIG_IMQ) || defined(CONFIG_IMQ_MODULE)
1740 dst->imq_flags = src->imq_flags;
1741 dst->nf_info = src->nf_info;
1742 #endif
1745 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1747 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1748 nf_conntrack_put(dst->nfct);
1749 nf_conntrack_put_reasm(dst->nfct_reasm);
1750 #endif
1751 #ifdef CONFIG_BRIDGE_NETFILTER
1752 nf_bridge_put(dst->nf_bridge);
1753 #endif
1754 __nf_copy(dst, src);
1757 #ifdef CONFIG_NETWORK_SECMARK
1758 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1760 to->secmark = from->secmark;
1763 static inline void skb_init_secmark(struct sk_buff *skb)
1765 skb->secmark = 0;
1767 #else
1768 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1771 static inline void skb_init_secmark(struct sk_buff *skb)
1773 #endif
1775 static inline int skb_is_gso(const struct sk_buff *skb)
1777 return skb_shinfo(skb)->gso_size;
1780 static inline void skb_forward_csum(struct sk_buff *skb)
1782 /* Unfortunately we don't support this one. Any brave souls? */
1783 if (skb->ip_summed == CHECKSUM_COMPLETE)
1784 skb->ip_summed = CHECKSUM_NONE;
1787 #endif /* __KERNEL__ */
1788 #endif /* _LINUX_SKBUFF_H */