RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / net / rds / iw_recv.c
blob8a82aec70a79e0774a6521ea032fa3c4a7eb5362
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
39 #include "rds.h"
40 #include "iw.h"
42 static struct kmem_cache *rds_iw_incoming_slab;
43 static struct kmem_cache *rds_iw_frag_slab;
44 static atomic_t rds_iw_allocation = ATOMIC_INIT(0);
46 static void rds_iw_frag_drop_page(struct rds_page_frag *frag)
48 rdsdebug("frag %p page %p\n", frag, frag->f_page);
49 __free_page(frag->f_page);
50 frag->f_page = NULL;
53 static void rds_iw_frag_free(struct rds_page_frag *frag)
55 rdsdebug("frag %p page %p\n", frag, frag->f_page);
56 BUG_ON(frag->f_page != NULL);
57 kmem_cache_free(rds_iw_frag_slab, frag);
61 * We map a page at a time. Its fragments are posted in order. This
62 * is called in fragment order as the fragments get send completion events.
63 * Only the last frag in the page performs the unmapping.
65 * It's OK for ring cleanup to call this in whatever order it likes because
66 * DMA is not in flight and so we can unmap while other ring entries still
67 * hold page references in their frags.
69 static void rds_iw_recv_unmap_page(struct rds_iw_connection *ic,
70 struct rds_iw_recv_work *recv)
72 struct rds_page_frag *frag = recv->r_frag;
74 rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
75 if (frag->f_mapped)
76 ib_dma_unmap_page(ic->i_cm_id->device,
77 frag->f_mapped,
78 RDS_FRAG_SIZE, DMA_FROM_DEVICE);
79 frag->f_mapped = 0;
82 void rds_iw_recv_init_ring(struct rds_iw_connection *ic)
84 struct rds_iw_recv_work *recv;
85 u32 i;
87 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
88 struct ib_sge *sge;
90 recv->r_iwinc = NULL;
91 recv->r_frag = NULL;
93 recv->r_wr.next = NULL;
94 recv->r_wr.wr_id = i;
95 recv->r_wr.sg_list = recv->r_sge;
96 recv->r_wr.num_sge = RDS_IW_RECV_SGE;
98 sge = rds_iw_data_sge(ic, recv->r_sge);
99 sge->addr = 0;
100 sge->length = RDS_FRAG_SIZE;
101 sge->lkey = 0;
103 sge = rds_iw_header_sge(ic, recv->r_sge);
104 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
105 sge->length = sizeof(struct rds_header);
106 sge->lkey = 0;
110 static void rds_iw_recv_clear_one(struct rds_iw_connection *ic,
111 struct rds_iw_recv_work *recv)
113 if (recv->r_iwinc) {
114 rds_inc_put(&recv->r_iwinc->ii_inc);
115 recv->r_iwinc = NULL;
117 if (recv->r_frag) {
118 rds_iw_recv_unmap_page(ic, recv);
119 if (recv->r_frag->f_page)
120 rds_iw_frag_drop_page(recv->r_frag);
121 rds_iw_frag_free(recv->r_frag);
122 recv->r_frag = NULL;
126 void rds_iw_recv_clear_ring(struct rds_iw_connection *ic)
128 u32 i;
130 for (i = 0; i < ic->i_recv_ring.w_nr; i++)
131 rds_iw_recv_clear_one(ic, &ic->i_recvs[i]);
133 if (ic->i_frag.f_page)
134 rds_iw_frag_drop_page(&ic->i_frag);
137 static int rds_iw_recv_refill_one(struct rds_connection *conn,
138 struct rds_iw_recv_work *recv,
139 gfp_t kptr_gfp, gfp_t page_gfp)
141 struct rds_iw_connection *ic = conn->c_transport_data;
142 dma_addr_t dma_addr;
143 struct ib_sge *sge;
144 int ret = -ENOMEM;
146 if (recv->r_iwinc == NULL) {
147 if (!atomic_add_unless(&rds_iw_allocation, 1, rds_iw_sysctl_max_recv_allocation)) {
148 rds_iw_stats_inc(s_iw_rx_alloc_limit);
149 goto out;
151 recv->r_iwinc = kmem_cache_alloc(rds_iw_incoming_slab,
152 kptr_gfp);
153 if (recv->r_iwinc == NULL) {
154 atomic_dec(&rds_iw_allocation);
155 goto out;
157 INIT_LIST_HEAD(&recv->r_iwinc->ii_frags);
158 rds_inc_init(&recv->r_iwinc->ii_inc, conn, conn->c_faddr);
161 if (recv->r_frag == NULL) {
162 recv->r_frag = kmem_cache_alloc(rds_iw_frag_slab, kptr_gfp);
163 if (recv->r_frag == NULL)
164 goto out;
165 INIT_LIST_HEAD(&recv->r_frag->f_item);
166 recv->r_frag->f_page = NULL;
169 if (ic->i_frag.f_page == NULL) {
170 ic->i_frag.f_page = alloc_page(page_gfp);
171 if (ic->i_frag.f_page == NULL)
172 goto out;
173 ic->i_frag.f_offset = 0;
176 dma_addr = ib_dma_map_page(ic->i_cm_id->device,
177 ic->i_frag.f_page,
178 ic->i_frag.f_offset,
179 RDS_FRAG_SIZE,
180 DMA_FROM_DEVICE);
181 if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
182 goto out;
185 * Once we get the RDS_PAGE_LAST_OFF frag then rds_iw_frag_unmap()
186 * must be called on this recv. This happens as completions hit
187 * in order or on connection shutdown.
189 recv->r_frag->f_page = ic->i_frag.f_page;
190 recv->r_frag->f_offset = ic->i_frag.f_offset;
191 recv->r_frag->f_mapped = dma_addr;
193 sge = rds_iw_data_sge(ic, recv->r_sge);
194 sge->addr = dma_addr;
195 sge->length = RDS_FRAG_SIZE;
197 sge = rds_iw_header_sge(ic, recv->r_sge);
198 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
199 sge->length = sizeof(struct rds_header);
201 get_page(recv->r_frag->f_page);
203 if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
204 ic->i_frag.f_offset += RDS_FRAG_SIZE;
205 } else {
206 put_page(ic->i_frag.f_page);
207 ic->i_frag.f_page = NULL;
208 ic->i_frag.f_offset = 0;
211 ret = 0;
212 out:
213 return ret;
217 * This tries to allocate and post unused work requests after making sure that
218 * they have all the allocations they need to queue received fragments into
219 * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc
220 * pairs don't go unmatched.
222 * -1 is returned if posting fails due to temporary resource exhaustion.
224 int rds_iw_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
225 gfp_t page_gfp, int prefill)
227 struct rds_iw_connection *ic = conn->c_transport_data;
228 struct rds_iw_recv_work *recv;
229 struct ib_recv_wr *failed_wr;
230 unsigned int posted = 0;
231 int ret = 0;
232 u32 pos;
234 while ((prefill || rds_conn_up(conn)) &&
235 rds_iw_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
236 if (pos >= ic->i_recv_ring.w_nr) {
237 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
238 pos);
239 ret = -EINVAL;
240 break;
243 recv = &ic->i_recvs[pos];
244 ret = rds_iw_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
245 if (ret) {
246 ret = -1;
247 break;
250 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
251 rdsdebug("recv %p iwinc %p page %p addr %lu ret %d\n", recv,
252 recv->r_iwinc, recv->r_frag->f_page,
253 (long) recv->r_frag->f_mapped, ret);
254 if (ret) {
255 rds_iw_conn_error(conn, "recv post on "
256 "%pI4 returned %d, disconnecting and "
257 "reconnecting\n", &conn->c_faddr,
258 ret);
259 ret = -1;
260 break;
263 posted++;
266 /* We're doing flow control - update the window. */
267 if (ic->i_flowctl && posted)
268 rds_iw_advertise_credits(conn, posted);
270 if (ret)
271 rds_iw_ring_unalloc(&ic->i_recv_ring, 1);
272 return ret;
275 void rds_iw_inc_purge(struct rds_incoming *inc)
277 struct rds_iw_incoming *iwinc;
278 struct rds_page_frag *frag;
279 struct rds_page_frag *pos;
281 iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
282 rdsdebug("purging iwinc %p inc %p\n", iwinc, inc);
284 list_for_each_entry_safe(frag, pos, &iwinc->ii_frags, f_item) {
285 list_del_init(&frag->f_item);
286 rds_iw_frag_drop_page(frag);
287 rds_iw_frag_free(frag);
291 void rds_iw_inc_free(struct rds_incoming *inc)
293 struct rds_iw_incoming *iwinc;
295 iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
297 rds_iw_inc_purge(inc);
298 rdsdebug("freeing iwinc %p inc %p\n", iwinc, inc);
299 BUG_ON(!list_empty(&iwinc->ii_frags));
300 kmem_cache_free(rds_iw_incoming_slab, iwinc);
301 atomic_dec(&rds_iw_allocation);
302 BUG_ON(atomic_read(&rds_iw_allocation) < 0);
305 int rds_iw_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
306 size_t size)
308 struct rds_iw_incoming *iwinc;
309 struct rds_page_frag *frag;
310 struct iovec *iov = first_iov;
311 unsigned long to_copy;
312 unsigned long frag_off = 0;
313 unsigned long iov_off = 0;
314 int copied = 0;
315 int ret;
316 u32 len;
318 iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
319 frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item);
320 len = be32_to_cpu(inc->i_hdr.h_len);
322 while (copied < size && copied < len) {
323 if (frag_off == RDS_FRAG_SIZE) {
324 frag = list_entry(frag->f_item.next,
325 struct rds_page_frag, f_item);
326 frag_off = 0;
328 while (iov_off == iov->iov_len) {
329 iov_off = 0;
330 iov++;
333 to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
334 to_copy = min_t(size_t, to_copy, size - copied);
335 to_copy = min_t(unsigned long, to_copy, len - copied);
337 rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
338 "[%p, %lu] + %lu\n",
339 to_copy, iov->iov_base, iov->iov_len, iov_off,
340 frag->f_page, frag->f_offset, frag_off);
342 ret = rds_page_copy_to_user(frag->f_page,
343 frag->f_offset + frag_off,
344 iov->iov_base + iov_off,
345 to_copy);
346 if (ret) {
347 copied = ret;
348 break;
351 iov_off += to_copy;
352 frag_off += to_copy;
353 copied += to_copy;
356 return copied;
359 /* ic starts out kzalloc()ed */
360 void rds_iw_recv_init_ack(struct rds_iw_connection *ic)
362 struct ib_send_wr *wr = &ic->i_ack_wr;
363 struct ib_sge *sge = &ic->i_ack_sge;
365 sge->addr = ic->i_ack_dma;
366 sge->length = sizeof(struct rds_header);
367 sge->lkey = rds_iw_local_dma_lkey(ic);
369 wr->sg_list = sge;
370 wr->num_sge = 1;
371 wr->opcode = IB_WR_SEND;
372 wr->wr_id = RDS_IW_ACK_WR_ID;
373 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
377 * You'd think that with reliable IB connections you wouldn't need to ack
378 * messages that have been received. The problem is that IB hardware generates
379 * an ack message before it has DMAed the message into memory. This creates a
380 * potential message loss if the HCA is disabled for any reason between when it
381 * sends the ack and before the message is DMAed and processed. This is only a
382 * potential issue if another HCA is available for fail-over.
384 * When the remote host receives our ack they'll free the sent message from
385 * their send queue. To decrease the latency of this we always send an ack
386 * immediately after we've received messages.
388 * For simplicity, we only have one ack in flight at a time. This puts
389 * pressure on senders to have deep enough send queues to absorb the latency of
390 * a single ack frame being in flight. This might not be good enough.
392 * This is implemented by have a long-lived send_wr and sge which point to a
393 * statically allocated ack frame. This ack wr does not fall under the ring
394 * accounting that the tx and rx wrs do. The QP attribute specifically makes
395 * room for it beyond the ring size. Send completion notices its special
396 * wr_id and avoids working with the ring in that case.
398 #ifndef KERNEL_HAS_ATOMIC64
399 static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq,
400 int ack_required)
402 unsigned long flags;
404 spin_lock_irqsave(&ic->i_ack_lock, flags);
405 ic->i_ack_next = seq;
406 if (ack_required)
407 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
408 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
411 static u64 rds_iw_get_ack(struct rds_iw_connection *ic)
413 unsigned long flags;
414 u64 seq;
416 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
418 spin_lock_irqsave(&ic->i_ack_lock, flags);
419 seq = ic->i_ack_next;
420 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
422 return seq;
424 #else
425 static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq,
426 int ack_required)
428 atomic64_set(&ic->i_ack_next, seq);
429 if (ack_required) {
430 smp_mb__before_clear_bit();
431 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
435 static u64 rds_iw_get_ack(struct rds_iw_connection *ic)
437 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
438 smp_mb__after_clear_bit();
440 return atomic64_read(&ic->i_ack_next);
442 #endif
445 static void rds_iw_send_ack(struct rds_iw_connection *ic, unsigned int adv_credits)
447 struct rds_header *hdr = ic->i_ack;
448 struct ib_send_wr *failed_wr;
449 u64 seq;
450 int ret;
452 seq = rds_iw_get_ack(ic);
454 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
455 rds_message_populate_header(hdr, 0, 0, 0);
456 hdr->h_ack = cpu_to_be64(seq);
457 hdr->h_credit = adv_credits;
458 rds_message_make_checksum(hdr);
459 ic->i_ack_queued = jiffies;
461 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
462 if (unlikely(ret)) {
463 /* Failed to send. Release the WR, and
464 * force another ACK.
466 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
467 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
469 rds_iw_stats_inc(s_iw_ack_send_failure);
471 rds_iw_conn_error(ic->conn, "sending ack failed\n");
472 } else
473 rds_iw_stats_inc(s_iw_ack_sent);
477 * There are 3 ways of getting acknowledgements to the peer:
478 * 1. We call rds_iw_attempt_ack from the recv completion handler
479 * to send an ACK-only frame.
480 * However, there can be only one such frame in the send queue
481 * at any time, so we may have to postpone it.
482 * 2. When another (data) packet is transmitted while there's
483 * an ACK in the queue, we piggyback the ACK sequence number
484 * on the data packet.
485 * 3. If the ACK WR is done sending, we get called from the
486 * send queue completion handler, and check whether there's
487 * another ACK pending (postponed because the WR was on the
488 * queue). If so, we transmit it.
490 * We maintain 2 variables:
491 * - i_ack_flags, which keeps track of whether the ACK WR
492 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
493 * - i_ack_next, which is the last sequence number we received
495 * Potentially, send queue and receive queue handlers can run concurrently.
496 * It would be nice to not have to use a spinlock to synchronize things,
497 * but the one problem that rules this out is that 64bit updates are
498 * not atomic on all platforms. Things would be a lot simpler if
499 * we had atomic64 or maybe cmpxchg64 everywhere.
501 * Reconnecting complicates this picture just slightly. When we
502 * reconnect, we may be seeing duplicate packets. The peer
503 * is retransmitting them, because it hasn't seen an ACK for
504 * them. It is important that we ACK these.
506 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
507 * this flag set *MUST* be acknowledged immediately.
511 * When we get here, we're called from the recv queue handler.
512 * Check whether we ought to transmit an ACK.
514 void rds_iw_attempt_ack(struct rds_iw_connection *ic)
516 unsigned int adv_credits;
518 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
519 return;
521 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
522 rds_iw_stats_inc(s_iw_ack_send_delayed);
523 return;
526 /* Can we get a send credit? */
527 if (!rds_iw_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
528 rds_iw_stats_inc(s_iw_tx_throttle);
529 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
530 return;
533 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
534 rds_iw_send_ack(ic, adv_credits);
538 * We get here from the send completion handler, when the
539 * adapter tells us the ACK frame was sent.
541 void rds_iw_ack_send_complete(struct rds_iw_connection *ic)
543 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
544 rds_iw_attempt_ack(ic);
548 * This is called by the regular xmit code when it wants to piggyback
549 * an ACK on an outgoing frame.
551 u64 rds_iw_piggyb_ack(struct rds_iw_connection *ic)
553 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
554 rds_iw_stats_inc(s_iw_ack_send_piggybacked);
555 return rds_iw_get_ack(ic);
559 * It's kind of lame that we're copying from the posted receive pages into
560 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
561 * them. But receiving new congestion bitmaps should be a *rare* event, so
562 * hopefully we won't need to invest that complexity in making it more
563 * efficient. By copying we can share a simpler core with TCP which has to
564 * copy.
566 static void rds_iw_cong_recv(struct rds_connection *conn,
567 struct rds_iw_incoming *iwinc)
569 struct rds_cong_map *map;
570 unsigned int map_off;
571 unsigned int map_page;
572 struct rds_page_frag *frag;
573 unsigned long frag_off;
574 unsigned long to_copy;
575 unsigned long copied;
576 uint64_t uncongested = 0;
577 void *addr;
579 /* catch completely corrupt packets */
580 if (be32_to_cpu(iwinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
581 return;
583 map = conn->c_fcong;
584 map_page = 0;
585 map_off = 0;
587 frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item);
588 frag_off = 0;
590 copied = 0;
592 while (copied < RDS_CONG_MAP_BYTES) {
593 uint64_t *src, *dst;
594 unsigned int k;
596 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
597 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
599 addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0);
601 src = addr + frag_off;
602 dst = (void *)map->m_page_addrs[map_page] + map_off;
603 for (k = 0; k < to_copy; k += 8) {
604 /* Record ports that became uncongested, ie
605 * bits that changed from 0 to 1. */
606 uncongested |= ~(*src) & *dst;
607 *dst++ = *src++;
609 kunmap_atomic(addr, KM_SOFTIRQ0);
611 copied += to_copy;
613 map_off += to_copy;
614 if (map_off == PAGE_SIZE) {
615 map_off = 0;
616 map_page++;
619 frag_off += to_copy;
620 if (frag_off == RDS_FRAG_SIZE) {
621 frag = list_entry(frag->f_item.next,
622 struct rds_page_frag, f_item);
623 frag_off = 0;
627 /* the congestion map is in little endian order */
628 uncongested = le64_to_cpu(uncongested);
630 rds_cong_map_updated(map, uncongested);
634 * Rings are posted with all the allocations they'll need to queue the
635 * incoming message to the receiving socket so this can't fail.
636 * All fragments start with a header, so we can make sure we're not receiving
637 * garbage, and we can tell a small 8 byte fragment from an ACK frame.
639 struct rds_iw_ack_state {
640 u64 ack_next;
641 u64 ack_recv;
642 unsigned int ack_required:1;
643 unsigned int ack_next_valid:1;
644 unsigned int ack_recv_valid:1;
647 static void rds_iw_process_recv(struct rds_connection *conn,
648 struct rds_iw_recv_work *recv, u32 byte_len,
649 struct rds_iw_ack_state *state)
651 struct rds_iw_connection *ic = conn->c_transport_data;
652 struct rds_iw_incoming *iwinc = ic->i_iwinc;
653 struct rds_header *ihdr, *hdr;
656 rdsdebug("ic %p iwinc %p recv %p byte len %u\n", ic, iwinc, recv,
657 byte_len);
659 if (byte_len < sizeof(struct rds_header)) {
660 rds_iw_conn_error(conn, "incoming message "
661 "from %pI4 didn't inclue a "
662 "header, disconnecting and "
663 "reconnecting\n",
664 &conn->c_faddr);
665 return;
667 byte_len -= sizeof(struct rds_header);
669 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
671 /* Validate the checksum. */
672 if (!rds_message_verify_checksum(ihdr)) {
673 rds_iw_conn_error(conn, "incoming message "
674 "from %pI4 has corrupted header - "
675 "forcing a reconnect\n",
676 &conn->c_faddr);
677 rds_stats_inc(s_recv_drop_bad_checksum);
678 return;
681 /* Process the ACK sequence which comes with every packet */
682 state->ack_recv = be64_to_cpu(ihdr->h_ack);
683 state->ack_recv_valid = 1;
685 /* Process the credits update if there was one */
686 if (ihdr->h_credit)
687 rds_iw_send_add_credits(conn, ihdr->h_credit);
689 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) {
690 /* This is an ACK-only packet. The fact that it gets
691 * special treatment here is that historically, ACKs
692 * were rather special beasts.
694 rds_iw_stats_inc(s_iw_ack_received);
696 rds_iw_frag_drop_page(recv->r_frag);
697 return;
701 * If we don't already have an inc on the connection then this
702 * fragment has a header and starts a message.. copy its header
703 * into the inc and save the inc so we can hang upcoming fragments
704 * off its list.
706 if (iwinc == NULL) {
707 iwinc = recv->r_iwinc;
708 recv->r_iwinc = NULL;
709 ic->i_iwinc = iwinc;
711 hdr = &iwinc->ii_inc.i_hdr;
712 memcpy(hdr, ihdr, sizeof(*hdr));
713 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
715 rdsdebug("ic %p iwinc %p rem %u flag 0x%x\n", ic, iwinc,
716 ic->i_recv_data_rem, hdr->h_flags);
717 } else {
718 hdr = &iwinc->ii_inc.i_hdr;
719 /* We can't just use memcmp here; fragments of a
720 * single message may carry different ACKs */
721 if (hdr->h_sequence != ihdr->h_sequence ||
722 hdr->h_len != ihdr->h_len ||
723 hdr->h_sport != ihdr->h_sport ||
724 hdr->h_dport != ihdr->h_dport) {
725 rds_iw_conn_error(conn,
726 "fragment header mismatch; forcing reconnect\n");
727 return;
731 list_add_tail(&recv->r_frag->f_item, &iwinc->ii_frags);
732 recv->r_frag = NULL;
734 if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
735 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
736 else {
737 ic->i_recv_data_rem = 0;
738 ic->i_iwinc = NULL;
740 if (iwinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
741 rds_iw_cong_recv(conn, iwinc);
742 else {
743 rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
744 &iwinc->ii_inc, GFP_ATOMIC,
745 KM_SOFTIRQ0);
746 state->ack_next = be64_to_cpu(hdr->h_sequence);
747 state->ack_next_valid = 1;
750 /* Evaluate the ACK_REQUIRED flag *after* we received
751 * the complete frame, and after bumping the next_rx
752 * sequence. */
753 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
754 rds_stats_inc(s_recv_ack_required);
755 state->ack_required = 1;
758 rds_inc_put(&iwinc->ii_inc);
763 * Plucking the oldest entry from the ring can be done concurrently with
764 * the thread refilling the ring. Each ring operation is protected by
765 * spinlocks and the transient state of refilling doesn't change the
766 * recording of which entry is oldest.
768 * This relies on IB only calling one cq comp_handler for each cq so that
769 * there will only be one caller of rds_recv_incoming() per RDS connection.
771 void rds_iw_recv_cq_comp_handler(struct ib_cq *cq, void *context)
773 struct rds_connection *conn = context;
774 struct rds_iw_connection *ic = conn->c_transport_data;
776 rdsdebug("conn %p cq %p\n", conn, cq);
778 rds_iw_stats_inc(s_iw_rx_cq_call);
780 tasklet_schedule(&ic->i_recv_tasklet);
783 static inline void rds_poll_cq(struct rds_iw_connection *ic,
784 struct rds_iw_ack_state *state)
786 struct rds_connection *conn = ic->conn;
787 struct ib_wc wc;
788 struct rds_iw_recv_work *recv;
790 while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
791 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
792 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
793 be32_to_cpu(wc.ex.imm_data));
794 rds_iw_stats_inc(s_iw_rx_cq_event);
796 recv = &ic->i_recvs[rds_iw_ring_oldest(&ic->i_recv_ring)];
798 rds_iw_recv_unmap_page(ic, recv);
801 * Also process recvs in connecting state because it is possible
802 * to get a recv completion _before_ the rdmacm ESTABLISHED
803 * event is processed.
805 if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
806 /* We expect errors as the qp is drained during shutdown */
807 if (wc.status == IB_WC_SUCCESS) {
808 rds_iw_process_recv(conn, recv, wc.byte_len, state);
809 } else {
810 rds_iw_conn_error(conn, "recv completion on "
811 "%pI4 had status %u, disconnecting and "
812 "reconnecting\n", &conn->c_faddr,
813 wc.status);
817 rds_iw_ring_free(&ic->i_recv_ring, 1);
821 void rds_iw_recv_tasklet_fn(unsigned long data)
823 struct rds_iw_connection *ic = (struct rds_iw_connection *) data;
824 struct rds_connection *conn = ic->conn;
825 struct rds_iw_ack_state state = { 0, };
827 rds_poll_cq(ic, &state);
828 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
829 rds_poll_cq(ic, &state);
831 if (state.ack_next_valid)
832 rds_iw_set_ack(ic, state.ack_next, state.ack_required);
833 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
834 rds_send_drop_acked(conn, state.ack_recv, NULL);
835 ic->i_ack_recv = state.ack_recv;
837 if (rds_conn_up(conn))
838 rds_iw_attempt_ack(ic);
840 /* If we ever end up with a really empty receive ring, we're
841 * in deep trouble, as the sender will definitely see RNR
842 * timeouts. */
843 if (rds_iw_ring_empty(&ic->i_recv_ring))
844 rds_iw_stats_inc(s_iw_rx_ring_empty);
847 * If the ring is running low, then schedule the thread to refill.
849 if (rds_iw_ring_low(&ic->i_recv_ring))
850 queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
853 int rds_iw_recv(struct rds_connection *conn)
855 struct rds_iw_connection *ic = conn->c_transport_data;
856 int ret = 0;
858 rdsdebug("conn %p\n", conn);
861 * If we get a temporary posting failure in this context then
862 * we're really low and we want the caller to back off for a bit.
864 mutex_lock(&ic->i_recv_mutex);
865 if (rds_iw_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
866 ret = -ENOMEM;
867 else
868 rds_iw_stats_inc(s_iw_rx_refill_from_thread);
869 mutex_unlock(&ic->i_recv_mutex);
871 if (rds_conn_up(conn))
872 rds_iw_attempt_ack(ic);
874 return ret;
877 int __init rds_iw_recv_init(void)
879 struct sysinfo si;
880 int ret = -ENOMEM;
882 /* Default to 30% of all available RAM for recv memory */
883 si_meminfo(&si);
884 rds_iw_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
886 rds_iw_incoming_slab = kmem_cache_create("rds_iw_incoming",
887 sizeof(struct rds_iw_incoming),
888 0, 0, NULL);
889 if (rds_iw_incoming_slab == NULL)
890 goto out;
892 rds_iw_frag_slab = kmem_cache_create("rds_iw_frag",
893 sizeof(struct rds_page_frag),
894 0, 0, NULL);
895 if (rds_iw_frag_slab == NULL)
896 kmem_cache_destroy(rds_iw_incoming_slab);
897 else
898 ret = 0;
899 out:
900 return ret;
903 void rds_iw_recv_exit(void)
905 kmem_cache_destroy(rds_iw_incoming_slab);
906 kmem_cache_destroy(rds_iw_frag_slab);