RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / net / rds / iw_rdma.c
blob3702a6f98972e9c73c357ed43b17cdd046ef02fc
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
36 #include "rds.h"
37 #include "rdma.h"
38 #include "iw.h"
42 * This is stored as mr->r_trans_private.
44 struct rds_iw_mr {
45 struct rds_iw_device *device;
46 struct rds_iw_mr_pool *pool;
47 struct rdma_cm_id *cm_id;
49 struct ib_mr *mr;
50 struct ib_fast_reg_page_list *page_list;
52 struct rds_iw_mapping mapping;
53 unsigned char remap_count;
57 * Our own little MR pool
59 struct rds_iw_mr_pool {
60 struct rds_iw_device *device; /* back ptr to the device that owns us */
62 struct mutex flush_lock; /* serialize fmr invalidate */
63 struct work_struct flush_worker; /* flush worker */
65 spinlock_t list_lock; /* protect variables below */
66 atomic_t item_count; /* total # of MRs */
67 atomic_t dirty_count; /* # dirty of MRs */
68 struct list_head dirty_list; /* dirty mappings */
69 struct list_head clean_list; /* unused & unamapped MRs */
70 atomic_t free_pinned; /* memory pinned by free MRs */
71 unsigned long max_message_size; /* in pages */
72 unsigned long max_items;
73 unsigned long max_items_soft;
74 unsigned long max_free_pinned;
75 int max_pages;
78 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
79 static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
80 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
81 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
82 struct rds_iw_mr *ibmr,
83 struct scatterlist *sg, unsigned int nents);
84 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
85 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
86 struct list_head *unmap_list,
87 struct list_head *kill_list);
88 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
90 static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id)
92 struct rds_iw_device *iwdev;
93 struct rds_iw_cm_id *i_cm_id;
95 *rds_iwdev = NULL;
96 *cm_id = NULL;
98 list_for_each_entry(iwdev, &rds_iw_devices, list) {
99 spin_lock_irq(&iwdev->spinlock);
100 list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
101 struct sockaddr_in *src_addr, *dst_addr;
103 src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
104 dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
106 rdsdebug("local ipaddr = %x port %d, "
107 "remote ipaddr = %x port %d"
108 "..looking for %x port %d, "
109 "remote ipaddr = %x port %d\n",
110 src_addr->sin_addr.s_addr,
111 src_addr->sin_port,
112 dst_addr->sin_addr.s_addr,
113 dst_addr->sin_port,
114 rs->rs_bound_addr,
115 rs->rs_bound_port,
116 rs->rs_conn_addr,
117 rs->rs_conn_port);
118 #ifdef WORKING_TUPLE_DETECTION
119 if (src_addr->sin_addr.s_addr == rs->rs_bound_addr &&
120 src_addr->sin_port == rs->rs_bound_port &&
121 dst_addr->sin_addr.s_addr == rs->rs_conn_addr &&
122 dst_addr->sin_port == rs->rs_conn_port) {
123 #else
124 if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) {
125 #endif
126 spin_unlock_irq(&iwdev->spinlock);
127 *rds_iwdev = iwdev;
128 *cm_id = i_cm_id->cm_id;
129 return 0;
132 spin_unlock_irq(&iwdev->spinlock);
135 return 1;
138 static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
140 struct rds_iw_cm_id *i_cm_id;
142 i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
143 if (!i_cm_id)
144 return -ENOMEM;
146 i_cm_id->cm_id = cm_id;
148 spin_lock_irq(&rds_iwdev->spinlock);
149 list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
150 spin_unlock_irq(&rds_iwdev->spinlock);
152 return 0;
155 void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
157 struct rds_iw_cm_id *i_cm_id;
159 spin_lock_irq(&rds_iwdev->spinlock);
160 list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
161 if (i_cm_id->cm_id == cm_id) {
162 list_del(&i_cm_id->list);
163 kfree(i_cm_id);
164 break;
167 spin_unlock_irq(&rds_iwdev->spinlock);
171 int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
173 struct sockaddr_in *src_addr, *dst_addr;
174 struct rds_iw_device *rds_iwdev_old;
175 struct rds_sock rs;
176 struct rdma_cm_id *pcm_id;
177 int rc;
179 src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
180 dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
182 rs.rs_bound_addr = src_addr->sin_addr.s_addr;
183 rs.rs_bound_port = src_addr->sin_port;
184 rs.rs_conn_addr = dst_addr->sin_addr.s_addr;
185 rs.rs_conn_port = dst_addr->sin_port;
187 rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id);
188 if (rc)
189 rds_iw_remove_cm_id(rds_iwdev, cm_id);
191 return rds_iw_add_cm_id(rds_iwdev, cm_id);
194 void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
196 struct rds_iw_connection *ic = conn->c_transport_data;
198 /* conn was previously on the nodev_conns_list */
199 spin_lock_irq(&iw_nodev_conns_lock);
200 BUG_ON(list_empty(&iw_nodev_conns));
201 BUG_ON(list_empty(&ic->iw_node));
202 list_del(&ic->iw_node);
204 spin_lock_irq(&rds_iwdev->spinlock);
205 list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
206 spin_unlock_irq(&rds_iwdev->spinlock);
207 spin_unlock_irq(&iw_nodev_conns_lock);
209 ic->rds_iwdev = rds_iwdev;
212 void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
214 struct rds_iw_connection *ic = conn->c_transport_data;
216 /* place conn on nodev_conns_list */
217 spin_lock(&iw_nodev_conns_lock);
219 spin_lock_irq(&rds_iwdev->spinlock);
220 BUG_ON(list_empty(&ic->iw_node));
221 list_del(&ic->iw_node);
222 spin_unlock_irq(&rds_iwdev->spinlock);
224 list_add_tail(&ic->iw_node, &iw_nodev_conns);
226 spin_unlock(&iw_nodev_conns_lock);
228 rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
229 ic->rds_iwdev = NULL;
232 void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
234 struct rds_iw_connection *ic, *_ic;
235 LIST_HEAD(tmp_list);
237 /* avoid calling conn_destroy with irqs off */
238 spin_lock_irq(list_lock);
239 list_splice(list, &tmp_list);
240 INIT_LIST_HEAD(list);
241 spin_unlock_irq(list_lock);
243 list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
244 rds_conn_destroy(ic->conn);
247 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
248 struct scatterlist *list, unsigned int sg_len)
250 sg->list = list;
251 sg->len = sg_len;
252 sg->dma_len = 0;
253 sg->dma_npages = 0;
254 sg->bytes = 0;
257 static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
258 struct rds_iw_scatterlist *sg)
260 struct ib_device *dev = rds_iwdev->dev;
261 u64 *dma_pages = NULL;
262 int i, j, ret;
264 WARN_ON(sg->dma_len);
266 sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
267 if (unlikely(!sg->dma_len)) {
268 printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
269 return ERR_PTR(-EBUSY);
272 sg->bytes = 0;
273 sg->dma_npages = 0;
275 ret = -EINVAL;
276 for (i = 0; i < sg->dma_len; ++i) {
277 unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
278 u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
279 u64 end_addr;
281 sg->bytes += dma_len;
283 end_addr = dma_addr + dma_len;
284 if (dma_addr & PAGE_MASK) {
285 if (i > 0)
286 goto out_unmap;
287 dma_addr &= ~PAGE_MASK;
289 if (end_addr & PAGE_MASK) {
290 if (i < sg->dma_len - 1)
291 goto out_unmap;
292 end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
295 sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
298 /* Now gather the dma addrs into one list */
299 if (sg->dma_npages > fastreg_message_size)
300 goto out_unmap;
302 dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC);
303 if (!dma_pages) {
304 ret = -ENOMEM;
305 goto out_unmap;
308 for (i = j = 0; i < sg->dma_len; ++i) {
309 unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
310 u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
311 u64 end_addr;
313 end_addr = dma_addr + dma_len;
314 dma_addr &= ~PAGE_MASK;
315 for (; dma_addr < end_addr; dma_addr += PAGE_SIZE)
316 dma_pages[j++] = dma_addr;
317 BUG_ON(j > sg->dma_npages);
320 return dma_pages;
322 out_unmap:
323 ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
324 sg->dma_len = 0;
325 kfree(dma_pages);
326 return ERR_PTR(ret);
330 struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
332 struct rds_iw_mr_pool *pool;
334 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
335 if (!pool) {
336 printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
337 return ERR_PTR(-ENOMEM);
340 pool->device = rds_iwdev;
341 INIT_LIST_HEAD(&pool->dirty_list);
342 INIT_LIST_HEAD(&pool->clean_list);
343 mutex_init(&pool->flush_lock);
344 spin_lock_init(&pool->list_lock);
345 INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
347 pool->max_message_size = fastreg_message_size;
348 pool->max_items = fastreg_pool_size;
349 pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
350 pool->max_pages = fastreg_message_size;
352 /* We never allow more than max_items MRs to be allocated.
353 * When we exceed more than max_items_soft, we start freeing
354 * items more aggressively.
355 * Make sure that max_items > max_items_soft > max_items / 2
357 pool->max_items_soft = pool->max_items * 3 / 4;
359 return pool;
362 void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
364 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
366 iinfo->rdma_mr_max = pool->max_items;
367 iinfo->rdma_mr_size = pool->max_pages;
370 void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
372 flush_workqueue(rds_wq);
373 rds_iw_flush_mr_pool(pool, 1);
374 BUG_ON(atomic_read(&pool->item_count));
375 BUG_ON(atomic_read(&pool->free_pinned));
376 kfree(pool);
379 static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
381 struct rds_iw_mr *ibmr = NULL;
382 unsigned long flags;
384 spin_lock_irqsave(&pool->list_lock, flags);
385 if (!list_empty(&pool->clean_list)) {
386 ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
387 list_del_init(&ibmr->mapping.m_list);
389 spin_unlock_irqrestore(&pool->list_lock, flags);
391 return ibmr;
394 static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
396 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
397 struct rds_iw_mr *ibmr = NULL;
398 int err = 0, iter = 0;
400 while (1) {
401 ibmr = rds_iw_reuse_fmr(pool);
402 if (ibmr)
403 return ibmr;
405 /* No clean MRs - now we have the choice of either
406 * allocating a fresh MR up to the limit imposed by the
407 * driver, or flush any dirty unused MRs.
408 * We try to avoid stalling in the send path if possible,
409 * so we allocate as long as we're allowed to.
411 * We're fussy with enforcing the FMR limit, though. If the driver
412 * tells us we can't use more than N fmrs, we shouldn't start
413 * arguing with it */
414 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
415 break;
417 atomic_dec(&pool->item_count);
419 if (++iter > 2) {
420 rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
421 return ERR_PTR(-EAGAIN);
424 /* We do have some empty MRs. Flush them out. */
425 rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
426 rds_iw_flush_mr_pool(pool, 0);
429 ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
430 if (!ibmr) {
431 err = -ENOMEM;
432 goto out_no_cigar;
435 spin_lock_init(&ibmr->mapping.m_lock);
436 INIT_LIST_HEAD(&ibmr->mapping.m_list);
437 ibmr->mapping.m_mr = ibmr;
439 err = rds_iw_init_fastreg(pool, ibmr);
440 if (err)
441 goto out_no_cigar;
443 rds_iw_stats_inc(s_iw_rdma_mr_alloc);
444 return ibmr;
446 out_no_cigar:
447 if (ibmr) {
448 rds_iw_destroy_fastreg(pool, ibmr);
449 kfree(ibmr);
451 atomic_dec(&pool->item_count);
452 return ERR_PTR(err);
455 void rds_iw_sync_mr(void *trans_private, int direction)
457 struct rds_iw_mr *ibmr = trans_private;
458 struct rds_iw_device *rds_iwdev = ibmr->device;
460 switch (direction) {
461 case DMA_FROM_DEVICE:
462 ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
463 ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
464 break;
465 case DMA_TO_DEVICE:
466 ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
467 ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
468 break;
472 static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all)
474 unsigned int item_count;
476 item_count = atomic_read(&pool->item_count);
477 if (free_all)
478 return item_count;
480 return 0;
484 * Flush our pool of MRs.
485 * At a minimum, all currently unused MRs are unmapped.
486 * If the number of MRs allocated exceeds the limit, we also try
487 * to free as many MRs as needed to get back to this limit.
489 static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
491 struct rds_iw_mr *ibmr, *next;
492 LIST_HEAD(unmap_list);
493 LIST_HEAD(kill_list);
494 unsigned long flags;
495 unsigned int nfreed = 0, ncleaned = 0, free_goal;
496 int ret = 0;
498 rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
500 mutex_lock(&pool->flush_lock);
502 spin_lock_irqsave(&pool->list_lock, flags);
503 /* Get the list of all mappings to be destroyed */
504 list_splice_init(&pool->dirty_list, &unmap_list);
505 if (free_all)
506 list_splice_init(&pool->clean_list, &kill_list);
507 spin_unlock_irqrestore(&pool->list_lock, flags);
509 free_goal = rds_iw_flush_goal(pool, free_all);
511 /* Batched invalidate of dirty MRs.
512 * For FMR based MRs, the mappings on the unmap list are
513 * actually members of an ibmr (ibmr->mapping). They either
514 * migrate to the kill_list, or have been cleaned and should be
515 * moved to the clean_list.
516 * For fastregs, they will be dynamically allocated, and
517 * will be destroyed by the unmap function.
519 if (!list_empty(&unmap_list)) {
520 ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list);
521 /* If we've been asked to destroy all MRs, move those
522 * that were simply cleaned to the kill list */
523 if (free_all)
524 list_splice_init(&unmap_list, &kill_list);
527 /* Destroy any MRs that are past their best before date */
528 list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
529 rds_iw_stats_inc(s_iw_rdma_mr_free);
530 list_del(&ibmr->mapping.m_list);
531 rds_iw_destroy_fastreg(pool, ibmr);
532 kfree(ibmr);
533 nfreed++;
536 /* Anything that remains are laundered ibmrs, which we can add
537 * back to the clean list. */
538 if (!list_empty(&unmap_list)) {
539 spin_lock_irqsave(&pool->list_lock, flags);
540 list_splice(&unmap_list, &pool->clean_list);
541 spin_unlock_irqrestore(&pool->list_lock, flags);
544 atomic_sub(ncleaned, &pool->dirty_count);
545 atomic_sub(nfreed, &pool->item_count);
547 mutex_unlock(&pool->flush_lock);
548 return ret;
551 static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
553 struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
555 rds_iw_flush_mr_pool(pool, 0);
558 void rds_iw_free_mr(void *trans_private, int invalidate)
560 struct rds_iw_mr *ibmr = trans_private;
561 struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
563 rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
564 if (!pool)
565 return;
567 /* Return it to the pool's free list */
568 rds_iw_free_fastreg(pool, ibmr);
570 /* If we've pinned too many pages, request a flush */
571 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
572 atomic_read(&pool->dirty_count) >= pool->max_items / 10)
573 queue_work(rds_wq, &pool->flush_worker);
575 if (invalidate) {
576 if (likely(!in_interrupt())) {
577 rds_iw_flush_mr_pool(pool, 0);
578 } else {
579 /* We get here if the user created a MR marked
580 * as use_once and invalidate at the same time. */
581 queue_work(rds_wq, &pool->flush_worker);
586 void rds_iw_flush_mrs(void)
588 struct rds_iw_device *rds_iwdev;
590 list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
591 struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
593 if (pool)
594 rds_iw_flush_mr_pool(pool, 0);
598 void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
599 struct rds_sock *rs, u32 *key_ret)
601 struct rds_iw_device *rds_iwdev;
602 struct rds_iw_mr *ibmr = NULL;
603 struct rdma_cm_id *cm_id;
604 int ret;
606 ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id);
607 if (ret || !cm_id) {
608 ret = -ENODEV;
609 goto out;
612 if (!rds_iwdev->mr_pool) {
613 ret = -ENODEV;
614 goto out;
617 ibmr = rds_iw_alloc_mr(rds_iwdev);
618 if (IS_ERR(ibmr))
619 return ibmr;
621 ibmr->cm_id = cm_id;
622 ibmr->device = rds_iwdev;
624 ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents);
625 if (ret == 0)
626 *key_ret = ibmr->mr->rkey;
627 else
628 printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
630 out:
631 if (ret) {
632 if (ibmr)
633 rds_iw_free_mr(ibmr, 0);
634 ibmr = ERR_PTR(ret);
636 return ibmr;
640 * iWARP fastreg handling
642 * The life cycle of a fastreg registration is a bit different from
643 * FMRs.
644 * The idea behind fastreg is to have one MR, to which we bind different
645 * mappings over time. To avoid stalling on the expensive map and invalidate
646 * operations, these operations are pipelined on the same send queue on
647 * which we want to send the message containing the r_key.
649 * This creates a bit of a problem for us, as we do not have the destination
650 * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
651 * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit
652 * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request
653 * before queuing the SEND. When completions for these arrive, they are
654 * dispatched to the MR has a bit set showing that RDMa can be performed.
656 * There is another interesting aspect that's related to invalidation.
657 * The application can request that a mapping is invalidated in FREE_MR.
658 * The expectation there is that this invalidation step includes ALL
659 * PREVIOUSLY FREED MRs.
661 static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool,
662 struct rds_iw_mr *ibmr)
664 struct rds_iw_device *rds_iwdev = pool->device;
665 struct ib_fast_reg_page_list *page_list = NULL;
666 struct ib_mr *mr;
667 int err;
669 mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size);
670 if (IS_ERR(mr)) {
671 err = PTR_ERR(mr);
673 printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err);
674 return err;
677 page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size);
678 if (IS_ERR(page_list)) {
679 err = PTR_ERR(page_list);
681 printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err);
682 ib_dereg_mr(mr);
683 return err;
686 ibmr->page_list = page_list;
687 ibmr->mr = mr;
688 return 0;
691 static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping)
693 struct rds_iw_mr *ibmr = mapping->m_mr;
694 struct ib_send_wr f_wr, *failed_wr;
695 int ret;
698 * Perform a WR for the fast_reg_mr. Each individual page
699 * in the sg list is added to the fast reg page list and placed
700 * inside the fast_reg_mr WR. The key used is a rolling 8bit
701 * counter, which should guarantee uniqueness.
703 ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
704 mapping->m_rkey = ibmr->mr->rkey;
706 memset(&f_wr, 0, sizeof(f_wr));
707 f_wr.wr_id = RDS_IW_FAST_REG_WR_ID;
708 f_wr.opcode = IB_WR_FAST_REG_MR;
709 f_wr.wr.fast_reg.length = mapping->m_sg.bytes;
710 f_wr.wr.fast_reg.rkey = mapping->m_rkey;
711 f_wr.wr.fast_reg.page_list = ibmr->page_list;
712 f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len;
713 f_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
714 f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE |
715 IB_ACCESS_REMOTE_READ |
716 IB_ACCESS_REMOTE_WRITE;
717 f_wr.wr.fast_reg.iova_start = 0;
718 f_wr.send_flags = IB_SEND_SIGNALED;
720 failed_wr = &f_wr;
721 ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr);
722 BUG_ON(failed_wr != &f_wr);
723 if (ret && printk_ratelimit())
724 printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
725 __func__, __LINE__, ret);
726 return ret;
729 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
731 struct ib_send_wr s_wr, *failed_wr;
732 int ret = 0;
734 if (!ibmr->cm_id->qp || !ibmr->mr)
735 goto out;
737 memset(&s_wr, 0, sizeof(s_wr));
738 s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
739 s_wr.opcode = IB_WR_LOCAL_INV;
740 s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
741 s_wr.send_flags = IB_SEND_SIGNALED;
743 failed_wr = &s_wr;
744 ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
745 if (ret && printk_ratelimit()) {
746 printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
747 __func__, __LINE__, ret);
748 goto out;
750 out:
751 return ret;
754 static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool,
755 struct rds_iw_mr *ibmr,
756 struct scatterlist *sg,
757 unsigned int sg_len)
759 struct rds_iw_device *rds_iwdev = pool->device;
760 struct rds_iw_mapping *mapping = &ibmr->mapping;
761 u64 *dma_pages;
762 int i, ret = 0;
764 rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
766 dma_pages = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
767 if (IS_ERR(dma_pages)) {
768 ret = PTR_ERR(dma_pages);
769 dma_pages = NULL;
770 goto out;
773 if (mapping->m_sg.dma_len > pool->max_message_size) {
774 ret = -EMSGSIZE;
775 goto out;
778 for (i = 0; i < mapping->m_sg.dma_npages; ++i)
779 ibmr->page_list->page_list[i] = dma_pages[i];
781 ret = rds_iw_rdma_build_fastreg(mapping);
782 if (ret)
783 goto out;
785 rds_iw_stats_inc(s_iw_rdma_mr_used);
787 out:
788 kfree(dma_pages);
790 return ret;
794 * "Free" a fastreg MR.
796 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
797 struct rds_iw_mr *ibmr)
799 unsigned long flags;
800 int ret;
802 if (!ibmr->mapping.m_sg.dma_len)
803 return;
805 ret = rds_iw_rdma_fastreg_inv(ibmr);
806 if (ret)
807 return;
809 /* Try to post the LOCAL_INV WR to the queue. */
810 spin_lock_irqsave(&pool->list_lock, flags);
812 list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
813 atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
814 atomic_inc(&pool->dirty_count);
816 spin_unlock_irqrestore(&pool->list_lock, flags);
819 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
820 struct list_head *unmap_list,
821 struct list_head *kill_list)
823 struct rds_iw_mapping *mapping, *next;
824 unsigned int ncleaned = 0;
825 LIST_HEAD(laundered);
827 /* Batched invalidation of fastreg MRs.
828 * Why do we do it this way, even though we could pipeline unmap
829 * and remap? The reason is the application semantics - when the
830 * application requests an invalidation of MRs, it expects all
831 * previously released R_Keys to become invalid.
833 * If we implement MR reuse naively, we risk memory corruption
834 * (this has actually been observed). So the default behavior
835 * requires that a MR goes through an explicit unmap operation before
836 * we can reuse it again.
838 * We could probably improve on this a little, by allowing immediate
839 * reuse of a MR on the same socket (eg you could add small
840 * cache of unused MRs to strct rds_socket - GET_MR could grab one
841 * of these without requiring an explicit invalidate).
843 while (!list_empty(unmap_list)) {
844 unsigned long flags;
846 spin_lock_irqsave(&pool->list_lock, flags);
847 list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
848 list_move(&mapping->m_list, &laundered);
849 ncleaned++;
851 spin_unlock_irqrestore(&pool->list_lock, flags);
854 /* Move all laundered mappings back to the unmap list.
855 * We do not kill any WRs right now - it doesn't seem the
856 * fastreg API has a max_remap limit. */
857 list_splice_init(&laundered, unmap_list);
859 return ncleaned;
862 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
863 struct rds_iw_mr *ibmr)
865 if (ibmr->page_list)
866 ib_free_fast_reg_page_list(ibmr->page_list);
867 if (ibmr->mr)
868 ib_dereg_mr(ibmr->mr);