RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / scsi / qla2xxx / qla_sup.c
blob76de9574b385e51d4f5696f9b0282c0fe95182dd
1 /*
2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2010 QLogic Corporation
5 * See LICENSE.qla2xxx for copyright and licensing details.
6 */
7 #include "qla_def.h"
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
15 * NVRAM support routines
18 /**
19 * qla2x00_lock_nvram_access() -
20 * @ha: HA context
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
25 uint16_t data;
26 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
28 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 data = RD_REG_WORD(&reg->nvram);
30 while (data & NVR_BUSY) {
31 udelay(100);
32 data = RD_REG_WORD(&reg->nvram);
35 /* Lock resource */
36 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 udelay(5);
39 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 while ((data & BIT_0) == 0) {
41 /* Lock failed */
42 udelay(100);
43 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 udelay(5);
46 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
51 /**
52 * qla2x00_unlock_nvram_access() -
53 * @ha: HA context
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
58 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
60 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66 /**
67 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68 * @ha: HA context
69 * @data: Serial interface selector
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
74 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
76 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
78 NVRAM_DELAY();
79 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 NVR_WRT_ENABLE);
81 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
82 NVRAM_DELAY();
83 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
85 NVRAM_DELAY();
88 /**
89 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90 * NVRAM.
91 * @ha: HA context
92 * @nv_cmd: NVRAM command
94 * Bit definitions for NVRAM command:
96 * Bit 26 = start bit
97 * Bit 25, 24 = opcode
98 * Bit 23-16 = address
99 * Bit 15-0 = write data
101 * Returns the word read from nvram @addr.
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
106 uint8_t cnt;
107 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 uint16_t data = 0;
109 uint16_t reg_data;
111 /* Send command to NVRAM. */
112 nv_cmd <<= 5;
113 for (cnt = 0; cnt < 11; cnt++) {
114 if (nv_cmd & BIT_31)
115 qla2x00_nv_write(ha, NVR_DATA_OUT);
116 else
117 qla2x00_nv_write(ha, 0);
118 nv_cmd <<= 1;
121 /* Read data from NVRAM. */
122 for (cnt = 0; cnt < 16; cnt++) {
123 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
125 NVRAM_DELAY();
126 data <<= 1;
127 reg_data = RD_REG_WORD(&reg->nvram);
128 if (reg_data & NVR_DATA_IN)
129 data |= BIT_0;
130 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
132 NVRAM_DELAY();
135 /* Deselect chip. */
136 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
138 NVRAM_DELAY();
140 return data;
145 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146 * request routine to get the word from NVRAM.
147 * @ha: HA context
148 * @addr: Address in NVRAM to read
150 * Returns the word read from nvram @addr.
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
155 uint16_t data;
156 uint32_t nv_cmd;
158 nv_cmd = addr << 16;
159 nv_cmd |= NV_READ_OP;
160 data = qla2x00_nvram_request(ha, nv_cmd);
162 return (data);
166 * qla2x00_nv_deselect() - Deselect NVRAM operations.
167 * @ha: HA context
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
172 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
174 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
176 NVRAM_DELAY();
180 * qla2x00_write_nvram_word() - Write NVRAM data.
181 * @ha: HA context
182 * @addr: Address in NVRAM to write
183 * @data: word to program
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
188 int count;
189 uint16_t word;
190 uint32_t nv_cmd, wait_cnt;
191 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
193 qla2x00_nv_write(ha, NVR_DATA_OUT);
194 qla2x00_nv_write(ha, 0);
195 qla2x00_nv_write(ha, 0);
197 for (word = 0; word < 8; word++)
198 qla2x00_nv_write(ha, NVR_DATA_OUT);
200 qla2x00_nv_deselect(ha);
202 /* Write data */
203 nv_cmd = (addr << 16) | NV_WRITE_OP;
204 nv_cmd |= data;
205 nv_cmd <<= 5;
206 for (count = 0; count < 27; count++) {
207 if (nv_cmd & BIT_31)
208 qla2x00_nv_write(ha, NVR_DATA_OUT);
209 else
210 qla2x00_nv_write(ha, 0);
212 nv_cmd <<= 1;
215 qla2x00_nv_deselect(ha);
217 /* Wait for NVRAM to become ready */
218 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
219 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
220 wait_cnt = NVR_WAIT_CNT;
221 do {
222 if (!--wait_cnt) {
223 DEBUG9_10(qla_printk(KERN_WARNING, ha,
224 "NVRAM didn't go ready...\n"));
225 break;
227 NVRAM_DELAY();
228 word = RD_REG_WORD(&reg->nvram);
229 } while ((word & NVR_DATA_IN) == 0);
231 qla2x00_nv_deselect(ha);
233 /* Disable writes */
234 qla2x00_nv_write(ha, NVR_DATA_OUT);
235 for (count = 0; count < 10; count++)
236 qla2x00_nv_write(ha, 0);
238 qla2x00_nv_deselect(ha);
241 static int
242 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
243 uint16_t data, uint32_t tmo)
245 int ret, count;
246 uint16_t word;
247 uint32_t nv_cmd;
248 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
250 ret = QLA_SUCCESS;
252 qla2x00_nv_write(ha, NVR_DATA_OUT);
253 qla2x00_nv_write(ha, 0);
254 qla2x00_nv_write(ha, 0);
256 for (word = 0; word < 8; word++)
257 qla2x00_nv_write(ha, NVR_DATA_OUT);
259 qla2x00_nv_deselect(ha);
261 /* Write data */
262 nv_cmd = (addr << 16) | NV_WRITE_OP;
263 nv_cmd |= data;
264 nv_cmd <<= 5;
265 for (count = 0; count < 27; count++) {
266 if (nv_cmd & BIT_31)
267 qla2x00_nv_write(ha, NVR_DATA_OUT);
268 else
269 qla2x00_nv_write(ha, 0);
271 nv_cmd <<= 1;
274 qla2x00_nv_deselect(ha);
276 /* Wait for NVRAM to become ready */
277 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
278 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
279 do {
280 NVRAM_DELAY();
281 word = RD_REG_WORD(&reg->nvram);
282 if (!--tmo) {
283 ret = QLA_FUNCTION_FAILED;
284 break;
286 } while ((word & NVR_DATA_IN) == 0);
288 qla2x00_nv_deselect(ha);
290 /* Disable writes */
291 qla2x00_nv_write(ha, NVR_DATA_OUT);
292 for (count = 0; count < 10; count++)
293 qla2x00_nv_write(ha, 0);
295 qla2x00_nv_deselect(ha);
297 return ret;
301 * qla2x00_clear_nvram_protection() -
302 * @ha: HA context
304 static int
305 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 int ret, stat;
308 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
309 uint32_t word, wait_cnt;
310 uint16_t wprot, wprot_old;
312 /* Clear NVRAM write protection. */
313 ret = QLA_FUNCTION_FAILED;
315 wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
316 stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
317 __constant_cpu_to_le16(0x1234), 100000);
318 wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
319 if (stat != QLA_SUCCESS || wprot != 0x1234) {
320 /* Write enable. */
321 qla2x00_nv_write(ha, NVR_DATA_OUT);
322 qla2x00_nv_write(ha, 0);
323 qla2x00_nv_write(ha, 0);
324 for (word = 0; word < 8; word++)
325 qla2x00_nv_write(ha, NVR_DATA_OUT);
327 qla2x00_nv_deselect(ha);
329 /* Enable protection register. */
330 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
331 qla2x00_nv_write(ha, NVR_PR_ENABLE);
332 qla2x00_nv_write(ha, NVR_PR_ENABLE);
333 for (word = 0; word < 8; word++)
334 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
336 qla2x00_nv_deselect(ha);
338 /* Clear protection register (ffff is cleared). */
339 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
340 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
341 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 for (word = 0; word < 8; word++)
343 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
345 qla2x00_nv_deselect(ha);
347 /* Wait for NVRAM to become ready. */
348 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
349 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
350 wait_cnt = NVR_WAIT_CNT;
351 do {
352 if (!--wait_cnt) {
353 DEBUG9_10(qla_printk(KERN_WARNING, ha,
354 "NVRAM didn't go ready...\n"));
355 break;
357 NVRAM_DELAY();
358 word = RD_REG_WORD(&reg->nvram);
359 } while ((word & NVR_DATA_IN) == 0);
361 if (wait_cnt)
362 ret = QLA_SUCCESS;
363 } else
364 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
366 return ret;
369 static void
370 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
372 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
373 uint32_t word, wait_cnt;
375 if (stat != QLA_SUCCESS)
376 return;
378 /* Set NVRAM write protection. */
379 /* Write enable. */
380 qla2x00_nv_write(ha, NVR_DATA_OUT);
381 qla2x00_nv_write(ha, 0);
382 qla2x00_nv_write(ha, 0);
383 for (word = 0; word < 8; word++)
384 qla2x00_nv_write(ha, NVR_DATA_OUT);
386 qla2x00_nv_deselect(ha);
388 /* Enable protection register. */
389 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
390 qla2x00_nv_write(ha, NVR_PR_ENABLE);
391 qla2x00_nv_write(ha, NVR_PR_ENABLE);
392 for (word = 0; word < 8; word++)
393 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
395 qla2x00_nv_deselect(ha);
397 /* Enable protection register. */
398 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
399 qla2x00_nv_write(ha, NVR_PR_ENABLE);
400 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
401 for (word = 0; word < 8; word++)
402 qla2x00_nv_write(ha, NVR_PR_ENABLE);
404 qla2x00_nv_deselect(ha);
406 /* Wait for NVRAM to become ready. */
407 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
408 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
409 wait_cnt = NVR_WAIT_CNT;
410 do {
411 if (!--wait_cnt) {
412 DEBUG9_10(qla_printk(KERN_WARNING, ha,
413 "NVRAM didn't go ready...\n"));
414 break;
416 NVRAM_DELAY();
417 word = RD_REG_WORD(&reg->nvram);
418 } while ((word & NVR_DATA_IN) == 0);
422 /*****************************************************************************/
423 /* Flash Manipulation Routines */
424 /*****************************************************************************/
426 static inline uint32_t
427 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
429 return ha->flash_conf_off | faddr;
432 static inline uint32_t
433 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
435 return ha->flash_data_off | faddr;
438 static inline uint32_t
439 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
441 return ha->nvram_conf_off | naddr;
444 static inline uint32_t
445 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
447 return ha->nvram_data_off | naddr;
450 static uint32_t
451 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
453 int rval;
454 uint32_t cnt, data;
455 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
457 WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
458 /* Wait for READ cycle to complete. */
459 rval = QLA_SUCCESS;
460 for (cnt = 3000;
461 (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
462 rval == QLA_SUCCESS; cnt--) {
463 if (cnt)
464 udelay(10);
465 else
466 rval = QLA_FUNCTION_TIMEOUT;
467 cond_resched();
470 /* TODO: What happens if we time out? */
471 data = 0xDEADDEAD;
472 if (rval == QLA_SUCCESS)
473 data = RD_REG_DWORD(&reg->flash_data);
475 return data;
478 uint32_t *
479 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
480 uint32_t dwords)
482 uint32_t i;
483 struct qla_hw_data *ha = vha->hw;
485 /* Dword reads to flash. */
486 for (i = 0; i < dwords; i++, faddr++)
487 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
488 flash_data_addr(ha, faddr)));
490 return dwptr;
493 static int
494 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
496 int rval;
497 uint32_t cnt;
498 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
500 WRT_REG_DWORD(&reg->flash_data, data);
501 RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
502 WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
503 /* Wait for Write cycle to complete. */
504 rval = QLA_SUCCESS;
505 for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
506 rval == QLA_SUCCESS; cnt--) {
507 if (cnt)
508 udelay(10);
509 else
510 rval = QLA_FUNCTION_TIMEOUT;
511 cond_resched();
513 return rval;
516 static void
517 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
518 uint8_t *flash_id)
520 uint32_t ids;
522 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
523 *man_id = LSB(ids);
524 *flash_id = MSB(ids);
526 /* Check if man_id and flash_id are valid. */
527 if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
528 /* Read information using 0x9f opcode
529 * Device ID, Mfg ID would be read in the format:
530 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
531 * Example: ATMEL 0x00 01 45 1F
532 * Extract MFG and Dev ID from last two bytes.
534 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
535 *man_id = LSB(ids);
536 *flash_id = MSB(ids);
540 static int
541 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
543 const char *loc, *locations[] = { "DEF", "PCI" };
544 uint32_t pcihdr, pcids;
545 uint32_t *dcode;
546 uint8_t *buf, *bcode, last_image;
547 uint16_t cnt, chksum, *wptr;
548 struct qla_flt_location *fltl;
549 struct qla_hw_data *ha = vha->hw;
550 struct req_que *req = ha->req_q_map[0];
553 * FLT-location structure resides after the last PCI region.
556 /* Begin with sane defaults. */
557 loc = locations[0];
558 *start = 0;
559 if (IS_QLA24XX_TYPE(ha))
560 *start = FA_FLASH_LAYOUT_ADDR_24;
561 else if (IS_QLA25XX(ha))
562 *start = FA_FLASH_LAYOUT_ADDR;
563 else if (IS_QLA81XX(ha))
564 *start = FA_FLASH_LAYOUT_ADDR_81;
565 else if (IS_QLA82XX(ha)) {
566 *start = FA_FLASH_LAYOUT_ADDR_82;
567 goto end;
569 /* Begin with first PCI expansion ROM header. */
570 buf = (uint8_t *)req->ring;
571 dcode = (uint32_t *)req->ring;
572 pcihdr = 0;
573 last_image = 1;
574 do {
575 /* Verify PCI expansion ROM header. */
576 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
577 bcode = buf + (pcihdr % 4);
578 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
579 goto end;
581 /* Locate PCI data structure. */
582 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
583 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
584 bcode = buf + (pcihdr % 4);
586 /* Validate signature of PCI data structure. */
587 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
588 bcode[0x2] != 'I' || bcode[0x3] != 'R')
589 goto end;
591 last_image = bcode[0x15] & BIT_7;
593 /* Locate next PCI expansion ROM. */
594 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
595 } while (!last_image);
597 /* Now verify FLT-location structure. */
598 fltl = (struct qla_flt_location *)req->ring;
599 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
600 sizeof(struct qla_flt_location) >> 2);
601 if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
602 fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
603 goto end;
605 wptr = (uint16_t *)req->ring;
606 cnt = sizeof(struct qla_flt_location) >> 1;
607 for (chksum = 0; cnt; cnt--)
608 chksum += le16_to_cpu(*wptr++);
609 if (chksum) {
610 qla_printk(KERN_ERR, ha,
611 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
612 qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
613 return QLA_FUNCTION_FAILED;
616 /* Good data. Use specified location. */
617 loc = locations[1];
618 *start = (le16_to_cpu(fltl->start_hi) << 16 |
619 le16_to_cpu(fltl->start_lo)) >> 2;
620 end:
621 DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
622 return QLA_SUCCESS;
625 static void
626 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
628 const char *loc, *locations[] = { "DEF", "FLT" };
629 const uint32_t def_fw[] =
630 { FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
631 const uint32_t def_boot[] =
632 { FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
633 const uint32_t def_vpd_nvram[] =
634 { FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
635 const uint32_t def_vpd0[] =
636 { 0, 0, FA_VPD0_ADDR_81 };
637 const uint32_t def_vpd1[] =
638 { 0, 0, FA_VPD1_ADDR_81 };
639 const uint32_t def_nvram0[] =
640 { 0, 0, FA_NVRAM0_ADDR_81 };
641 const uint32_t def_nvram1[] =
642 { 0, 0, FA_NVRAM1_ADDR_81 };
643 const uint32_t def_fdt[] =
644 { FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
645 FA_FLASH_DESCR_ADDR_81 };
646 const uint32_t def_npiv_conf0[] =
647 { FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
648 FA_NPIV_CONF0_ADDR_81 };
649 const uint32_t def_npiv_conf1[] =
650 { FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
651 FA_NPIV_CONF1_ADDR_81 };
652 const uint32_t fcp_prio_cfg0[] =
653 { FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
654 0 };
655 const uint32_t fcp_prio_cfg1[] =
656 { FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
657 0 };
658 uint32_t def;
659 uint16_t *wptr;
660 uint16_t cnt, chksum;
661 uint32_t start;
662 struct qla_flt_header *flt;
663 struct qla_flt_region *region;
664 struct qla_hw_data *ha = vha->hw;
665 struct req_que *req = ha->req_q_map[0];
667 def = 0;
668 if (IS_QLA25XX(ha))
669 def = 1;
670 else if (IS_QLA81XX(ha))
671 def = 2;
672 ha->flt_region_flt = flt_addr;
673 wptr = (uint16_t *)req->ring;
674 flt = (struct qla_flt_header *)req->ring;
675 region = (struct qla_flt_region *)&flt[1];
676 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
677 flt_addr << 2, OPTROM_BURST_SIZE);
678 if (*wptr == __constant_cpu_to_le16(0xffff))
679 goto no_flash_data;
680 if (flt->version != __constant_cpu_to_le16(1)) {
681 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
682 "version=0x%x length=0x%x checksum=0x%x.\n",
683 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
684 le16_to_cpu(flt->checksum)));
685 goto no_flash_data;
688 cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
689 for (chksum = 0; cnt; cnt--)
690 chksum += le16_to_cpu(*wptr++);
691 if (chksum) {
692 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
693 "version=0x%x length=0x%x checksum=0x%x.\n",
694 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
695 chksum));
696 goto no_flash_data;
699 /* Assign FCP prio region since older FLT's may not have it */
700 ha->flt_region_fcp_prio = ha->flags.port0 ?
701 fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
703 loc = locations[1];
704 cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
705 for ( ; cnt; cnt--, region++) {
706 /* Store addresses as DWORD offsets. */
707 start = le32_to_cpu(region->start) >> 2;
709 DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
710 "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
711 le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
713 switch (le32_to_cpu(region->code) & 0xff) {
714 case FLT_REG_FW:
715 ha->flt_region_fw = start;
716 break;
717 case FLT_REG_BOOT_CODE:
718 ha->flt_region_boot = start;
719 break;
720 case FLT_REG_VPD_0:
721 ha->flt_region_vpd_nvram = start;
722 if (IS_QLA82XX(ha))
723 break;
724 if (ha->flags.port0)
725 ha->flt_region_vpd = start;
726 break;
727 case FLT_REG_VPD_1:
728 if (IS_QLA82XX(ha))
729 break;
730 if (!ha->flags.port0)
731 ha->flt_region_vpd = start;
732 break;
733 case FLT_REG_NVRAM_0:
734 if (ha->flags.port0)
735 ha->flt_region_nvram = start;
736 break;
737 case FLT_REG_NVRAM_1:
738 if (!ha->flags.port0)
739 ha->flt_region_nvram = start;
740 break;
741 case FLT_REG_FDT:
742 ha->flt_region_fdt = start;
743 break;
744 case FLT_REG_NPIV_CONF_0:
745 if (ha->flags.port0)
746 ha->flt_region_npiv_conf = start;
747 break;
748 case FLT_REG_NPIV_CONF_1:
749 if (!ha->flags.port0)
750 ha->flt_region_npiv_conf = start;
751 break;
752 case FLT_REG_GOLD_FW:
753 ha->flt_region_gold_fw = start;
754 break;
755 case FLT_REG_FCP_PRIO_0:
756 if (ha->flags.port0)
757 ha->flt_region_fcp_prio = start;
758 break;
759 case FLT_REG_FCP_PRIO_1:
760 if (!ha->flags.port0)
761 ha->flt_region_fcp_prio = start;
762 break;
763 case FLT_REG_BOOT_CODE_82XX:
764 ha->flt_region_boot = start;
765 break;
766 case FLT_REG_FW_82XX:
767 ha->flt_region_fw = start;
768 break;
769 case FLT_REG_GOLD_FW_82XX:
770 ha->flt_region_gold_fw = start;
771 break;
772 case FLT_REG_BOOTLOAD_82XX:
773 ha->flt_region_bootload = start;
774 break;
775 case FLT_REG_VPD_82XX:
776 ha->flt_region_vpd = start;
777 break;
780 goto done;
782 no_flash_data:
783 /* Use hardcoded defaults. */
784 loc = locations[0];
785 ha->flt_region_fw = def_fw[def];
786 ha->flt_region_boot = def_boot[def];
787 ha->flt_region_vpd_nvram = def_vpd_nvram[def];
788 ha->flt_region_vpd = ha->flags.port0 ?
789 def_vpd0[def] : def_vpd1[def];
790 ha->flt_region_nvram = ha->flags.port0 ?
791 def_nvram0[def] : def_nvram1[def];
792 ha->flt_region_fdt = def_fdt[def];
793 ha->flt_region_npiv_conf = ha->flags.port0 ?
794 def_npiv_conf0[def] : def_npiv_conf1[def];
795 done:
796 DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
797 "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
798 "npiv=0x%x. fcp_prio_cfg=0x%x\n", loc, ha->flt_region_boot,
799 ha->flt_region_fw, ha->flt_region_vpd_nvram, ha->flt_region_vpd,
800 ha->flt_region_nvram, ha->flt_region_fdt, ha->flt_region_flt,
801 ha->flt_region_npiv_conf, ha->flt_region_fcp_prio));
804 static void
805 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
807 #define FLASH_BLK_SIZE_4K 0x1000
808 #define FLASH_BLK_SIZE_32K 0x8000
809 #define FLASH_BLK_SIZE_64K 0x10000
810 const char *loc, *locations[] = { "MID", "FDT" };
811 uint16_t cnt, chksum;
812 uint16_t *wptr;
813 struct qla_fdt_layout *fdt;
814 uint8_t man_id, flash_id;
815 uint16_t mid = 0, fid = 0;
816 struct qla_hw_data *ha = vha->hw;
817 struct req_que *req = ha->req_q_map[0];
819 wptr = (uint16_t *)req->ring;
820 fdt = (struct qla_fdt_layout *)req->ring;
821 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
822 ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
823 if (*wptr == __constant_cpu_to_le16(0xffff))
824 goto no_flash_data;
825 if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
826 fdt->sig[3] != 'D')
827 goto no_flash_data;
829 for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
830 cnt++)
831 chksum += le16_to_cpu(*wptr++);
832 if (chksum) {
833 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
834 "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
835 le16_to_cpu(fdt->version)));
836 DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
837 goto no_flash_data;
840 loc = locations[1];
841 mid = le16_to_cpu(fdt->man_id);
842 fid = le16_to_cpu(fdt->id);
843 ha->fdt_wrt_disable = fdt->wrt_disable_bits;
844 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
845 ha->fdt_block_size = le32_to_cpu(fdt->block_size);
846 if (fdt->unprotect_sec_cmd) {
847 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
848 fdt->unprotect_sec_cmd);
849 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
850 flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
851 flash_conf_addr(ha, 0x0336);
853 goto done;
854 no_flash_data:
855 loc = locations[0];
856 if (IS_QLA82XX(ha)) {
857 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
858 goto done;
860 qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
861 mid = man_id;
862 fid = flash_id;
863 ha->fdt_wrt_disable = 0x9c;
864 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
865 switch (man_id) {
866 case 0xbf: /* STT flash. */
867 if (flash_id == 0x8e)
868 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
869 else
870 ha->fdt_block_size = FLASH_BLK_SIZE_32K;
872 if (flash_id == 0x80)
873 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
874 break;
875 case 0x13: /* ST M25P80. */
876 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
877 break;
878 case 0x1f: /* Atmel 26DF081A. */
879 ha->fdt_block_size = FLASH_BLK_SIZE_4K;
880 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
881 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
882 ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
883 break;
884 default:
885 /* Default to 64 kb sector size. */
886 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
887 break;
889 done:
890 DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
891 "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
892 ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
893 ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
894 ha->fdt_block_size));
897 static void
898 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
900 #define QLA82XX_IDC_PARAM_ADDR 0x003e885c
901 uint32_t *wptr;
902 struct qla_hw_data *ha = vha->hw;
903 struct req_que *req = ha->req_q_map[0];
905 if (!IS_QLA82XX(ha))
906 return;
908 wptr = (uint32_t *)req->ring;
909 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
910 QLA82XX_IDC_PARAM_ADDR , 8);
912 if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
913 ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
914 ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
915 } else {
916 ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
917 ha->nx_reset_timeout = le32_to_cpu(*wptr);
919 return;
923 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
925 int ret;
926 uint32_t flt_addr;
927 struct qla_hw_data *ha = vha->hw;
929 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
930 return QLA_SUCCESS;
932 ret = qla2xxx_find_flt_start(vha, &flt_addr);
933 if (ret != QLA_SUCCESS)
934 return ret;
936 qla2xxx_get_flt_info(vha, flt_addr);
937 qla2xxx_get_fdt_info(vha);
938 qla2xxx_get_idc_param(vha);
940 return QLA_SUCCESS;
943 void
944 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
946 #define NPIV_CONFIG_SIZE (16*1024)
947 void *data;
948 uint16_t *wptr;
949 uint16_t cnt, chksum;
950 int i;
951 struct qla_npiv_header hdr;
952 struct qla_npiv_entry *entry;
953 struct qla_hw_data *ha = vha->hw;
955 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
956 return;
958 ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
959 ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
960 if (hdr.version == __constant_cpu_to_le16(0xffff))
961 return;
962 if (hdr.version != __constant_cpu_to_le16(1)) {
963 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
964 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
965 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
966 le16_to_cpu(hdr.checksum)));
967 return;
970 data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
971 if (!data) {
972 DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
973 "allocate memory.\n"));
974 return;
977 ha->isp_ops->read_optrom(vha, (uint8_t *)data,
978 ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
980 cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
981 sizeof(struct qla_npiv_entry)) >> 1;
982 for (wptr = data, chksum = 0; cnt; cnt--)
983 chksum += le16_to_cpu(*wptr++);
984 if (chksum) {
985 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
986 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
987 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
988 chksum));
989 goto done;
992 entry = data + sizeof(struct qla_npiv_header);
993 cnt = le16_to_cpu(hdr.entries);
994 for (i = 0; cnt; cnt--, entry++, i++) {
995 uint16_t flags;
996 struct fc_vport_identifiers vid;
997 struct fc_vport *vport;
999 memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1001 flags = le16_to_cpu(entry->flags);
1002 if (flags == 0xffff)
1003 continue;
1004 if ((flags & BIT_0) == 0)
1005 continue;
1007 memset(&vid, 0, sizeof(vid));
1008 vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1009 vid.vport_type = FC_PORTTYPE_NPIV;
1010 vid.disable = false;
1011 vid.port_name = wwn_to_u64(entry->port_name);
1012 vid.node_name = wwn_to_u64(entry->node_name);
1014 DEBUG2(qla_printk(KERN_INFO, ha, "NPIV[%02x]: wwpn=%llx "
1015 "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1016 (unsigned long long)vid.port_name,
1017 (unsigned long long)vid.node_name,
1018 le16_to_cpu(entry->vf_id),
1019 entry->q_qos, entry->f_qos));
1021 if (i < QLA_PRECONFIG_VPORTS) {
1022 vport = fc_vport_create(vha->host, 0, &vid);
1023 if (!vport)
1024 qla_printk(KERN_INFO, ha,
1025 "NPIV-Config: Failed to create vport [%02x]: "
1026 "wwpn=%llx wwnn=%llx.\n", cnt,
1027 (unsigned long long)vid.port_name,
1028 (unsigned long long)vid.node_name);
1031 done:
1032 kfree(data);
1035 static int
1036 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1038 struct qla_hw_data *ha = vha->hw;
1039 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1041 if (ha->flags.fac_supported)
1042 return qla81xx_fac_do_write_enable(vha, 1);
1044 /* Enable flash write. */
1045 WRT_REG_DWORD(&reg->ctrl_status,
1046 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1047 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1049 if (!ha->fdt_wrt_disable)
1050 goto done;
1052 /* Disable flash write-protection, first clear SR protection bit */
1053 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1054 /* Then write zero again to clear remaining SR bits.*/
1055 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1056 done:
1057 return QLA_SUCCESS;
1060 static int
1061 qla24xx_protect_flash(scsi_qla_host_t *vha)
1063 uint32_t cnt;
1064 struct qla_hw_data *ha = vha->hw;
1065 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1067 if (ha->flags.fac_supported)
1068 return qla81xx_fac_do_write_enable(vha, 0);
1070 if (!ha->fdt_wrt_disable)
1071 goto skip_wrt_protect;
1073 /* Enable flash write-protection and wait for completion. */
1074 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1075 ha->fdt_wrt_disable);
1076 for (cnt = 300; cnt &&
1077 qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1078 cnt--) {
1079 udelay(10);
1082 skip_wrt_protect:
1083 /* Disable flash write. */
1084 WRT_REG_DWORD(&reg->ctrl_status,
1085 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1086 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1088 return QLA_SUCCESS;
1091 static int
1092 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1094 struct qla_hw_data *ha = vha->hw;
1095 uint32_t start, finish;
1097 if (ha->flags.fac_supported) {
1098 start = fdata >> 2;
1099 finish = start + (ha->fdt_block_size >> 2) - 1;
1100 return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1101 start), flash_data_addr(ha, finish));
1104 return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1105 (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1106 ((fdata >> 16) & 0xff));
1109 static int
1110 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1111 uint32_t dwords)
1113 int ret;
1114 uint32_t liter;
1115 uint32_t sec_mask, rest_addr;
1116 uint32_t fdata;
1117 dma_addr_t optrom_dma;
1118 void *optrom = NULL;
1119 struct qla_hw_data *ha = vha->hw;
1121 /* Prepare burst-capable write on supported ISPs. */
1122 if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1123 dwords > OPTROM_BURST_DWORDS) {
1124 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1125 &optrom_dma, GFP_KERNEL);
1126 if (!optrom) {
1127 qla_printk(KERN_DEBUG, ha,
1128 "Unable to allocate memory for optrom burst write "
1129 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1133 rest_addr = (ha->fdt_block_size >> 2) - 1;
1134 sec_mask = ~rest_addr;
1136 ret = qla24xx_unprotect_flash(vha);
1137 if (ret != QLA_SUCCESS) {
1138 qla_printk(KERN_WARNING, ha,
1139 "Unable to unprotect flash for update.\n");
1140 goto done;
1143 for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1144 fdata = (faddr & sec_mask) << 2;
1146 /* Are we at the beginning of a sector? */
1147 if ((faddr & rest_addr) == 0) {
1148 /* Do sector unprotect. */
1149 if (ha->fdt_unprotect_sec_cmd)
1150 qla24xx_write_flash_dword(ha,
1151 ha->fdt_unprotect_sec_cmd,
1152 (fdata & 0xff00) | ((fdata << 16) &
1153 0xff0000) | ((fdata >> 16) & 0xff));
1154 ret = qla24xx_erase_sector(vha, fdata);
1155 if (ret != QLA_SUCCESS) {
1156 DEBUG9(qla_printk(KERN_WARNING, ha,
1157 "Unable to erase sector: address=%x.\n",
1158 faddr));
1159 break;
1163 /* Go with burst-write. */
1164 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1165 /* Copy data to DMA'ble buffer. */
1166 memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1168 ret = qla2x00_load_ram(vha, optrom_dma,
1169 flash_data_addr(ha, faddr),
1170 OPTROM_BURST_DWORDS);
1171 if (ret != QLA_SUCCESS) {
1172 qla_printk(KERN_WARNING, ha,
1173 "Unable to burst-write optrom segment "
1174 "(%x/%x/%llx).\n", ret,
1175 flash_data_addr(ha, faddr),
1176 (unsigned long long)optrom_dma);
1177 qla_printk(KERN_WARNING, ha,
1178 "Reverting to slow-write.\n");
1180 dma_free_coherent(&ha->pdev->dev,
1181 OPTROM_BURST_SIZE, optrom, optrom_dma);
1182 optrom = NULL;
1183 } else {
1184 liter += OPTROM_BURST_DWORDS - 1;
1185 faddr += OPTROM_BURST_DWORDS - 1;
1186 dwptr += OPTROM_BURST_DWORDS - 1;
1187 continue;
1191 ret = qla24xx_write_flash_dword(ha,
1192 flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1193 if (ret != QLA_SUCCESS) {
1194 DEBUG9(printk("%s(%ld) Unable to program flash "
1195 "address=%x data=%x.\n", __func__,
1196 vha->host_no, faddr, *dwptr));
1197 break;
1200 /* Do sector protect. */
1201 if (ha->fdt_unprotect_sec_cmd &&
1202 ((faddr & rest_addr) == rest_addr))
1203 qla24xx_write_flash_dword(ha,
1204 ha->fdt_protect_sec_cmd,
1205 (fdata & 0xff00) | ((fdata << 16) &
1206 0xff0000) | ((fdata >> 16) & 0xff));
1209 ret = qla24xx_protect_flash(vha);
1210 if (ret != QLA_SUCCESS)
1211 qla_printk(KERN_WARNING, ha,
1212 "Unable to protect flash after update.\n");
1213 done:
1214 if (optrom)
1215 dma_free_coherent(&ha->pdev->dev,
1216 OPTROM_BURST_SIZE, optrom, optrom_dma);
1218 return ret;
1221 uint8_t *
1222 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1223 uint32_t bytes)
1225 uint32_t i;
1226 uint16_t *wptr;
1227 struct qla_hw_data *ha = vha->hw;
1229 /* Word reads to NVRAM via registers. */
1230 wptr = (uint16_t *)buf;
1231 qla2x00_lock_nvram_access(ha);
1232 for (i = 0; i < bytes >> 1; i++, naddr++)
1233 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1234 naddr));
1235 qla2x00_unlock_nvram_access(ha);
1237 return buf;
1240 uint8_t *
1241 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1242 uint32_t bytes)
1244 uint32_t i;
1245 uint32_t *dwptr;
1246 struct qla_hw_data *ha = vha->hw;
1248 if (IS_QLA82XX(ha))
1249 return buf;
1251 /* Dword reads to flash. */
1252 dwptr = (uint32_t *)buf;
1253 for (i = 0; i < bytes >> 2; i++, naddr++)
1254 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1255 nvram_data_addr(ha, naddr)));
1257 return buf;
1261 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1262 uint32_t bytes)
1264 int ret, stat;
1265 uint32_t i;
1266 uint16_t *wptr;
1267 unsigned long flags;
1268 struct qla_hw_data *ha = vha->hw;
1270 ret = QLA_SUCCESS;
1272 spin_lock_irqsave(&ha->hardware_lock, flags);
1273 qla2x00_lock_nvram_access(ha);
1275 /* Disable NVRAM write-protection. */
1276 stat = qla2x00_clear_nvram_protection(ha);
1278 wptr = (uint16_t *)buf;
1279 for (i = 0; i < bytes >> 1; i++, naddr++) {
1280 qla2x00_write_nvram_word(ha, naddr,
1281 cpu_to_le16(*wptr));
1282 wptr++;
1285 /* Enable NVRAM write-protection. */
1286 qla2x00_set_nvram_protection(ha, stat);
1288 qla2x00_unlock_nvram_access(ha);
1289 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1291 return ret;
1295 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1296 uint32_t bytes)
1298 int ret;
1299 uint32_t i;
1300 uint32_t *dwptr;
1301 struct qla_hw_data *ha = vha->hw;
1302 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1304 ret = QLA_SUCCESS;
1306 if (IS_QLA82XX(ha))
1307 return ret;
1309 /* Enable flash write. */
1310 WRT_REG_DWORD(&reg->ctrl_status,
1311 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1312 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1314 /* Disable NVRAM write-protection. */
1315 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1316 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1318 /* Dword writes to flash. */
1319 dwptr = (uint32_t *)buf;
1320 for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1321 ret = qla24xx_write_flash_dword(ha,
1322 nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1323 if (ret != QLA_SUCCESS) {
1324 DEBUG9(qla_printk(KERN_WARNING, ha,
1325 "Unable to program nvram address=%x data=%x.\n",
1326 naddr, *dwptr));
1327 break;
1331 /* Enable NVRAM write-protection. */
1332 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1334 /* Disable flash write. */
1335 WRT_REG_DWORD(&reg->ctrl_status,
1336 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1337 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1339 return ret;
1342 uint8_t *
1343 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1344 uint32_t bytes)
1346 uint32_t i;
1347 uint32_t *dwptr;
1348 struct qla_hw_data *ha = vha->hw;
1350 /* Dword reads to flash. */
1351 dwptr = (uint32_t *)buf;
1352 for (i = 0; i < bytes >> 2; i++, naddr++)
1353 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1354 flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1356 return buf;
1360 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1361 uint32_t bytes)
1363 struct qla_hw_data *ha = vha->hw;
1364 #define RMW_BUFFER_SIZE (64 * 1024)
1365 uint8_t *dbuf;
1367 dbuf = vmalloc(RMW_BUFFER_SIZE);
1368 if (!dbuf)
1369 return QLA_MEMORY_ALLOC_FAILED;
1370 ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1371 RMW_BUFFER_SIZE);
1372 memcpy(dbuf + (naddr << 2), buf, bytes);
1373 ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1374 RMW_BUFFER_SIZE);
1375 vfree(dbuf);
1377 return QLA_SUCCESS;
1380 static inline void
1381 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1383 if (IS_QLA2322(ha)) {
1384 /* Flip all colors. */
1385 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1386 /* Turn off. */
1387 ha->beacon_color_state = 0;
1388 *pflags = GPIO_LED_ALL_OFF;
1389 } else {
1390 /* Turn on. */
1391 ha->beacon_color_state = QLA_LED_ALL_ON;
1392 *pflags = GPIO_LED_RGA_ON;
1394 } else {
1395 /* Flip green led only. */
1396 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1397 /* Turn off. */
1398 ha->beacon_color_state = 0;
1399 *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1400 } else {
1401 /* Turn on. */
1402 ha->beacon_color_state = QLA_LED_GRN_ON;
1403 *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1408 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1410 void
1411 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1413 uint16_t gpio_enable;
1414 uint16_t gpio_data;
1415 uint16_t led_color = 0;
1416 unsigned long flags;
1417 struct qla_hw_data *ha = vha->hw;
1418 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1420 if (IS_QLA82XX(ha))
1421 return;
1423 spin_lock_irqsave(&ha->hardware_lock, flags);
1425 /* Save the Original GPIOE. */
1426 if (ha->pio_address) {
1427 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1428 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1429 } else {
1430 gpio_enable = RD_REG_WORD(&reg->gpioe);
1431 gpio_data = RD_REG_WORD(&reg->gpiod);
1434 /* Set the modified gpio_enable values */
1435 gpio_enable |= GPIO_LED_MASK;
1437 if (ha->pio_address) {
1438 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1439 } else {
1440 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1441 RD_REG_WORD(&reg->gpioe);
1444 qla2x00_flip_colors(ha, &led_color);
1446 /* Clear out any previously set LED color. */
1447 gpio_data &= ~GPIO_LED_MASK;
1449 /* Set the new input LED color to GPIOD. */
1450 gpio_data |= led_color;
1452 /* Set the modified gpio_data values */
1453 if (ha->pio_address) {
1454 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1455 } else {
1456 WRT_REG_WORD(&reg->gpiod, gpio_data);
1457 RD_REG_WORD(&reg->gpiod);
1460 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1464 qla2x00_beacon_on(struct scsi_qla_host *vha)
1466 uint16_t gpio_enable;
1467 uint16_t gpio_data;
1468 unsigned long flags;
1469 struct qla_hw_data *ha = vha->hw;
1470 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1472 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1473 ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1475 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1476 qla_printk(KERN_WARNING, ha,
1477 "Unable to update fw options (beacon on).\n");
1478 return QLA_FUNCTION_FAILED;
1481 /* Turn off LEDs. */
1482 spin_lock_irqsave(&ha->hardware_lock, flags);
1483 if (ha->pio_address) {
1484 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1485 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1486 } else {
1487 gpio_enable = RD_REG_WORD(&reg->gpioe);
1488 gpio_data = RD_REG_WORD(&reg->gpiod);
1490 gpio_enable |= GPIO_LED_MASK;
1492 /* Set the modified gpio_enable values. */
1493 if (ha->pio_address) {
1494 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1495 } else {
1496 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1497 RD_REG_WORD(&reg->gpioe);
1500 /* Clear out previously set LED colour. */
1501 gpio_data &= ~GPIO_LED_MASK;
1502 if (ha->pio_address) {
1503 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1504 } else {
1505 WRT_REG_WORD(&reg->gpiod, gpio_data);
1506 RD_REG_WORD(&reg->gpiod);
1508 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1511 * Let the per HBA timer kick off the blinking process based on
1512 * the following flags. No need to do anything else now.
1514 ha->beacon_blink_led = 1;
1515 ha->beacon_color_state = 0;
1517 return QLA_SUCCESS;
1521 qla2x00_beacon_off(struct scsi_qla_host *vha)
1523 int rval = QLA_SUCCESS;
1524 struct qla_hw_data *ha = vha->hw;
1526 ha->beacon_blink_led = 0;
1528 /* Set the on flag so when it gets flipped it will be off. */
1529 if (IS_QLA2322(ha))
1530 ha->beacon_color_state = QLA_LED_ALL_ON;
1531 else
1532 ha->beacon_color_state = QLA_LED_GRN_ON;
1534 ha->isp_ops->beacon_blink(vha); /* This turns green LED off */
1536 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1537 ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1539 rval = qla2x00_set_fw_options(vha, ha->fw_options);
1540 if (rval != QLA_SUCCESS)
1541 qla_printk(KERN_WARNING, ha,
1542 "Unable to update fw options (beacon off).\n");
1543 return rval;
1547 static inline void
1548 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1550 /* Flip all colors. */
1551 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1552 /* Turn off. */
1553 ha->beacon_color_state = 0;
1554 *pflags = 0;
1555 } else {
1556 /* Turn on. */
1557 ha->beacon_color_state = QLA_LED_ALL_ON;
1558 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1562 void
1563 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1565 uint16_t led_color = 0;
1566 uint32_t gpio_data;
1567 unsigned long flags;
1568 struct qla_hw_data *ha = vha->hw;
1569 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1571 /* Save the Original GPIOD. */
1572 spin_lock_irqsave(&ha->hardware_lock, flags);
1573 gpio_data = RD_REG_DWORD(&reg->gpiod);
1575 /* Enable the gpio_data reg for update. */
1576 gpio_data |= GPDX_LED_UPDATE_MASK;
1578 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1579 gpio_data = RD_REG_DWORD(&reg->gpiod);
1581 /* Set the color bits. */
1582 qla24xx_flip_colors(ha, &led_color);
1584 /* Clear out any previously set LED color. */
1585 gpio_data &= ~GPDX_LED_COLOR_MASK;
1587 /* Set the new input LED color to GPIOD. */
1588 gpio_data |= led_color;
1590 /* Set the modified gpio_data values. */
1591 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1592 gpio_data = RD_REG_DWORD(&reg->gpiod);
1593 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1597 qla24xx_beacon_on(struct scsi_qla_host *vha)
1599 uint32_t gpio_data;
1600 unsigned long flags;
1601 struct qla_hw_data *ha = vha->hw;
1602 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1604 if (IS_QLA82XX(ha))
1605 return QLA_SUCCESS;
1607 if (ha->beacon_blink_led == 0) {
1608 /* Enable firmware for update */
1609 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1611 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1612 return QLA_FUNCTION_FAILED;
1614 if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1615 QLA_SUCCESS) {
1616 qla_printk(KERN_WARNING, ha,
1617 "Unable to update fw options (beacon on).\n");
1618 return QLA_FUNCTION_FAILED;
1621 spin_lock_irqsave(&ha->hardware_lock, flags);
1622 gpio_data = RD_REG_DWORD(&reg->gpiod);
1624 /* Enable the gpio_data reg for update. */
1625 gpio_data |= GPDX_LED_UPDATE_MASK;
1626 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1627 RD_REG_DWORD(&reg->gpiod);
1629 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1632 /* So all colors blink together. */
1633 ha->beacon_color_state = 0;
1635 /* Let the per HBA timer kick off the blinking process. */
1636 ha->beacon_blink_led = 1;
1638 return QLA_SUCCESS;
1642 qla24xx_beacon_off(struct scsi_qla_host *vha)
1644 uint32_t gpio_data;
1645 unsigned long flags;
1646 struct qla_hw_data *ha = vha->hw;
1647 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1649 if (IS_QLA82XX(ha))
1650 return QLA_SUCCESS;
1652 ha->beacon_blink_led = 0;
1653 ha->beacon_color_state = QLA_LED_ALL_ON;
1655 ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */
1657 /* Give control back to firmware. */
1658 spin_lock_irqsave(&ha->hardware_lock, flags);
1659 gpio_data = RD_REG_DWORD(&reg->gpiod);
1661 /* Disable the gpio_data reg for update. */
1662 gpio_data &= ~GPDX_LED_UPDATE_MASK;
1663 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1664 RD_REG_DWORD(&reg->gpiod);
1665 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1667 ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1669 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1670 qla_printk(KERN_WARNING, ha,
1671 "Unable to update fw options (beacon off).\n");
1672 return QLA_FUNCTION_FAILED;
1675 if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1676 qla_printk(KERN_WARNING, ha,
1677 "Unable to get fw options (beacon off).\n");
1678 return QLA_FUNCTION_FAILED;
1681 return QLA_SUCCESS;
1686 * Flash support routines
1690 * qla2x00_flash_enable() - Setup flash for reading and writing.
1691 * @ha: HA context
1693 static void
1694 qla2x00_flash_enable(struct qla_hw_data *ha)
1696 uint16_t data;
1697 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1699 data = RD_REG_WORD(&reg->ctrl_status);
1700 data |= CSR_FLASH_ENABLE;
1701 WRT_REG_WORD(&reg->ctrl_status, data);
1702 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1706 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1707 * @ha: HA context
1709 static void
1710 qla2x00_flash_disable(struct qla_hw_data *ha)
1712 uint16_t data;
1713 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1715 data = RD_REG_WORD(&reg->ctrl_status);
1716 data &= ~(CSR_FLASH_ENABLE);
1717 WRT_REG_WORD(&reg->ctrl_status, data);
1718 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1722 * qla2x00_read_flash_byte() - Reads a byte from flash
1723 * @ha: HA context
1724 * @addr: Address in flash to read
1726 * A word is read from the chip, but, only the lower byte is valid.
1728 * Returns the byte read from flash @addr.
1730 static uint8_t
1731 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1733 uint16_t data;
1734 uint16_t bank_select;
1735 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1737 bank_select = RD_REG_WORD(&reg->ctrl_status);
1739 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1740 /* Specify 64K address range: */
1741 /* clear out Module Select and Flash Address bits [19:16]. */
1742 bank_select &= ~0xf8;
1743 bank_select |= addr >> 12 & 0xf0;
1744 bank_select |= CSR_FLASH_64K_BANK;
1745 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1746 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1748 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1749 data = RD_REG_WORD(&reg->flash_data);
1751 return (uint8_t)data;
1754 /* Setup bit 16 of flash address. */
1755 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1756 bank_select |= CSR_FLASH_64K_BANK;
1757 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1758 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1759 } else if (((addr & BIT_16) == 0) &&
1760 (bank_select & CSR_FLASH_64K_BANK)) {
1761 bank_select &= ~(CSR_FLASH_64K_BANK);
1762 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1763 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1766 /* Always perform IO mapped accesses to the FLASH registers. */
1767 if (ha->pio_address) {
1768 uint16_t data2;
1770 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1771 do {
1772 data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1773 barrier();
1774 cpu_relax();
1775 data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1776 } while (data != data2);
1777 } else {
1778 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1779 data = qla2x00_debounce_register(&reg->flash_data);
1782 return (uint8_t)data;
1786 * qla2x00_write_flash_byte() - Write a byte to flash
1787 * @ha: HA context
1788 * @addr: Address in flash to write
1789 * @data: Data to write
1791 static void
1792 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1794 uint16_t bank_select;
1795 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1797 bank_select = RD_REG_WORD(&reg->ctrl_status);
1798 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1799 /* Specify 64K address range: */
1800 /* clear out Module Select and Flash Address bits [19:16]. */
1801 bank_select &= ~0xf8;
1802 bank_select |= addr >> 12 & 0xf0;
1803 bank_select |= CSR_FLASH_64K_BANK;
1804 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1805 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1807 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1808 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1809 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1810 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1812 return;
1815 /* Setup bit 16 of flash address. */
1816 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1817 bank_select |= CSR_FLASH_64K_BANK;
1818 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1819 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1820 } else if (((addr & BIT_16) == 0) &&
1821 (bank_select & CSR_FLASH_64K_BANK)) {
1822 bank_select &= ~(CSR_FLASH_64K_BANK);
1823 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1824 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1827 /* Always perform IO mapped accesses to the FLASH registers. */
1828 if (ha->pio_address) {
1829 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1830 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1831 } else {
1832 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1833 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1834 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1835 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1840 * qla2x00_poll_flash() - Polls flash for completion.
1841 * @ha: HA context
1842 * @addr: Address in flash to poll
1843 * @poll_data: Data to be polled
1844 * @man_id: Flash manufacturer ID
1845 * @flash_id: Flash ID
1847 * This function polls the device until bit 7 of what is read matches data
1848 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
1849 * out (a fatal error). The flash book recommeds reading bit 7 again after
1850 * reading bit 5 as a 1.
1852 * Returns 0 on success, else non-zero.
1854 static int
1855 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1856 uint8_t man_id, uint8_t flash_id)
1858 int status;
1859 uint8_t flash_data;
1860 uint32_t cnt;
1862 status = 1;
1864 /* Wait for 30 seconds for command to finish. */
1865 poll_data &= BIT_7;
1866 for (cnt = 3000000; cnt; cnt--) {
1867 flash_data = qla2x00_read_flash_byte(ha, addr);
1868 if ((flash_data & BIT_7) == poll_data) {
1869 status = 0;
1870 break;
1873 if (man_id != 0x40 && man_id != 0xda) {
1874 if ((flash_data & BIT_5) && cnt > 2)
1875 cnt = 2;
1877 udelay(10);
1878 barrier();
1879 cond_resched();
1881 return status;
1885 * qla2x00_program_flash_address() - Programs a flash address
1886 * @ha: HA context
1887 * @addr: Address in flash to program
1888 * @data: Data to be written in flash
1889 * @man_id: Flash manufacturer ID
1890 * @flash_id: Flash ID
1892 * Returns 0 on success, else non-zero.
1894 static int
1895 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1896 uint8_t data, uint8_t man_id, uint8_t flash_id)
1898 /* Write Program Command Sequence. */
1899 if (IS_OEM_001(ha)) {
1900 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1901 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1902 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1903 qla2x00_write_flash_byte(ha, addr, data);
1904 } else {
1905 if (man_id == 0xda && flash_id == 0xc1) {
1906 qla2x00_write_flash_byte(ha, addr, data);
1907 if (addr & 0x7e)
1908 return 0;
1909 } else {
1910 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1911 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1912 qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1913 qla2x00_write_flash_byte(ha, addr, data);
1917 udelay(150);
1919 /* Wait for write to complete. */
1920 return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1924 * qla2x00_erase_flash() - Erase the flash.
1925 * @ha: HA context
1926 * @man_id: Flash manufacturer ID
1927 * @flash_id: Flash ID
1929 * Returns 0 on success, else non-zero.
1931 static int
1932 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1934 /* Individual Sector Erase Command Sequence */
1935 if (IS_OEM_001(ha)) {
1936 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1937 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1938 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1939 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1940 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1941 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1942 } else {
1943 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1944 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1945 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1946 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1947 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1948 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1951 udelay(150);
1953 /* Wait for erase to complete. */
1954 return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1958 * qla2x00_erase_flash_sector() - Erase a flash sector.
1959 * @ha: HA context
1960 * @addr: Flash sector to erase
1961 * @sec_mask: Sector address mask
1962 * @man_id: Flash manufacturer ID
1963 * @flash_id: Flash ID
1965 * Returns 0 on success, else non-zero.
1967 static int
1968 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1969 uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1971 /* Individual Sector Erase Command Sequence */
1972 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1973 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1974 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1975 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1976 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1977 if (man_id == 0x1f && flash_id == 0x13)
1978 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1979 else
1980 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1982 udelay(150);
1984 /* Wait for erase to complete. */
1985 return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1989 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1990 * @man_id: Flash manufacturer ID
1991 * @flash_id: Flash ID
1993 static void
1994 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1995 uint8_t *flash_id)
1997 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1998 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1999 qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2000 *man_id = qla2x00_read_flash_byte(ha, 0x0000);
2001 *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2002 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2003 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2004 qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2007 static void
2008 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2009 uint32_t saddr, uint32_t length)
2011 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2012 uint32_t midpoint, ilength;
2013 uint8_t data;
2015 midpoint = length / 2;
2017 WRT_REG_WORD(&reg->nvram, 0);
2018 RD_REG_WORD(&reg->nvram);
2019 for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2020 if (ilength == midpoint) {
2021 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2022 RD_REG_WORD(&reg->nvram);
2024 data = qla2x00_read_flash_byte(ha, saddr);
2025 if (saddr % 100)
2026 udelay(10);
2027 *tmp_buf = data;
2028 cond_resched();
2032 static inline void
2033 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2035 int cnt;
2036 unsigned long flags;
2037 struct qla_hw_data *ha = vha->hw;
2038 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2040 /* Suspend HBA. */
2041 scsi_block_requests(vha->host);
2042 ha->isp_ops->disable_intrs(ha);
2043 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2045 /* Pause RISC. */
2046 spin_lock_irqsave(&ha->hardware_lock, flags);
2047 WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2048 RD_REG_WORD(&reg->hccr);
2049 if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2050 for (cnt = 0; cnt < 30000; cnt++) {
2051 if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2052 break;
2053 udelay(100);
2055 } else {
2056 udelay(10);
2058 spin_unlock_irqrestore(&ha->hardware_lock, flags);
2061 static inline void
2062 qla2x00_resume_hba(struct scsi_qla_host *vha)
2064 struct qla_hw_data *ha = vha->hw;
2066 /* Resume HBA. */
2067 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2068 set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2069 qla2xxx_wake_dpc(vha);
2070 qla2x00_wait_for_chip_reset(vha);
2071 scsi_unblock_requests(vha->host);
2074 uint8_t *
2075 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2076 uint32_t offset, uint32_t length)
2078 uint32_t addr, midpoint;
2079 uint8_t *data;
2080 struct qla_hw_data *ha = vha->hw;
2081 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2083 /* Suspend HBA. */
2084 qla2x00_suspend_hba(vha);
2086 /* Go with read. */
2087 midpoint = ha->optrom_size / 2;
2089 qla2x00_flash_enable(ha);
2090 WRT_REG_WORD(&reg->nvram, 0);
2091 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2092 for (addr = offset, data = buf; addr < length; addr++, data++) {
2093 if (addr == midpoint) {
2094 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2095 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2098 *data = qla2x00_read_flash_byte(ha, addr);
2100 qla2x00_flash_disable(ha);
2102 /* Resume HBA. */
2103 qla2x00_resume_hba(vha);
2105 return buf;
2109 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2110 uint32_t offset, uint32_t length)
2113 int rval;
2114 uint8_t man_id, flash_id, sec_number, data;
2115 uint16_t wd;
2116 uint32_t addr, liter, sec_mask, rest_addr;
2117 struct qla_hw_data *ha = vha->hw;
2118 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2120 /* Suspend HBA. */
2121 qla2x00_suspend_hba(vha);
2123 rval = QLA_SUCCESS;
2124 sec_number = 0;
2126 /* Reset ISP chip. */
2127 WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2128 pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2130 /* Go with write. */
2131 qla2x00_flash_enable(ha);
2132 do { /* Loop once to provide quick error exit */
2133 /* Structure of flash memory based on manufacturer */
2134 if (IS_OEM_001(ha)) {
2135 /* OEM variant with special flash part. */
2136 man_id = flash_id = 0;
2137 rest_addr = 0xffff;
2138 sec_mask = 0x10000;
2139 goto update_flash;
2141 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2142 switch (man_id) {
2143 case 0x20: /* ST flash. */
2144 if (flash_id == 0xd2 || flash_id == 0xe3) {
2146 * ST m29w008at part - 64kb sector size with
2147 * 32kb,8kb,8kb,16kb sectors at memory address
2148 * 0xf0000.
2150 rest_addr = 0xffff;
2151 sec_mask = 0x10000;
2152 break;
2155 * ST m29w010b part - 16kb sector size
2156 * Default to 16kb sectors
2158 rest_addr = 0x3fff;
2159 sec_mask = 0x1c000;
2160 break;
2161 case 0x40: /* Mostel flash. */
2162 /* Mostel v29c51001 part - 512 byte sector size. */
2163 rest_addr = 0x1ff;
2164 sec_mask = 0x1fe00;
2165 break;
2166 case 0xbf: /* SST flash. */
2167 /* SST39sf10 part - 4kb sector size. */
2168 rest_addr = 0xfff;
2169 sec_mask = 0x1f000;
2170 break;
2171 case 0xda: /* Winbond flash. */
2172 /* Winbond W29EE011 part - 256 byte sector size. */
2173 rest_addr = 0x7f;
2174 sec_mask = 0x1ff80;
2175 break;
2176 case 0xc2: /* Macronix flash. */
2177 /* 64k sector size. */
2178 if (flash_id == 0x38 || flash_id == 0x4f) {
2179 rest_addr = 0xffff;
2180 sec_mask = 0x10000;
2181 break;
2183 /* Fall through... */
2185 case 0x1f: /* Atmel flash. */
2186 /* 512k sector size. */
2187 if (flash_id == 0x13) {
2188 rest_addr = 0x7fffffff;
2189 sec_mask = 0x80000000;
2190 break;
2192 /* Fall through... */
2194 case 0x01: /* AMD flash. */
2195 if (flash_id == 0x38 || flash_id == 0x40 ||
2196 flash_id == 0x4f) {
2197 /* Am29LV081 part - 64kb sector size. */
2198 /* Am29LV002BT part - 64kb sector size. */
2199 rest_addr = 0xffff;
2200 sec_mask = 0x10000;
2201 break;
2202 } else if (flash_id == 0x3e) {
2204 * Am29LV008b part - 64kb sector size with
2205 * 32kb,8kb,8kb,16kb sector at memory address
2206 * h0xf0000.
2208 rest_addr = 0xffff;
2209 sec_mask = 0x10000;
2210 break;
2211 } else if (flash_id == 0x20 || flash_id == 0x6e) {
2213 * Am29LV010 part or AM29f010 - 16kb sector
2214 * size.
2216 rest_addr = 0x3fff;
2217 sec_mask = 0x1c000;
2218 break;
2219 } else if (flash_id == 0x6d) {
2220 /* Am29LV001 part - 8kb sector size. */
2221 rest_addr = 0x1fff;
2222 sec_mask = 0x1e000;
2223 break;
2225 default:
2226 /* Default to 16 kb sector size. */
2227 rest_addr = 0x3fff;
2228 sec_mask = 0x1c000;
2229 break;
2232 update_flash:
2233 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2234 if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2235 rval = QLA_FUNCTION_FAILED;
2236 break;
2240 for (addr = offset, liter = 0; liter < length; liter++,
2241 addr++) {
2242 data = buf[liter];
2243 /* Are we at the beginning of a sector? */
2244 if ((addr & rest_addr) == 0) {
2245 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2246 if (addr >= 0x10000UL) {
2247 if (((addr >> 12) & 0xf0) &&
2248 ((man_id == 0x01 &&
2249 flash_id == 0x3e) ||
2250 (man_id == 0x20 &&
2251 flash_id == 0xd2))) {
2252 sec_number++;
2253 if (sec_number == 1) {
2254 rest_addr =
2255 0x7fff;
2256 sec_mask =
2257 0x18000;
2258 } else if (
2259 sec_number == 2 ||
2260 sec_number == 3) {
2261 rest_addr =
2262 0x1fff;
2263 sec_mask =
2264 0x1e000;
2265 } else if (
2266 sec_number == 4) {
2267 rest_addr =
2268 0x3fff;
2269 sec_mask =
2270 0x1c000;
2274 } else if (addr == ha->optrom_size / 2) {
2275 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2276 RD_REG_WORD(&reg->nvram);
2279 if (flash_id == 0xda && man_id == 0xc1) {
2280 qla2x00_write_flash_byte(ha, 0x5555,
2281 0xaa);
2282 qla2x00_write_flash_byte(ha, 0x2aaa,
2283 0x55);
2284 qla2x00_write_flash_byte(ha, 0x5555,
2285 0xa0);
2286 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2287 /* Then erase it */
2288 if (qla2x00_erase_flash_sector(ha,
2289 addr, sec_mask, man_id,
2290 flash_id)) {
2291 rval = QLA_FUNCTION_FAILED;
2292 break;
2294 if (man_id == 0x01 && flash_id == 0x6d)
2295 sec_number++;
2299 if (man_id == 0x01 && flash_id == 0x6d) {
2300 if (sec_number == 1 &&
2301 addr == (rest_addr - 1)) {
2302 rest_addr = 0x0fff;
2303 sec_mask = 0x1f000;
2304 } else if (sec_number == 3 && (addr & 0x7ffe)) {
2305 rest_addr = 0x3fff;
2306 sec_mask = 0x1c000;
2310 if (qla2x00_program_flash_address(ha, addr, data,
2311 man_id, flash_id)) {
2312 rval = QLA_FUNCTION_FAILED;
2313 break;
2315 cond_resched();
2317 } while (0);
2318 qla2x00_flash_disable(ha);
2320 /* Resume HBA. */
2321 qla2x00_resume_hba(vha);
2323 return rval;
2326 uint8_t *
2327 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2328 uint32_t offset, uint32_t length)
2330 struct qla_hw_data *ha = vha->hw;
2332 /* Suspend HBA. */
2333 scsi_block_requests(vha->host);
2334 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2336 /* Go with read. */
2337 qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2339 /* Resume HBA. */
2340 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2341 scsi_unblock_requests(vha->host);
2343 return buf;
2347 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2348 uint32_t offset, uint32_t length)
2350 int rval;
2351 struct qla_hw_data *ha = vha->hw;
2353 /* Suspend HBA. */
2354 scsi_block_requests(vha->host);
2355 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2357 /* Go with write. */
2358 rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2359 length >> 2);
2361 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2362 scsi_unblock_requests(vha->host);
2364 return rval;
2367 uint8_t *
2368 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2369 uint32_t offset, uint32_t length)
2371 int rval;
2372 dma_addr_t optrom_dma;
2373 void *optrom;
2374 uint8_t *pbuf;
2375 uint32_t faddr, left, burst;
2376 struct qla_hw_data *ha = vha->hw;
2378 if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
2379 goto try_fast;
2380 if (offset & 0xfff)
2381 goto slow_read;
2382 if (length < OPTROM_BURST_SIZE)
2383 goto slow_read;
2385 try_fast:
2386 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2387 &optrom_dma, GFP_KERNEL);
2388 if (!optrom) {
2389 qla_printk(KERN_DEBUG, ha,
2390 "Unable to allocate memory for optrom burst read "
2391 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2393 goto slow_read;
2396 pbuf = buf;
2397 faddr = offset >> 2;
2398 left = length >> 2;
2399 burst = OPTROM_BURST_DWORDS;
2400 while (left != 0) {
2401 if (burst > left)
2402 burst = left;
2404 rval = qla2x00_dump_ram(vha, optrom_dma,
2405 flash_data_addr(ha, faddr), burst);
2406 if (rval) {
2407 qla_printk(KERN_WARNING, ha,
2408 "Unable to burst-read optrom segment "
2409 "(%x/%x/%llx).\n", rval,
2410 flash_data_addr(ha, faddr),
2411 (unsigned long long)optrom_dma);
2412 qla_printk(KERN_WARNING, ha,
2413 "Reverting to slow-read.\n");
2415 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2416 optrom, optrom_dma);
2417 goto slow_read;
2420 memcpy(pbuf, optrom, burst * 4);
2422 left -= burst;
2423 faddr += burst;
2424 pbuf += burst * 4;
2427 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2428 optrom_dma);
2430 return buf;
2432 slow_read:
2433 return qla24xx_read_optrom_data(vha, buf, offset, length);
2437 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2438 * @ha: HA context
2439 * @pcids: Pointer to the FCODE PCI data structure
2441 * The process of retrieving the FCODE version information is at best
2442 * described as interesting.
2444 * Within the first 100h bytes of the image an ASCII string is present
2445 * which contains several pieces of information including the FCODE
2446 * version. Unfortunately it seems the only reliable way to retrieve
2447 * the version is by scanning for another sentinel within the string,
2448 * the FCODE build date:
2450 * ... 2.00.02 10/17/02 ...
2452 * Returns QLA_SUCCESS on successful retrieval of version.
2454 static void
2455 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2457 int ret = QLA_FUNCTION_FAILED;
2458 uint32_t istart, iend, iter, vend;
2459 uint8_t do_next, rbyte, *vbyte;
2461 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2463 /* Skip the PCI data structure. */
2464 istart = pcids +
2465 ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2466 qla2x00_read_flash_byte(ha, pcids + 0x0A));
2467 iend = istart + 0x100;
2468 do {
2469 /* Scan for the sentinel date string...eeewww. */
2470 do_next = 0;
2471 iter = istart;
2472 while ((iter < iend) && !do_next) {
2473 iter++;
2474 if (qla2x00_read_flash_byte(ha, iter) == '/') {
2475 if (qla2x00_read_flash_byte(ha, iter + 2) ==
2476 '/')
2477 do_next++;
2478 else if (qla2x00_read_flash_byte(ha,
2479 iter + 3) == '/')
2480 do_next++;
2483 if (!do_next)
2484 break;
2486 /* Backtrack to previous ' ' (space). */
2487 do_next = 0;
2488 while ((iter > istart) && !do_next) {
2489 iter--;
2490 if (qla2x00_read_flash_byte(ha, iter) == ' ')
2491 do_next++;
2493 if (!do_next)
2494 break;
2497 * Mark end of version tag, and find previous ' ' (space) or
2498 * string length (recent FCODE images -- major hack ahead!!!).
2500 vend = iter - 1;
2501 do_next = 0;
2502 while ((iter > istart) && !do_next) {
2503 iter--;
2504 rbyte = qla2x00_read_flash_byte(ha, iter);
2505 if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2506 do_next++;
2508 if (!do_next)
2509 break;
2511 /* Mark beginning of version tag, and copy data. */
2512 iter++;
2513 if ((vend - iter) &&
2514 ((vend - iter) < sizeof(ha->fcode_revision))) {
2515 vbyte = ha->fcode_revision;
2516 while (iter <= vend) {
2517 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2518 iter++;
2520 ret = QLA_SUCCESS;
2522 } while (0);
2524 if (ret != QLA_SUCCESS)
2525 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2529 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2531 int ret = QLA_SUCCESS;
2532 uint8_t code_type, last_image;
2533 uint32_t pcihdr, pcids;
2534 uint8_t *dbyte;
2535 uint16_t *dcode;
2536 struct qla_hw_data *ha = vha->hw;
2538 if (!ha->pio_address || !mbuf)
2539 return QLA_FUNCTION_FAILED;
2541 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2542 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2543 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2544 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2546 qla2x00_flash_enable(ha);
2548 /* Begin with first PCI expansion ROM header. */
2549 pcihdr = 0;
2550 last_image = 1;
2551 do {
2552 /* Verify PCI expansion ROM header. */
2553 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2554 qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2555 /* No signature */
2556 DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2557 "signature.\n"));
2558 ret = QLA_FUNCTION_FAILED;
2559 break;
2562 /* Locate PCI data structure. */
2563 pcids = pcihdr +
2564 ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2565 qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2567 /* Validate signature of PCI data structure. */
2568 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2569 qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2570 qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2571 qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2572 /* Incorrect header. */
2573 DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2574 "found pcir_adr=%x.\n", pcids));
2575 ret = QLA_FUNCTION_FAILED;
2576 break;
2579 /* Read version */
2580 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2581 switch (code_type) {
2582 case ROM_CODE_TYPE_BIOS:
2583 /* Intel x86, PC-AT compatible. */
2584 ha->bios_revision[0] =
2585 qla2x00_read_flash_byte(ha, pcids + 0x12);
2586 ha->bios_revision[1] =
2587 qla2x00_read_flash_byte(ha, pcids + 0x13);
2588 DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2589 ha->bios_revision[1], ha->bios_revision[0]));
2590 break;
2591 case ROM_CODE_TYPE_FCODE:
2592 /* Open Firmware standard for PCI (FCode). */
2593 /* Eeeewww... */
2594 qla2x00_get_fcode_version(ha, pcids);
2595 break;
2596 case ROM_CODE_TYPE_EFI:
2597 /* Extensible Firmware Interface (EFI). */
2598 ha->efi_revision[0] =
2599 qla2x00_read_flash_byte(ha, pcids + 0x12);
2600 ha->efi_revision[1] =
2601 qla2x00_read_flash_byte(ha, pcids + 0x13);
2602 DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2603 ha->efi_revision[1], ha->efi_revision[0]));
2604 break;
2605 default:
2606 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2607 "type %x at pcids %x.\n", code_type, pcids));
2608 break;
2611 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2613 /* Locate next PCI expansion ROM. */
2614 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2615 qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2616 } while (!last_image);
2618 if (IS_QLA2322(ha)) {
2619 /* Read firmware image information. */
2620 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2621 dbyte = mbuf;
2622 memset(dbyte, 0, 8);
2623 dcode = (uint16_t *)dbyte;
2625 qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2627 DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
2628 "flash:\n"));
2629 DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2631 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2632 dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2633 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2634 dcode[3] == 0)) {
2635 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2636 "revision at %x.\n", ha->flt_region_fw * 4));
2637 } else {
2638 /* values are in big endian */
2639 ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2640 ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2641 ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2645 qla2x00_flash_disable(ha);
2647 return ret;
2651 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2653 int ret = QLA_SUCCESS;
2654 uint32_t pcihdr, pcids;
2655 uint32_t *dcode;
2656 uint8_t *bcode;
2657 uint8_t code_type, last_image;
2658 int i;
2659 struct qla_hw_data *ha = vha->hw;
2661 if (IS_QLA82XX(ha))
2662 return ret;
2664 if (!mbuf)
2665 return QLA_FUNCTION_FAILED;
2667 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2668 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2669 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2670 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2672 dcode = mbuf;
2674 /* Begin with first PCI expansion ROM header. */
2675 pcihdr = ha->flt_region_boot << 2;
2676 last_image = 1;
2677 do {
2678 /* Verify PCI expansion ROM header. */
2679 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2680 bcode = mbuf + (pcihdr % 4);
2681 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2682 /* No signature */
2683 DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2684 "signature.\n"));
2685 ret = QLA_FUNCTION_FAILED;
2686 break;
2689 /* Locate PCI data structure. */
2690 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2692 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2693 bcode = mbuf + (pcihdr % 4);
2695 /* Validate signature of PCI data structure. */
2696 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2697 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2698 /* Incorrect header. */
2699 DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2700 "found pcir_adr=%x.\n", pcids));
2701 ret = QLA_FUNCTION_FAILED;
2702 break;
2705 /* Read version */
2706 code_type = bcode[0x14];
2707 switch (code_type) {
2708 case ROM_CODE_TYPE_BIOS:
2709 /* Intel x86, PC-AT compatible. */
2710 ha->bios_revision[0] = bcode[0x12];
2711 ha->bios_revision[1] = bcode[0x13];
2712 DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2713 ha->bios_revision[1], ha->bios_revision[0]));
2714 break;
2715 case ROM_CODE_TYPE_FCODE:
2716 /* Open Firmware standard for PCI (FCode). */
2717 ha->fcode_revision[0] = bcode[0x12];
2718 ha->fcode_revision[1] = bcode[0x13];
2719 DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2720 ha->fcode_revision[1], ha->fcode_revision[0]));
2721 break;
2722 case ROM_CODE_TYPE_EFI:
2723 /* Extensible Firmware Interface (EFI). */
2724 ha->efi_revision[0] = bcode[0x12];
2725 ha->efi_revision[1] = bcode[0x13];
2726 DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2727 ha->efi_revision[1], ha->efi_revision[0]));
2728 break;
2729 default:
2730 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2731 "type %x at pcids %x.\n", code_type, pcids));
2732 break;
2735 last_image = bcode[0x15] & BIT_7;
2737 /* Locate next PCI expansion ROM. */
2738 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2739 } while (!last_image);
2741 /* Read firmware image information. */
2742 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2743 dcode = mbuf;
2745 qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2746 for (i = 0; i < 4; i++)
2747 dcode[i] = be32_to_cpu(dcode[i]);
2749 if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2750 dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2751 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2752 dcode[3] == 0)) {
2753 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2754 "revision at %x.\n", ha->flt_region_fw * 4));
2755 } else {
2756 ha->fw_revision[0] = dcode[0];
2757 ha->fw_revision[1] = dcode[1];
2758 ha->fw_revision[2] = dcode[2];
2759 ha->fw_revision[3] = dcode[3];
2762 /* Check for golden firmware and get version if available */
2763 if (!IS_QLA81XX(ha)) {
2764 /* Golden firmware is not present in non 81XX adapters */
2765 return ret;
2768 memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
2769 dcode = mbuf;
2770 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
2771 ha->flt_region_gold_fw << 2, 32);
2773 if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
2774 dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
2775 DEBUG2(qla_printk(KERN_INFO, ha,
2776 "%s(%ld): Unrecognized golden fw at 0x%x.\n",
2777 __func__, vha->host_no, ha->flt_region_gold_fw * 4));
2778 return ret;
2781 for (i = 4; i < 8; i++)
2782 ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
2784 return ret;
2787 static int
2788 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2790 if (pos >= end || *pos != 0x82)
2791 return 0;
2793 pos += 3 + pos[1];
2794 if (pos >= end || *pos != 0x90)
2795 return 0;
2797 pos += 3 + pos[1];
2798 if (pos >= end || *pos != 0x78)
2799 return 0;
2801 return 1;
2805 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2807 struct qla_hw_data *ha = vha->hw;
2808 uint8_t *pos = ha->vpd;
2809 uint8_t *end = pos + ha->vpd_size;
2810 int len = 0;
2812 if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2813 return 0;
2815 while (pos < end && *pos != 0x78) {
2816 len = (*pos == 0x82) ? pos[1] : pos[2];
2818 if (!strncmp(pos, key, strlen(key)))
2819 break;
2821 if (*pos != 0x90 && *pos != 0x91)
2822 pos += len;
2824 pos += 3;
2827 if (pos < end - len && *pos != 0x78)
2828 return snprintf(str, size, "%.*s", len, pos + 3);
2830 return 0;
2834 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
2836 int len, max_len;
2837 uint32_t fcp_prio_addr;
2838 struct qla_hw_data *ha = vha->hw;
2840 if (!ha->fcp_prio_cfg) {
2841 ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
2842 if (!ha->fcp_prio_cfg) {
2843 qla_printk(KERN_WARNING, ha,
2844 "Unable to allocate memory for fcp priority data "
2845 "(%x).\n", FCP_PRIO_CFG_SIZE);
2846 return QLA_FUNCTION_FAILED;
2849 memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
2851 fcp_prio_addr = ha->flt_region_fcp_prio;
2853 /* first read the fcp priority data header from flash */
2854 ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
2855 fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
2857 if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 0))
2858 goto fail;
2860 /* read remaining FCP CMD config data from flash */
2861 fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
2862 len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
2863 max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
2865 ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
2866 fcp_prio_addr << 2, (len < max_len ? len : max_len));
2868 /* revalidate the entire FCP priority config data, including entries */
2869 if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 1))
2870 goto fail;
2872 ha->flags.fcp_prio_enabled = 1;
2873 return QLA_SUCCESS;
2874 fail:
2875 vfree(ha->fcp_prio_cfg);
2876 ha->fcp_prio_cfg = NULL;
2877 return QLA_FUNCTION_FAILED;