2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt2sas/mpt2_base.c
6 * Copyright (C) 2007-2010 LSI Corporation
7 * (mailto:DL-MPTFusionLinux@lsi.com)
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
21 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
22 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
23 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
24 * solely responsible for determining the appropriateness of using and
25 * distributing the Program and assumes all risks associated with its
26 * exercise of rights under this Agreement, including but not limited to
27 * the risks and costs of program errors, damage to or loss of data,
28 * programs or equipment, and unavailability or interruption of operations.
30 * DISCLAIMER OF LIABILITY
31 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
32 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
34 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
35 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
37 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
45 #include <linux/version.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/sort.h>
60 #include <linux/time.h>
61 #include <linux/aer.h>
63 #include "mpt2sas_base.h"
65 static MPT_CALLBACK mpt_callbacks
[MPT_MAX_CALLBACKS
];
67 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
68 #define MPT2SAS_MAX_REQUEST_QUEUE 600 /* maximum controller queue depth */
70 static int max_queue_depth
= -1;
71 module_param(max_queue_depth
, int, 0);
72 MODULE_PARM_DESC(max_queue_depth
, " max controller queue depth ");
74 static int max_sgl_entries
= -1;
75 module_param(max_sgl_entries
, int, 0);
76 MODULE_PARM_DESC(max_sgl_entries
, " max sg entries ");
78 static int msix_disable
= -1;
79 module_param(msix_disable
, int, 0);
80 MODULE_PARM_DESC(msix_disable
, " disable msix routed interrupts (default=0)");
82 /* diag_buffer_enable is bitwise
84 * bit 1 set = SNAPSHOT
85 * bit 2 set = EXTENDED
87 * Either bit can be set, or both
89 static int diag_buffer_enable
;
90 module_param(diag_buffer_enable
, int, 0);
91 MODULE_PARM_DESC(diag_buffer_enable
, " post diag buffers "
92 "(TRACE=1/SNAPSHOT=2/EXTENDED=4/default=0)");
94 int mpt2sas_fwfault_debug
;
95 MODULE_PARM_DESC(mpt2sas_fwfault_debug
, " enable detection of firmware fault "
96 "and halt firmware - (default=0)");
98 static int disable_discovery
= -1;
99 module_param(disable_discovery
, int, 0);
100 MODULE_PARM_DESC(disable_discovery
, " disable discovery ");
103 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
107 _scsih_set_fwfault_debug(const char *val
, struct kernel_param
*kp
)
109 int ret
= param_set_int(val
, kp
);
110 struct MPT2SAS_ADAPTER
*ioc
;
115 printk(KERN_INFO
"setting fwfault_debug(%d)\n", mpt2sas_fwfault_debug
);
116 list_for_each_entry(ioc
, &mpt2sas_ioc_list
, list
)
117 ioc
->fwfault_debug
= mpt2sas_fwfault_debug
;
120 module_param_call(mpt2sas_fwfault_debug
, _scsih_set_fwfault_debug
,
121 param_get_int
, &mpt2sas_fwfault_debug
, 0644);
124 * _base_fault_reset_work - workq handling ioc fault conditions
125 * @work: input argument, used to derive ioc
131 _base_fault_reset_work(struct work_struct
*work
)
133 struct MPT2SAS_ADAPTER
*ioc
=
134 container_of(work
, struct MPT2SAS_ADAPTER
, fault_reset_work
.work
);
139 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
140 if (ioc
->shost_recovery
)
142 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
144 doorbell
= mpt2sas_base_get_iocstate(ioc
, 0);
145 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
146 rc
= mpt2sas_base_hard_reset_handler(ioc
, CAN_SLEEP
,
148 printk(MPT2SAS_WARN_FMT
"%s: hard reset: %s\n", ioc
->name
,
149 __func__
, (rc
== 0) ? "success" : "failed");
150 doorbell
= mpt2sas_base_get_iocstate(ioc
, 0);
151 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
152 mpt2sas_base_fault_info(ioc
, doorbell
&
153 MPI2_DOORBELL_DATA_MASK
);
156 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
158 if (ioc
->fault_reset_work_q
)
159 queue_delayed_work(ioc
->fault_reset_work_q
,
160 &ioc
->fault_reset_work
,
161 msecs_to_jiffies(FAULT_POLLING_INTERVAL
));
162 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
166 * mpt2sas_base_start_watchdog - start the fault_reset_work_q
167 * @ioc: per adapter object
173 mpt2sas_base_start_watchdog(struct MPT2SAS_ADAPTER
*ioc
)
177 if (ioc
->fault_reset_work_q
)
180 /* initialize fault polling */
181 INIT_DELAYED_WORK(&ioc
->fault_reset_work
, _base_fault_reset_work
);
182 snprintf(ioc
->fault_reset_work_q_name
,
183 sizeof(ioc
->fault_reset_work_q_name
), "poll_%d_status", ioc
->id
);
184 ioc
->fault_reset_work_q
=
185 create_singlethread_workqueue(ioc
->fault_reset_work_q_name
);
186 if (!ioc
->fault_reset_work_q
) {
187 printk(MPT2SAS_ERR_FMT
"%s: failed (line=%d)\n",
188 ioc
->name
, __func__
, __LINE__
);
191 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
192 if (ioc
->fault_reset_work_q
)
193 queue_delayed_work(ioc
->fault_reset_work_q
,
194 &ioc
->fault_reset_work
,
195 msecs_to_jiffies(FAULT_POLLING_INTERVAL
));
196 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
200 * mpt2sas_base_stop_watchdog - stop the fault_reset_work_q
201 * @ioc: per adapter object
207 mpt2sas_base_stop_watchdog(struct MPT2SAS_ADAPTER
*ioc
)
210 struct workqueue_struct
*wq
;
212 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
213 wq
= ioc
->fault_reset_work_q
;
214 ioc
->fault_reset_work_q
= NULL
;
215 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
217 if (!cancel_delayed_work(&ioc
->fault_reset_work
))
219 destroy_workqueue(wq
);
224 * mpt2sas_base_fault_info - verbose translation of firmware FAULT code
225 * @ioc: per adapter object
226 * @fault_code: fault code
231 mpt2sas_base_fault_info(struct MPT2SAS_ADAPTER
*ioc
, u16 fault_code
)
233 printk(MPT2SAS_ERR_FMT
"fault_state(0x%04x)!\n",
234 ioc
->name
, fault_code
);
238 * mpt2sas_halt_firmware - halt's mpt controller firmware
239 * @ioc: per adapter object
241 * For debugging timeout related issues. Writing 0xCOFFEE00
242 * to the doorbell register will halt controller firmware. With
243 * the purpose to stop both driver and firmware, the enduser can
244 * obtain a ring buffer from controller UART.
247 mpt2sas_halt_firmware(struct MPT2SAS_ADAPTER
*ioc
)
251 if (!ioc
->fwfault_debug
)
256 doorbell
= readl(&ioc
->chip
->Doorbell
);
257 if ((doorbell
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
)
258 mpt2sas_base_fault_info(ioc
, doorbell
);
260 writel(0xC0FFEE00, &ioc
->chip
->Doorbell
);
261 printk(MPT2SAS_ERR_FMT
"Firmware is halted due to command "
262 "timeout\n", ioc
->name
);
265 panic("panic in %s\n", __func__
);
268 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
270 * _base_sas_ioc_info - verbose translation of the ioc status
271 * @ioc: per adapter object
272 * @mpi_reply: reply mf payload returned from firmware
273 * @request_hdr: request mf
278 _base_sas_ioc_info(struct MPT2SAS_ADAPTER
*ioc
, MPI2DefaultReply_t
*mpi_reply
,
279 MPI2RequestHeader_t
*request_hdr
)
281 u16 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
) &
285 char *func_str
= NULL
;
287 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
288 if (request_hdr
->Function
== MPI2_FUNCTION_SCSI_IO_REQUEST
||
289 request_hdr
->Function
== MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH
||
290 request_hdr
->Function
== MPI2_FUNCTION_EVENT_NOTIFICATION
)
293 if (ioc_status
== MPI2_IOCSTATUS_CONFIG_INVALID_PAGE
)
296 switch (ioc_status
) {
298 /****************************************************************************
299 * Common IOCStatus values for all replies
300 ****************************************************************************/
302 case MPI2_IOCSTATUS_INVALID_FUNCTION
:
303 desc
= "invalid function";
305 case MPI2_IOCSTATUS_BUSY
:
308 case MPI2_IOCSTATUS_INVALID_SGL
:
309 desc
= "invalid sgl";
311 case MPI2_IOCSTATUS_INTERNAL_ERROR
:
312 desc
= "internal error";
314 case MPI2_IOCSTATUS_INVALID_VPID
:
315 desc
= "invalid vpid";
317 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES
:
318 desc
= "insufficient resources";
320 case MPI2_IOCSTATUS_INVALID_FIELD
:
321 desc
= "invalid field";
323 case MPI2_IOCSTATUS_INVALID_STATE
:
324 desc
= "invalid state";
326 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED
:
327 desc
= "op state not supported";
330 /****************************************************************************
331 * Config IOCStatus values
332 ****************************************************************************/
334 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION
:
335 desc
= "config invalid action";
337 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE
:
338 desc
= "config invalid type";
340 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE
:
341 desc
= "config invalid page";
343 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA
:
344 desc
= "config invalid data";
346 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS
:
347 desc
= "config no defaults";
349 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT
:
350 desc
= "config cant commit";
353 /****************************************************************************
355 ****************************************************************************/
357 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR
:
358 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE
:
359 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE
:
360 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN
:
361 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN
:
362 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR
:
363 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR
:
364 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED
:
365 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH
:
366 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED
:
367 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED
:
368 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED
:
371 /****************************************************************************
372 * For use by SCSI Initiator and SCSI Target end-to-end data protection
373 ****************************************************************************/
375 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR
:
376 desc
= "eedp guard error";
378 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR
:
379 desc
= "eedp ref tag error";
381 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR
:
382 desc
= "eedp app tag error";
385 /****************************************************************************
387 ****************************************************************************/
389 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX
:
390 desc
= "target invalid io index";
392 case MPI2_IOCSTATUS_TARGET_ABORTED
:
393 desc
= "target aborted";
395 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE
:
396 desc
= "target no conn retryable";
398 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION
:
399 desc
= "target no connection";
401 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH
:
402 desc
= "target xfer count mismatch";
404 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR
:
405 desc
= "target data offset error";
407 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA
:
408 desc
= "target too much write data";
410 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT
:
411 desc
= "target iu too short";
413 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT
:
414 desc
= "target ack nak timeout";
416 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED
:
417 desc
= "target nak received";
420 /****************************************************************************
421 * Serial Attached SCSI values
422 ****************************************************************************/
424 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED
:
425 desc
= "smp request failed";
427 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN
:
428 desc
= "smp data overrun";
431 /****************************************************************************
432 * Diagnostic Buffer Post / Diagnostic Release values
433 ****************************************************************************/
435 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED
:
436 desc
= "diagnostic released";
445 switch (request_hdr
->Function
) {
446 case MPI2_FUNCTION_CONFIG
:
447 frame_sz
= sizeof(Mpi2ConfigRequest_t
) + ioc
->sge_size
;
448 func_str
= "config_page";
450 case MPI2_FUNCTION_SCSI_TASK_MGMT
:
451 frame_sz
= sizeof(Mpi2SCSITaskManagementRequest_t
);
452 func_str
= "task_mgmt";
454 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL
:
455 frame_sz
= sizeof(Mpi2SasIoUnitControlRequest_t
);
456 func_str
= "sas_iounit_ctl";
458 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR
:
459 frame_sz
= sizeof(Mpi2SepRequest_t
);
460 func_str
= "enclosure";
462 case MPI2_FUNCTION_IOC_INIT
:
463 frame_sz
= sizeof(Mpi2IOCInitRequest_t
);
464 func_str
= "ioc_init";
466 case MPI2_FUNCTION_PORT_ENABLE
:
467 frame_sz
= sizeof(Mpi2PortEnableRequest_t
);
468 func_str
= "port_enable";
470 case MPI2_FUNCTION_SMP_PASSTHROUGH
:
471 frame_sz
= sizeof(Mpi2SmpPassthroughRequest_t
) + ioc
->sge_size
;
472 func_str
= "smp_passthru";
476 func_str
= "unknown";
480 printk(MPT2SAS_WARN_FMT
"ioc_status: %s(0x%04x), request(0x%p),"
481 " (%s)\n", ioc
->name
, desc
, ioc_status
, request_hdr
, func_str
);
483 _debug_dump_mf(request_hdr
, frame_sz
/4);
487 * _base_display_event_data - verbose translation of firmware asyn events
488 * @ioc: per adapter object
489 * @mpi_reply: reply mf payload returned from firmware
494 _base_display_event_data(struct MPT2SAS_ADAPTER
*ioc
,
495 Mpi2EventNotificationReply_t
*mpi_reply
)
500 if (!(ioc
->logging_level
& MPT_DEBUG_EVENTS
))
503 event
= le16_to_cpu(mpi_reply
->Event
);
506 case MPI2_EVENT_LOG_DATA
:
509 case MPI2_EVENT_STATE_CHANGE
:
510 desc
= "Status Change";
512 case MPI2_EVENT_HARD_RESET_RECEIVED
:
513 desc
= "Hard Reset Received";
515 case MPI2_EVENT_EVENT_CHANGE
:
516 desc
= "Event Change";
518 case MPI2_EVENT_TASK_SET_FULL
:
519 desc
= "Task Set Full";
521 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE
:
522 desc
= "Device Status Change";
524 case MPI2_EVENT_IR_OPERATION_STATUS
:
525 desc
= "IR Operation Status";
527 case MPI2_EVENT_SAS_DISCOVERY
:
529 Mpi2EventDataSasDiscovery_t
*event_data
=
530 (Mpi2EventDataSasDiscovery_t
*)mpi_reply
->EventData
;
531 printk(MPT2SAS_INFO_FMT
"Discovery: (%s)", ioc
->name
,
532 (event_data
->ReasonCode
== MPI2_EVENT_SAS_DISC_RC_STARTED
) ?
534 if (event_data
->DiscoveryStatus
)
535 printk("discovery_status(0x%08x)",
536 le32_to_cpu(event_data
->DiscoveryStatus
));
540 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE
:
541 desc
= "SAS Broadcast Primitive";
543 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE
:
544 desc
= "SAS Init Device Status Change";
546 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW
:
547 desc
= "SAS Init Table Overflow";
549 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST
:
550 desc
= "SAS Topology Change List";
552 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
:
553 desc
= "SAS Enclosure Device Status Change";
555 case MPI2_EVENT_IR_VOLUME
:
558 case MPI2_EVENT_IR_PHYSICAL_DISK
:
559 desc
= "IR Physical Disk";
561 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST
:
562 desc
= "IR Configuration Change List";
564 case MPI2_EVENT_LOG_ENTRY_ADDED
:
565 desc
= "Log Entry Added";
572 printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
, desc
);
577 * _base_sas_log_info - verbose translation of firmware log info
578 * @ioc: per adapter object
579 * @log_info: log info
584 _base_sas_log_info(struct MPT2SAS_ADAPTER
*ioc
, u32 log_info
)
595 union loginfo_type sas_loginfo
;
596 char *originator_str
= NULL
;
598 sas_loginfo
.loginfo
= log_info
;
599 if (sas_loginfo
.dw
.bus_type
!= 3 /*SAS*/)
602 /* each nexus loss loginfo */
603 if (log_info
== 0x31170000)
606 /* eat the loginfos associated with task aborts */
607 if (ioc
->ignore_loginfos
&& (log_info
== 30050000 || log_info
==
608 0x31140000 || log_info
== 0x31130000))
611 switch (sas_loginfo
.dw
.originator
) {
613 originator_str
= "IOP";
616 originator_str
= "PL";
619 originator_str
= "IR";
623 printk(MPT2SAS_WARN_FMT
"log_info(0x%08x): originator(%s), "
624 "code(0x%02x), sub_code(0x%04x)\n", ioc
->name
, log_info
,
625 originator_str
, sas_loginfo
.dw
.code
,
626 sas_loginfo
.dw
.subcode
);
630 * _base_display_reply_info -
631 * @ioc: per adapter object
632 * @smid: system request message index
633 * @msix_index: MSIX table index supplied by the OS
634 * @reply: reply message frame(lower 32bit addr)
639 _base_display_reply_info(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
642 MPI2DefaultReply_t
*mpi_reply
;
645 mpi_reply
= mpt2sas_base_get_reply_virt_addr(ioc
, reply
);
646 ioc_status
= le16_to_cpu(mpi_reply
->IOCStatus
);
647 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
648 if ((ioc_status
& MPI2_IOCSTATUS_MASK
) &&
649 (ioc
->logging_level
& MPT_DEBUG_REPLY
)) {
650 _base_sas_ioc_info(ioc
, mpi_reply
,
651 mpt2sas_base_get_msg_frame(ioc
, smid
));
654 if (ioc_status
& MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE
)
655 _base_sas_log_info(ioc
, le32_to_cpu(mpi_reply
->IOCLogInfo
));
659 * mpt2sas_base_done - base internal command completion routine
660 * @ioc: per adapter object
661 * @smid: system request message index
662 * @msix_index: MSIX table index supplied by the OS
663 * @reply: reply message frame(lower 32bit addr)
665 * Return 1 meaning mf should be freed from _base_interrupt
666 * 0 means the mf is freed from this function.
669 mpt2sas_base_done(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
, u8 msix_index
,
672 MPI2DefaultReply_t
*mpi_reply
;
674 mpi_reply
= mpt2sas_base_get_reply_virt_addr(ioc
, reply
);
675 if (mpi_reply
&& mpi_reply
->Function
== MPI2_FUNCTION_EVENT_ACK
)
678 if (ioc
->base_cmds
.status
== MPT2_CMD_NOT_USED
)
681 ioc
->base_cmds
.status
|= MPT2_CMD_COMPLETE
;
683 ioc
->base_cmds
.status
|= MPT2_CMD_REPLY_VALID
;
684 memcpy(ioc
->base_cmds
.reply
, mpi_reply
, mpi_reply
->MsgLength
*4);
686 ioc
->base_cmds
.status
&= ~MPT2_CMD_PENDING
;
687 complete(&ioc
->base_cmds
.done
);
692 * _base_async_event - main callback handler for firmware asyn events
693 * @ioc: per adapter object
694 * @msix_index: MSIX table index supplied by the OS
695 * @reply: reply message frame(lower 32bit addr)
697 * Return 1 meaning mf should be freed from _base_interrupt
698 * 0 means the mf is freed from this function.
701 _base_async_event(struct MPT2SAS_ADAPTER
*ioc
, u8 msix_index
, u32 reply
)
703 Mpi2EventNotificationReply_t
*mpi_reply
;
704 Mpi2EventAckRequest_t
*ack_request
;
707 mpi_reply
= mpt2sas_base_get_reply_virt_addr(ioc
, reply
);
710 if (mpi_reply
->Function
!= MPI2_FUNCTION_EVENT_NOTIFICATION
)
712 #ifdef CONFIG_SCSI_MPT2SAS_LOGGING
713 _base_display_event_data(ioc
, mpi_reply
);
715 if (!(mpi_reply
->AckRequired
& MPI2_EVENT_NOTIFICATION_ACK_REQUIRED
))
717 smid
= mpt2sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
719 printk(MPT2SAS_ERR_FMT
"%s: failed obtaining a smid\n",
720 ioc
->name
, __func__
);
724 ack_request
= mpt2sas_base_get_msg_frame(ioc
, smid
);
725 memset(ack_request
, 0, sizeof(Mpi2EventAckRequest_t
));
726 ack_request
->Function
= MPI2_FUNCTION_EVENT_ACK
;
727 ack_request
->Event
= mpi_reply
->Event
;
728 ack_request
->EventContext
= mpi_reply
->EventContext
;
729 ack_request
->VF_ID
= 0; /* TODO */
730 ack_request
->VP_ID
= 0;
731 mpt2sas_base_put_smid_default(ioc
, smid
);
735 /* scsih callback handler */
736 mpt2sas_scsih_event_callback(ioc
, msix_index
, reply
);
738 /* ctl callback handler */
739 mpt2sas_ctl_event_callback(ioc
, msix_index
, reply
);
745 * _base_get_cb_idx - obtain the callback index
746 * @ioc: per adapter object
747 * @smid: system request message index
749 * Return callback index.
752 _base_get_cb_idx(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
757 if (smid
>= ioc
->hi_priority_smid
) {
758 if (smid
< ioc
->internal_smid
) {
759 i
= smid
- ioc
->hi_priority_smid
;
760 cb_idx
= ioc
->hpr_lookup
[i
].cb_idx
;
762 i
= smid
- ioc
->internal_smid
;
763 cb_idx
= ioc
->internal_lookup
[i
].cb_idx
;
767 cb_idx
= ioc
->scsi_lookup
[i
].cb_idx
;
773 * _base_mask_interrupts - disable interrupts
774 * @ioc: per adapter object
776 * Disabling ResetIRQ, Reply and Doorbell Interrupts
781 _base_mask_interrupts(struct MPT2SAS_ADAPTER
*ioc
)
785 ioc
->mask_interrupts
= 1;
786 him_register
= readl(&ioc
->chip
->HostInterruptMask
);
787 him_register
|= MPI2_HIM_DIM
+ MPI2_HIM_RIM
+ MPI2_HIM_RESET_IRQ_MASK
;
788 writel(him_register
, &ioc
->chip
->HostInterruptMask
);
789 readl(&ioc
->chip
->HostInterruptMask
);
793 * _base_unmask_interrupts - enable interrupts
794 * @ioc: per adapter object
796 * Enabling only Reply Interrupts
801 _base_unmask_interrupts(struct MPT2SAS_ADAPTER
*ioc
)
805 him_register
= readl(&ioc
->chip
->HostInterruptMask
);
806 him_register
&= ~MPI2_HIM_RIM
;
807 writel(him_register
, &ioc
->chip
->HostInterruptMask
);
808 ioc
->mask_interrupts
= 0;
811 union reply_descriptor
{
820 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
821 * @irq: irq number (not used)
822 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
823 * @r: pt_regs pointer (not used)
825 * Return IRQ_HANDLE if processed, else IRQ_NONE.
828 _base_interrupt(int irq
, void *bus_id
)
830 union reply_descriptor rd
;
832 u8 request_desript_type
;
837 struct MPT2SAS_ADAPTER
*ioc
= bus_id
;
838 Mpi2ReplyDescriptorsUnion_t
*rpf
;
841 if (ioc
->mask_interrupts
)
844 rpf
= &ioc
->reply_post_free
[ioc
->reply_post_host_index
];
845 request_desript_type
= rpf
->Default
.ReplyFlags
846 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK
;
847 if (request_desript_type
== MPI2_RPY_DESCRIPT_FLAGS_UNUSED
)
852 rd
.word
= rpf
->Words
;
853 if (rd
.u
.low
== UINT_MAX
|| rd
.u
.high
== UINT_MAX
)
857 smid
= le16_to_cpu(rpf
->Default
.DescriptorTypeDependent1
);
858 msix_index
= rpf
->Default
.MSIxIndex
;
859 if (request_desript_type
==
860 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY
) {
862 (rpf
->AddressReply
.ReplyFrameAddress
);
863 } else if (request_desript_type
==
864 MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER
)
866 else if (request_desript_type
==
867 MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS
)
870 cb_idx
= _base_get_cb_idx(ioc
, smid
);
871 if (smid
&& cb_idx
!= 0xFF) {
872 rc
= mpt_callbacks
[cb_idx
](ioc
, smid
, msix_index
,
875 _base_display_reply_info(ioc
, smid
, msix_index
,
878 mpt2sas_base_free_smid(ioc
, smid
);
881 _base_async_event(ioc
, msix_index
, reply
);
883 /* reply free queue handling */
885 ioc
->reply_free_host_index
=
886 (ioc
->reply_free_host_index
==
887 (ioc
->reply_free_queue_depth
- 1)) ?
888 0 : ioc
->reply_free_host_index
+ 1;
889 ioc
->reply_free
[ioc
->reply_free_host_index
] =
892 writel(ioc
->reply_free_host_index
,
893 &ioc
->chip
->ReplyFreeHostIndex
);
898 rpf
->Words
= ULLONG_MAX
;
899 ioc
->reply_post_host_index
= (ioc
->reply_post_host_index
==
900 (ioc
->reply_post_queue_depth
- 1)) ? 0 :
901 ioc
->reply_post_host_index
+ 1;
902 request_desript_type
=
903 ioc
->reply_post_free
[ioc
->reply_post_host_index
].Default
.
904 ReplyFlags
& MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK
;
906 if (request_desript_type
== MPI2_RPY_DESCRIPT_FLAGS_UNUSED
)
908 if (!ioc
->reply_post_host_index
)
909 rpf
= ioc
->reply_post_free
;
920 writel(ioc
->reply_post_host_index
, &ioc
->chip
->ReplyPostHostIndex
);
925 * mpt2sas_base_release_callback_handler - clear interupt callback handler
926 * @cb_idx: callback index
931 mpt2sas_base_release_callback_handler(u8 cb_idx
)
933 mpt_callbacks
[cb_idx
] = NULL
;
937 * mpt2sas_base_register_callback_handler - obtain index for the interrupt callback handler
938 * @cb_func: callback function
943 mpt2sas_base_register_callback_handler(MPT_CALLBACK cb_func
)
947 for (cb_idx
= MPT_MAX_CALLBACKS
-1; cb_idx
; cb_idx
--)
948 if (mpt_callbacks
[cb_idx
] == NULL
)
951 mpt_callbacks
[cb_idx
] = cb_func
;
956 * mpt2sas_base_initialize_callback_handler - initialize the interrupt callback handler
961 mpt2sas_base_initialize_callback_handler(void)
965 for (cb_idx
= 0; cb_idx
< MPT_MAX_CALLBACKS
; cb_idx
++)
966 mpt2sas_base_release_callback_handler(cb_idx
);
970 * mpt2sas_base_build_zero_len_sge - build zero length sg entry
971 * @ioc: per adapter object
972 * @paddr: virtual address for SGE
974 * Create a zero length scatter gather entry to insure the IOCs hardware has
975 * something to use if the target device goes brain dead and tries
976 * to send data even when none is asked for.
981 mpt2sas_base_build_zero_len_sge(struct MPT2SAS_ADAPTER
*ioc
, void *paddr
)
983 u32 flags_length
= (u32
)((MPI2_SGE_FLAGS_LAST_ELEMENT
|
984 MPI2_SGE_FLAGS_END_OF_BUFFER
| MPI2_SGE_FLAGS_END_OF_LIST
|
985 MPI2_SGE_FLAGS_SIMPLE_ELEMENT
) <<
986 MPI2_SGE_FLAGS_SHIFT
);
987 ioc
->base_add_sg_single(paddr
, flags_length
, -1);
991 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
992 * @paddr: virtual address for SGE
993 * @flags_length: SGE flags and data transfer length
994 * @dma_addr: Physical address
999 _base_add_sg_single_32(void *paddr
, u32 flags_length
, dma_addr_t dma_addr
)
1001 Mpi2SGESimple32_t
*sgel
= paddr
;
1003 flags_length
|= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING
|
1004 MPI2_SGE_FLAGS_SYSTEM_ADDRESS
) << MPI2_SGE_FLAGS_SHIFT
;
1005 sgel
->FlagsLength
= cpu_to_le32(flags_length
);
1006 sgel
->Address
= cpu_to_le32(dma_addr
);
1011 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1012 * @paddr: virtual address for SGE
1013 * @flags_length: SGE flags and data transfer length
1014 * @dma_addr: Physical address
1019 _base_add_sg_single_64(void *paddr
, u32 flags_length
, dma_addr_t dma_addr
)
1021 Mpi2SGESimple64_t
*sgel
= paddr
;
1023 flags_length
|= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING
|
1024 MPI2_SGE_FLAGS_SYSTEM_ADDRESS
) << MPI2_SGE_FLAGS_SHIFT
;
1025 sgel
->FlagsLength
= cpu_to_le32(flags_length
);
1026 sgel
->Address
= cpu_to_le64(dma_addr
);
1029 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1032 * _base_config_dma_addressing - set dma addressing
1033 * @ioc: per adapter object
1034 * @pdev: PCI device struct
1036 * Returns 0 for success, non-zero for failure.
1039 _base_config_dma_addressing(struct MPT2SAS_ADAPTER
*ioc
, struct pci_dev
*pdev
)
1044 if (sizeof(dma_addr_t
) > 4) {
1045 const uint64_t required_mask
=
1046 dma_get_required_mask(&pdev
->dev
);
1047 if ((required_mask
> DMA_BIT_MASK(32)) && !pci_set_dma_mask(pdev
,
1048 DMA_BIT_MASK(64)) && !pci_set_consistent_dma_mask(pdev
,
1049 DMA_BIT_MASK(64))) {
1050 ioc
->base_add_sg_single
= &_base_add_sg_single_64
;
1051 ioc
->sge_size
= sizeof(Mpi2SGESimple64_t
);
1057 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))
1058 && !pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32))) {
1059 ioc
->base_add_sg_single
= &_base_add_sg_single_32
;
1060 ioc
->sge_size
= sizeof(Mpi2SGESimple32_t
);
1067 printk(MPT2SAS_INFO_FMT
"%s BIT PCI BUS DMA ADDRESSING SUPPORTED, "
1068 "total mem (%ld kB)\n", ioc
->name
, desc
, convert_to_kb(s
.totalram
));
1074 * _base_save_msix_table - backup msix vector table
1075 * @ioc: per adapter object
1077 * This address an errata where diag reset clears out the table
1080 _base_save_msix_table(struct MPT2SAS_ADAPTER
*ioc
)
1084 if (!ioc
->msix_enable
|| ioc
->msix_table_backup
== NULL
)
1087 for (i
= 0; i
< ioc
->msix_vector_count
; i
++)
1088 ioc
->msix_table_backup
[i
] = ioc
->msix_table
[i
];
1092 * _base_restore_msix_table - this restores the msix vector table
1093 * @ioc: per adapter object
1097 _base_restore_msix_table(struct MPT2SAS_ADAPTER
*ioc
)
1101 if (!ioc
->msix_enable
|| ioc
->msix_table_backup
== NULL
)
1104 for (i
= 0; i
< ioc
->msix_vector_count
; i
++)
1105 ioc
->msix_table
[i
] = ioc
->msix_table_backup
[i
];
1109 * _base_check_enable_msix - checks MSIX capabable.
1110 * @ioc: per adapter object
1112 * Check to see if card is capable of MSIX, and set number
1113 * of avaliable msix vectors
1116 _base_check_enable_msix(struct MPT2SAS_ADAPTER
*ioc
)
1119 u16 message_control
;
1120 u32 msix_table_offset
;
1122 base
= pci_find_capability(ioc
->pdev
, PCI_CAP_ID_MSIX
);
1124 dfailprintk(ioc
, printk(MPT2SAS_INFO_FMT
"msix not "
1125 "supported\n", ioc
->name
));
1129 /* get msix vector count */
1130 pci_read_config_word(ioc
->pdev
, base
+ 2, &message_control
);
1131 ioc
->msix_vector_count
= (message_control
& 0x3FF) + 1;
1133 /* get msix table */
1134 pci_read_config_dword(ioc
->pdev
, base
+ 4, &msix_table_offset
);
1135 msix_table_offset
&= 0xFFFFFFF8;
1136 ioc
->msix_table
= (u32
*)((void *)ioc
->chip
+ msix_table_offset
);
1138 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"msix is supported, "
1139 "vector_count(%d), table_offset(0x%08x), table(%p)\n", ioc
->name
,
1140 ioc
->msix_vector_count
, msix_table_offset
, ioc
->msix_table
));
1145 * _base_disable_msix - disables msix
1146 * @ioc: per adapter object
1150 _base_disable_msix(struct MPT2SAS_ADAPTER
*ioc
)
1152 if (ioc
->msix_enable
) {
1153 pci_disable_msix(ioc
->pdev
);
1154 kfree(ioc
->msix_table_backup
);
1155 ioc
->msix_table_backup
= NULL
;
1156 ioc
->msix_enable
= 0;
1161 * _base_enable_msix - enables msix, failback to io_apic
1162 * @ioc: per adapter object
1166 _base_enable_msix(struct MPT2SAS_ADAPTER
*ioc
)
1168 struct msix_entry entries
;
1172 if (msix_disable
== -1 || msix_disable
== 0)
1178 if (_base_check_enable_msix(ioc
) != 0)
1181 ioc
->msix_table_backup
= kcalloc(ioc
->msix_vector_count
,
1182 sizeof(u32
), GFP_KERNEL
);
1183 if (!ioc
->msix_table_backup
) {
1184 dfailprintk(ioc
, printk(MPT2SAS_INFO_FMT
"allocation for "
1185 "msix_table_backup failed!!!\n", ioc
->name
));
1189 memset(&entries
, 0, sizeof(struct msix_entry
));
1190 r
= pci_enable_msix(ioc
->pdev
, &entries
, 1);
1192 dfailprintk(ioc
, printk(MPT2SAS_INFO_FMT
"pci_enable_msix "
1193 "failed (r=%d) !!!\n", ioc
->name
, r
));
1197 r
= request_irq(entries
.vector
, _base_interrupt
, IRQF_SHARED
,
1200 dfailprintk(ioc
, printk(MPT2SAS_INFO_FMT
"unable to allocate "
1201 "interrupt %d !!!\n", ioc
->name
, entries
.vector
));
1202 pci_disable_msix(ioc
->pdev
);
1206 ioc
->pci_irq
= entries
.vector
;
1207 ioc
->msix_enable
= 1;
1210 /* failback to io_apic interrupt routing */
1213 r
= request_irq(ioc
->pdev
->irq
, _base_interrupt
, IRQF_SHARED
,
1216 printk(MPT2SAS_ERR_FMT
"unable to allocate interrupt %d!\n",
1217 ioc
->name
, ioc
->pdev
->irq
);
1222 ioc
->pci_irq
= ioc
->pdev
->irq
;
1230 * mpt2sas_base_map_resources - map in controller resources (io/irq/memap)
1231 * @ioc: per adapter object
1233 * Returns 0 for success, non-zero for failure.
1236 mpt2sas_base_map_resources(struct MPT2SAS_ADAPTER
*ioc
)
1238 struct pci_dev
*pdev
= ioc
->pdev
;
1245 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n",
1246 ioc
->name
, __func__
));
1248 ioc
->bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
1249 if (pci_enable_device_mem(pdev
)) {
1250 printk(MPT2SAS_WARN_FMT
"pci_enable_device_mem: "
1251 "failed\n", ioc
->name
);
1256 if (pci_request_selected_regions(pdev
, ioc
->bars
,
1257 MPT2SAS_DRIVER_NAME
)) {
1258 printk(MPT2SAS_WARN_FMT
"pci_request_selected_regions: "
1259 "failed\n", ioc
->name
);
1264 /* AER (Advanced Error Reporting) hooks */
1265 pci_enable_pcie_error_reporting(pdev
);
1267 pci_set_master(pdev
);
1269 if (_base_config_dma_addressing(ioc
, pdev
) != 0) {
1270 printk(MPT2SAS_WARN_FMT
"no suitable DMA mask for %s\n",
1271 ioc
->name
, pci_name(pdev
));
1276 for (i
= 0, memap_sz
= 0, pio_sz
= 0 ; i
< DEVICE_COUNT_RESOURCE
; i
++) {
1277 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
1280 pio_chip
= (u64
)pci_resource_start(pdev
, i
);
1281 pio_sz
= pci_resource_len(pdev
, i
);
1285 /* verify memory resource is valid before using */
1286 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
1287 ioc
->chip_phys
= pci_resource_start(pdev
, i
);
1288 chip_phys
= (u64
)ioc
->chip_phys
;
1289 memap_sz
= pci_resource_len(pdev
, i
);
1290 ioc
->chip
= ioremap(ioc
->chip_phys
, memap_sz
);
1291 if (ioc
->chip
== NULL
) {
1292 printk(MPT2SAS_ERR_FMT
"unable to map "
1293 "adapter memory!\n", ioc
->name
);
1301 _base_mask_interrupts(ioc
);
1302 r
= _base_enable_msix(ioc
);
1306 printk(MPT2SAS_INFO_FMT
"%s: IRQ %d\n",
1307 ioc
->name
, ((ioc
->msix_enable
) ? "PCI-MSI-X enabled" :
1308 "IO-APIC enabled"), ioc
->pci_irq
);
1309 printk(MPT2SAS_INFO_FMT
"iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1310 ioc
->name
, (unsigned long long)chip_phys
, ioc
->chip
, memap_sz
);
1311 printk(MPT2SAS_INFO_FMT
"ioport(0x%016llx), size(%d)\n",
1312 ioc
->name
, (unsigned long long)pio_chip
, pio_sz
);
1314 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
1315 pci_save_state(pdev
);
1324 pci_release_selected_regions(ioc
->pdev
, ioc
->bars
);
1325 pci_disable_pcie_error_reporting(pdev
);
1326 pci_disable_device(pdev
);
1331 * mpt2sas_base_get_msg_frame - obtain request mf pointer
1332 * @ioc: per adapter object
1333 * @smid: system request message index(smid zero is invalid)
1335 * Returns virt pointer to message frame.
1338 mpt2sas_base_get_msg_frame(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
1340 return (void *)(ioc
->request
+ (smid
* ioc
->request_sz
));
1344 * mpt2sas_base_get_sense_buffer - obtain a sense buffer assigned to a mf request
1345 * @ioc: per adapter object
1346 * @smid: system request message index
1348 * Returns virt pointer to sense buffer.
1351 mpt2sas_base_get_sense_buffer(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
1353 return (void *)(ioc
->sense
+ ((smid
- 1) * SCSI_SENSE_BUFFERSIZE
));
1357 * mpt2sas_base_get_sense_buffer_dma - obtain a sense buffer assigned to a mf request
1358 * @ioc: per adapter object
1359 * @smid: system request message index
1361 * Returns phys pointer to the low 32bit address of the sense buffer.
1364 mpt2sas_base_get_sense_buffer_dma(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
1366 return cpu_to_le32(ioc
->sense_dma
+
1367 ((smid
- 1) * SCSI_SENSE_BUFFERSIZE
));
1371 * mpt2sas_base_get_reply_virt_addr - obtain reply frames virt address
1372 * @ioc: per adapter object
1373 * @phys_addr: lower 32 physical addr of the reply
1375 * Converts 32bit lower physical addr into a virt address.
1378 mpt2sas_base_get_reply_virt_addr(struct MPT2SAS_ADAPTER
*ioc
, u32 phys_addr
)
1382 return ioc
->reply
+ (phys_addr
- (u32
)ioc
->reply_dma
);
1386 * mpt2sas_base_get_smid - obtain a free smid from internal queue
1387 * @ioc: per adapter object
1388 * @cb_idx: callback index
1390 * Returns smid (zero is invalid)
1393 mpt2sas_base_get_smid(struct MPT2SAS_ADAPTER
*ioc
, u8 cb_idx
)
1395 unsigned long flags
;
1396 struct request_tracker
*request
;
1399 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
1400 if (list_empty(&ioc
->internal_free_list
)) {
1401 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1402 printk(MPT2SAS_ERR_FMT
"%s: smid not available\n",
1403 ioc
->name
, __func__
);
1407 request
= list_entry(ioc
->internal_free_list
.next
,
1408 struct request_tracker
, tracker_list
);
1409 request
->cb_idx
= cb_idx
;
1410 smid
= request
->smid
;
1411 list_del(&request
->tracker_list
);
1412 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1417 * mpt2sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
1418 * @ioc: per adapter object
1419 * @cb_idx: callback index
1420 * @scmd: pointer to scsi command object
1422 * Returns smid (zero is invalid)
1425 mpt2sas_base_get_smid_scsiio(struct MPT2SAS_ADAPTER
*ioc
, u8 cb_idx
,
1426 struct scsi_cmnd
*scmd
)
1428 unsigned long flags
;
1429 struct request_tracker
*request
;
1432 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
1433 if (list_empty(&ioc
->free_list
)) {
1434 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1435 printk(MPT2SAS_ERR_FMT
"%s: smid not available\n",
1436 ioc
->name
, __func__
);
1440 request
= list_entry(ioc
->free_list
.next
,
1441 struct request_tracker
, tracker_list
);
1442 request
->scmd
= scmd
;
1443 request
->cb_idx
= cb_idx
;
1444 smid
= request
->smid
;
1445 list_del(&request
->tracker_list
);
1446 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1451 * mpt2sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
1452 * @ioc: per adapter object
1453 * @cb_idx: callback index
1455 * Returns smid (zero is invalid)
1458 mpt2sas_base_get_smid_hpr(struct MPT2SAS_ADAPTER
*ioc
, u8 cb_idx
)
1460 unsigned long flags
;
1461 struct request_tracker
*request
;
1464 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
1465 if (list_empty(&ioc
->hpr_free_list
)) {
1466 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1470 request
= list_entry(ioc
->hpr_free_list
.next
,
1471 struct request_tracker
, tracker_list
);
1472 request
->cb_idx
= cb_idx
;
1473 smid
= request
->smid
;
1474 list_del(&request
->tracker_list
);
1475 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1481 * mpt2sas_base_free_smid - put smid back on free_list
1482 * @ioc: per adapter object
1483 * @smid: system request message index
1488 mpt2sas_base_free_smid(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
1490 unsigned long flags
;
1493 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
1494 if (smid
>= ioc
->hi_priority_smid
) {
1495 if (smid
< ioc
->internal_smid
) {
1497 i
= smid
- ioc
->hi_priority_smid
;
1498 ioc
->hpr_lookup
[i
].cb_idx
= 0xFF;
1499 list_add_tail(&ioc
->hpr_lookup
[i
].tracker_list
,
1500 &ioc
->hpr_free_list
);
1502 /* internal queue */
1503 i
= smid
- ioc
->internal_smid
;
1504 ioc
->internal_lookup
[i
].cb_idx
= 0xFF;
1505 list_add_tail(&ioc
->internal_lookup
[i
].tracker_list
,
1506 &ioc
->internal_free_list
);
1508 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1514 ioc
->scsi_lookup
[i
].cb_idx
= 0xFF;
1515 ioc
->scsi_lookup
[i
].scmd
= NULL
;
1516 list_add_tail(&ioc
->scsi_lookup
[i
].tracker_list
,
1518 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
1521 * See _wait_for_commands_to_complete() call with regards to this code.
1523 if (ioc
->shost_recovery
&& ioc
->pending_io_count
) {
1524 if (ioc
->pending_io_count
== 1)
1525 wake_up(&ioc
->reset_wq
);
1526 ioc
->pending_io_count
--;
1531 * _base_writeq - 64 bit write to MMIO
1532 * @ioc: per adapter object
1534 * @addr: address in MMIO space
1535 * @writeq_lock: spin lock
1537 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
1538 * care of 32 bit environment where its not quarenteed to send the entire word
1542 static inline void _base_writeq(__u64 b
, volatile void __iomem
*addr
,
1543 spinlock_t
*writeq_lock
)
1545 unsigned long flags
;
1546 __u64 data_out
= cpu_to_le64(b
);
1548 spin_lock_irqsave(writeq_lock
, flags
);
1549 writel((u32
)(data_out
), addr
);
1550 writel((u32
)(data_out
>> 32), (addr
+ 4));
1551 spin_unlock_irqrestore(writeq_lock
, flags
);
1554 static inline void _base_writeq(__u64 b
, volatile void __iomem
*addr
,
1555 spinlock_t
*writeq_lock
)
1557 writeq(cpu_to_le64(b
), addr
);
1562 * mpt2sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
1563 * @ioc: per adapter object
1564 * @smid: system request message index
1565 * @handle: device handle
1570 mpt2sas_base_put_smid_scsi_io(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
, u16 handle
)
1572 Mpi2RequestDescriptorUnion_t descriptor
;
1573 u64
*request
= (u64
*)&descriptor
;
1576 descriptor
.SCSIIO
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO
;
1577 descriptor
.SCSIIO
.MSIxIndex
= 0; /* TODO */
1578 descriptor
.SCSIIO
.SMID
= cpu_to_le16(smid
);
1579 descriptor
.SCSIIO
.DevHandle
= cpu_to_le16(handle
);
1580 descriptor
.SCSIIO
.LMID
= 0;
1581 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
1582 &ioc
->scsi_lookup_lock
);
1587 * mpt2sas_base_put_smid_hi_priority - send Task Managment request to firmware
1588 * @ioc: per adapter object
1589 * @smid: system request message index
1594 mpt2sas_base_put_smid_hi_priority(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
1596 Mpi2RequestDescriptorUnion_t descriptor
;
1597 u64
*request
= (u64
*)&descriptor
;
1599 descriptor
.HighPriority
.RequestFlags
=
1600 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY
;
1601 descriptor
.HighPriority
.MSIxIndex
= 0; /* TODO */
1602 descriptor
.HighPriority
.SMID
= cpu_to_le16(smid
);
1603 descriptor
.HighPriority
.LMID
= 0;
1604 descriptor
.HighPriority
.Reserved1
= 0;
1605 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
1606 &ioc
->scsi_lookup_lock
);
1610 * mpt2sas_base_put_smid_default - Default, primarily used for config pages
1611 * @ioc: per adapter object
1612 * @smid: system request message index
1617 mpt2sas_base_put_smid_default(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
)
1619 Mpi2RequestDescriptorUnion_t descriptor
;
1620 u64
*request
= (u64
*)&descriptor
;
1622 descriptor
.Default
.RequestFlags
= MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE
;
1623 descriptor
.Default
.MSIxIndex
= 0; /* TODO */
1624 descriptor
.Default
.SMID
= cpu_to_le16(smid
);
1625 descriptor
.Default
.LMID
= 0;
1626 descriptor
.Default
.DescriptorTypeDependent
= 0;
1627 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
1628 &ioc
->scsi_lookup_lock
);
1632 * mpt2sas_base_put_smid_target_assist - send Target Assist/Status to firmware
1633 * @ioc: per adapter object
1634 * @smid: system request message index
1635 * @io_index: value used to track the IO
1640 mpt2sas_base_put_smid_target_assist(struct MPT2SAS_ADAPTER
*ioc
, u16 smid
,
1643 Mpi2RequestDescriptorUnion_t descriptor
;
1644 u64
*request
= (u64
*)&descriptor
;
1646 descriptor
.SCSITarget
.RequestFlags
=
1647 MPI2_REQ_DESCRIPT_FLAGS_SCSI_TARGET
;
1648 descriptor
.SCSITarget
.MSIxIndex
= 0; /* TODO */
1649 descriptor
.SCSITarget
.SMID
= cpu_to_le16(smid
);
1650 descriptor
.SCSITarget
.LMID
= 0;
1651 descriptor
.SCSITarget
.IoIndex
= cpu_to_le16(io_index
);
1652 _base_writeq(*request
, &ioc
->chip
->RequestDescriptorPostLow
,
1653 &ioc
->scsi_lookup_lock
);
1657 * _base_display_dell_branding - Disply branding string
1658 * @ioc: per adapter object
1663 _base_display_dell_branding(struct MPT2SAS_ADAPTER
*ioc
)
1665 char dell_branding
[MPT2SAS_DELL_BRANDING_SIZE
];
1667 if (ioc
->pdev
->subsystem_vendor
!= PCI_VENDOR_ID_DELL
)
1670 memset(dell_branding
, 0, MPT2SAS_DELL_BRANDING_SIZE
);
1671 switch (ioc
->pdev
->subsystem_device
) {
1672 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID
:
1673 strncpy(dell_branding
, MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING
,
1674 MPT2SAS_DELL_BRANDING_SIZE
- 1);
1676 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID
:
1677 strncpy(dell_branding
, MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING
,
1678 MPT2SAS_DELL_BRANDING_SIZE
- 1);
1680 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID
:
1681 strncpy(dell_branding
,
1682 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING
,
1683 MPT2SAS_DELL_BRANDING_SIZE
- 1);
1685 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID
:
1686 strncpy(dell_branding
,
1687 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING
,
1688 MPT2SAS_DELL_BRANDING_SIZE
- 1);
1690 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID
:
1691 strncpy(dell_branding
,
1692 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING
,
1693 MPT2SAS_DELL_BRANDING_SIZE
- 1);
1695 case MPT2SAS_DELL_PERC_H200_SSDID
:
1696 strncpy(dell_branding
, MPT2SAS_DELL_PERC_H200_BRANDING
,
1697 MPT2SAS_DELL_BRANDING_SIZE
- 1);
1699 case MPT2SAS_DELL_6GBPS_SAS_SSDID
:
1700 strncpy(dell_branding
, MPT2SAS_DELL_6GBPS_SAS_BRANDING
,
1701 MPT2SAS_DELL_BRANDING_SIZE
- 1);
1704 sprintf(dell_branding
, "0x%4X", ioc
->pdev
->subsystem_device
);
1708 printk(MPT2SAS_INFO_FMT
"%s: Vendor(0x%04X), Device(0x%04X),"
1709 " SSVID(0x%04X), SSDID(0x%04X)\n", ioc
->name
, dell_branding
,
1710 ioc
->pdev
->vendor
, ioc
->pdev
->device
, ioc
->pdev
->subsystem_vendor
,
1711 ioc
->pdev
->subsystem_device
);
1715 * _base_display_ioc_capabilities - Disply IOC's capabilities.
1716 * @ioc: per adapter object
1721 _base_display_ioc_capabilities(struct MPT2SAS_ADAPTER
*ioc
)
1726 u32 iounit_pg1_flags
;
1728 pci_read_config_byte(ioc
->pdev
, PCI_CLASS_REVISION
, &revision
);
1729 strncpy(desc
, ioc
->manu_pg0
.ChipName
, 16);
1730 printk(MPT2SAS_INFO_FMT
"%s: FWVersion(%02d.%02d.%02d.%02d), "
1731 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
1733 (ioc
->facts
.FWVersion
.Word
& 0xFF000000) >> 24,
1734 (ioc
->facts
.FWVersion
.Word
& 0x00FF0000) >> 16,
1735 (ioc
->facts
.FWVersion
.Word
& 0x0000FF00) >> 8,
1736 ioc
->facts
.FWVersion
.Word
& 0x000000FF,
1738 (ioc
->bios_pg3
.BiosVersion
& 0xFF000000) >> 24,
1739 (ioc
->bios_pg3
.BiosVersion
& 0x00FF0000) >> 16,
1740 (ioc
->bios_pg3
.BiosVersion
& 0x0000FF00) >> 8,
1741 ioc
->bios_pg3
.BiosVersion
& 0x000000FF);
1743 _base_display_dell_branding(ioc
);
1745 printk(MPT2SAS_INFO_FMT
"Protocol=(", ioc
->name
);
1747 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR
) {
1748 printk("Initiator");
1752 if (ioc
->facts
.ProtocolFlags
& MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET
) {
1753 printk("%sTarget", i
? "," : "");
1759 printk("Capabilities=(");
1761 if (ioc
->facts
.IOCCapabilities
&
1762 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID
) {
1767 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_TLR
) {
1768 printk("%sTLR", i
? "," : "");
1772 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_MULTICAST
) {
1773 printk("%sMulticast", i
? "," : "");
1777 if (ioc
->facts
.IOCCapabilities
&
1778 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET
) {
1779 printk("%sBIDI Target", i
? "," : "");
1783 if (ioc
->facts
.IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_EEDP
) {
1784 printk("%sEEDP", i
? "," : "");
1788 if (ioc
->facts
.IOCCapabilities
&
1789 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER
) {
1790 printk("%sSnapshot Buffer", i
? "," : "");
1794 if (ioc
->facts
.IOCCapabilities
&
1795 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER
) {
1796 printk("%sDiag Trace Buffer", i
? "," : "");
1800 if (ioc
->facts
.IOCCapabilities
&
1801 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER
) {
1802 printk(KERN_INFO
"%sDiag Extended Buffer", i
? "," : "");
1806 if (ioc
->facts
.IOCCapabilities
&
1807 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING
) {
1808 printk("%sTask Set Full", i
? "," : "");
1812 iounit_pg1_flags
= le32_to_cpu(ioc
->iounit_pg1
.Flags
);
1813 if (!(iounit_pg1_flags
& MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE
)) {
1814 printk("%sNCQ", i
? "," : "");
1822 * _base_static_config_pages - static start of day config pages
1823 * @ioc: per adapter object
1828 _base_static_config_pages(struct MPT2SAS_ADAPTER
*ioc
)
1830 Mpi2ConfigReply_t mpi_reply
;
1831 u32 iounit_pg1_flags
;
1833 mpt2sas_config_get_manufacturing_pg0(ioc
, &mpi_reply
, &ioc
->manu_pg0
);
1834 if (ioc
->ir_firmware
)
1835 mpt2sas_config_get_manufacturing_pg10(ioc
, &mpi_reply
,
1837 mpt2sas_config_get_bios_pg2(ioc
, &mpi_reply
, &ioc
->bios_pg2
);
1838 mpt2sas_config_get_bios_pg3(ioc
, &mpi_reply
, &ioc
->bios_pg3
);
1839 mpt2sas_config_get_ioc_pg8(ioc
, &mpi_reply
, &ioc
->ioc_pg8
);
1840 mpt2sas_config_get_iounit_pg0(ioc
, &mpi_reply
, &ioc
->iounit_pg0
);
1841 mpt2sas_config_get_iounit_pg1(ioc
, &mpi_reply
, &ioc
->iounit_pg1
);
1842 _base_display_ioc_capabilities(ioc
);
1845 * Enable task_set_full handling in iounit_pg1 when the
1846 * facts capabilities indicate that its supported.
1848 iounit_pg1_flags
= le32_to_cpu(ioc
->iounit_pg1
.Flags
);
1849 if ((ioc
->facts
.IOCCapabilities
&
1850 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING
))
1852 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING
;
1855 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING
;
1856 ioc
->iounit_pg1
.Flags
= cpu_to_le32(iounit_pg1_flags
);
1857 mpt2sas_config_set_iounit_pg1(ioc
, &mpi_reply
, &ioc
->iounit_pg1
);
1861 * _base_release_memory_pools - release memory
1862 * @ioc: per adapter object
1864 * Free memory allocated from _base_allocate_memory_pools.
1869 _base_release_memory_pools(struct MPT2SAS_ADAPTER
*ioc
)
1871 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
1875 pci_free_consistent(ioc
->pdev
, ioc
->request_dma_sz
,
1876 ioc
->request
, ioc
->request_dma
);
1877 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"request_pool(0x%p)"
1878 ": free\n", ioc
->name
, ioc
->request
));
1879 ioc
->request
= NULL
;
1883 pci_pool_free(ioc
->sense_dma_pool
, ioc
->sense
, ioc
->sense_dma
);
1884 if (ioc
->sense_dma_pool
)
1885 pci_pool_destroy(ioc
->sense_dma_pool
);
1886 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"sense_pool(0x%p)"
1887 ": free\n", ioc
->name
, ioc
->sense
));
1892 pci_pool_free(ioc
->reply_dma_pool
, ioc
->reply
, ioc
->reply_dma
);
1893 if (ioc
->reply_dma_pool
)
1894 pci_pool_destroy(ioc
->reply_dma_pool
);
1895 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply_pool(0x%p)"
1896 ": free\n", ioc
->name
, ioc
->reply
));
1900 if (ioc
->reply_free
) {
1901 pci_pool_free(ioc
->reply_free_dma_pool
, ioc
->reply_free
,
1902 ioc
->reply_free_dma
);
1903 if (ioc
->reply_free_dma_pool
)
1904 pci_pool_destroy(ioc
->reply_free_dma_pool
);
1905 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply_free_pool"
1906 "(0x%p): free\n", ioc
->name
, ioc
->reply_free
));
1907 ioc
->reply_free
= NULL
;
1910 if (ioc
->reply_post_free
) {
1911 pci_pool_free(ioc
->reply_post_free_dma_pool
,
1912 ioc
->reply_post_free
, ioc
->reply_post_free_dma
);
1913 if (ioc
->reply_post_free_dma_pool
)
1914 pci_pool_destroy(ioc
->reply_post_free_dma_pool
);
1915 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
1916 "reply_post_free_pool(0x%p): free\n", ioc
->name
,
1917 ioc
->reply_post_free
));
1918 ioc
->reply_post_free
= NULL
;
1921 if (ioc
->config_page
) {
1922 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
1923 "config_page(0x%p): free\n", ioc
->name
,
1925 pci_free_consistent(ioc
->pdev
, ioc
->config_page_sz
,
1926 ioc
->config_page
, ioc
->config_page_dma
);
1929 if (ioc
->scsi_lookup
) {
1930 free_pages((ulong
)ioc
->scsi_lookup
, ioc
->scsi_lookup_pages
);
1931 ioc
->scsi_lookup
= NULL
;
1933 kfree(ioc
->hpr_lookup
);
1934 kfree(ioc
->internal_lookup
);
1939 * _base_allocate_memory_pools - allocate start of day memory pools
1940 * @ioc: per adapter object
1941 * @sleep_flag: CAN_SLEEP or NO_SLEEP
1943 * Returns 0 success, anything else error
1946 _base_allocate_memory_pools(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
1948 Mpi2IOCFactsReply_t
*facts
;
1949 u32 queue_size
, queue_diff
;
1950 u16 max_sge_elements
;
1951 u16 num_of_reply_frames
;
1952 u16 chains_needed_per_io
;
1955 u16 max_request_credit
;
1957 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
1961 facts
= &ioc
->facts
;
1963 /* command line tunables for max sgl entries */
1964 if (max_sgl_entries
!= -1) {
1965 ioc
->shost
->sg_tablesize
= (max_sgl_entries
<
1966 MPT2SAS_SG_DEPTH
) ? max_sgl_entries
:
1969 ioc
->shost
->sg_tablesize
= MPT2SAS_SG_DEPTH
;
1972 /* command line tunables for max controller queue depth */
1973 if (max_queue_depth
!= -1) {
1974 max_request_credit
= (max_queue_depth
< facts
->RequestCredit
)
1975 ? max_queue_depth
: facts
->RequestCredit
;
1977 max_request_credit
= (facts
->RequestCredit
>
1978 MPT2SAS_MAX_REQUEST_QUEUE
) ? MPT2SAS_MAX_REQUEST_QUEUE
:
1979 facts
->RequestCredit
;
1982 ioc
->hba_queue_depth
= max_request_credit
;
1983 ioc
->hi_priority_depth
= facts
->HighPriorityCredit
;
1984 ioc
->internal_depth
= ioc
->hi_priority_depth
+ 5;
1986 /* request frame size */
1987 ioc
->request_sz
= facts
->IOCRequestFrameSize
* 4;
1989 /* reply frame size */
1990 ioc
->reply_sz
= facts
->ReplyFrameSize
* 4;
1994 /* calculate number of sg elements left over in the 1st frame */
1995 max_sge_elements
= ioc
->request_sz
- ((sizeof(Mpi2SCSIIORequest_t
) -
1996 sizeof(Mpi2SGEIOUnion_t
)) + ioc
->sge_size
);
1997 ioc
->max_sges_in_main_message
= max_sge_elements
/ioc
->sge_size
;
1999 /* now do the same for a chain buffer */
2000 max_sge_elements
= ioc
->request_sz
- ioc
->sge_size
;
2001 ioc
->max_sges_in_chain_message
= max_sge_elements
/ioc
->sge_size
;
2003 ioc
->chain_offset_value_for_main_message
=
2004 ((sizeof(Mpi2SCSIIORequest_t
) - sizeof(Mpi2SGEIOUnion_t
)) +
2005 (ioc
->max_sges_in_chain_message
* ioc
->sge_size
)) / 4;
2008 * MPT2SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2010 chains_needed_per_io
= ((ioc
->shost
->sg_tablesize
-
2011 ioc
->max_sges_in_main_message
)/ioc
->max_sges_in_chain_message
)
2013 if (chains_needed_per_io
> facts
->MaxChainDepth
) {
2014 chains_needed_per_io
= facts
->MaxChainDepth
;
2015 ioc
->shost
->sg_tablesize
= min_t(u16
,
2016 ioc
->max_sges_in_main_message
+ (ioc
->max_sges_in_chain_message
2017 * chains_needed_per_io
), ioc
->shost
->sg_tablesize
);
2019 ioc
->chains_needed_per_io
= chains_needed_per_io
;
2021 /* reply free queue sizing - taking into account for events */
2022 num_of_reply_frames
= ioc
->hba_queue_depth
+ 32;
2024 /* number of replies frames can't be a multiple of 16 */
2025 /* decrease number of reply frames by 1 */
2026 if (!(num_of_reply_frames
% 16))
2027 num_of_reply_frames
--;
2029 /* calculate number of reply free queue entries
2030 * (must be multiple of 16)
2033 /* (we know reply_free_queue_depth is not a multiple of 16) */
2034 queue_size
= num_of_reply_frames
;
2035 queue_size
+= 16 - (queue_size
% 16);
2036 ioc
->reply_free_queue_depth
= queue_size
;
2038 /* reply descriptor post queue sizing */
2039 /* this size should be the number of request frames + number of reply
2043 queue_size
= ioc
->hba_queue_depth
+ num_of_reply_frames
+ 1;
2044 /* round up to 16 byte boundary */
2045 if (queue_size
% 16)
2046 queue_size
+= 16 - (queue_size
% 16);
2048 /* check against IOC maximum reply post queue depth */
2049 if (queue_size
> facts
->MaxReplyDescriptorPostQueueDepth
) {
2050 queue_diff
= queue_size
-
2051 facts
->MaxReplyDescriptorPostQueueDepth
;
2053 /* round queue_diff up to multiple of 16 */
2054 if (queue_diff
% 16)
2055 queue_diff
+= 16 - (queue_diff
% 16);
2057 /* adjust hba_queue_depth, reply_free_queue_depth,
2060 ioc
->hba_queue_depth
-= (queue_diff
/ 2);
2061 ioc
->reply_free_queue_depth
-= (queue_diff
/ 2);
2062 queue_size
= facts
->MaxReplyDescriptorPostQueueDepth
;
2064 ioc
->reply_post_queue_depth
= queue_size
;
2066 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"scatter gather: "
2067 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2068 "chains_per_io(%d)\n", ioc
->name
, ioc
->max_sges_in_main_message
,
2069 ioc
->max_sges_in_chain_message
, ioc
->shost
->sg_tablesize
,
2070 ioc
->chains_needed_per_io
));
2072 ioc
->scsiio_depth
= ioc
->hba_queue_depth
-
2073 ioc
->hi_priority_depth
- ioc
->internal_depth
;
2075 /* set the scsi host can_queue depth
2076 * with some internal commands that could be outstanding
2078 ioc
->shost
->can_queue
= ioc
->scsiio_depth
- (2);
2079 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"scsi host: "
2080 "can_queue depth (%d)\n", ioc
->name
, ioc
->shost
->can_queue
));
2082 /* contiguous pool for request and chains, 16 byte align, one extra "
2085 ioc
->chain_depth
= ioc
->chains_needed_per_io
* ioc
->scsiio_depth
;
2086 sz
= ((ioc
->scsiio_depth
+ 1 + ioc
->chain_depth
) * ioc
->request_sz
);
2088 /* hi-priority queue */
2089 sz
+= (ioc
->hi_priority_depth
* ioc
->request_sz
);
2091 /* internal queue */
2092 sz
+= (ioc
->internal_depth
* ioc
->request_sz
);
2094 ioc
->request_dma_sz
= sz
;
2095 ioc
->request
= pci_alloc_consistent(ioc
->pdev
, sz
, &ioc
->request_dma
);
2096 if (!ioc
->request
) {
2097 printk(MPT2SAS_ERR_FMT
"request pool: pci_alloc_consistent "
2098 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2099 "total(%d kB)\n", ioc
->name
, ioc
->hba_queue_depth
,
2100 ioc
->chains_needed_per_io
, ioc
->request_sz
, sz
/1024);
2101 if (ioc
->scsiio_depth
< MPT2SAS_SAS_QUEUE_DEPTH
)
2104 ioc
->hba_queue_depth
= max_request_credit
- retry_sz
;
2105 goto retry_allocation
;
2109 printk(MPT2SAS_ERR_FMT
"request pool: pci_alloc_consistent "
2110 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2111 "total(%d kb)\n", ioc
->name
, ioc
->hba_queue_depth
,
2112 ioc
->chains_needed_per_io
, ioc
->request_sz
, sz
/1024);
2115 /* hi-priority queue */
2116 ioc
->hi_priority
= ioc
->request
+ ((ioc
->scsiio_depth
+ 1) *
2118 ioc
->hi_priority_dma
= ioc
->request_dma
+ ((ioc
->scsiio_depth
+ 1) *
2121 /* internal queue */
2122 ioc
->internal
= ioc
->hi_priority
+ (ioc
->hi_priority_depth
*
2124 ioc
->internal_dma
= ioc
->hi_priority_dma
+ (ioc
->hi_priority_depth
*
2127 ioc
->chain
= ioc
->internal
+ (ioc
->internal_depth
*
2129 ioc
->chain_dma
= ioc
->internal_dma
+ (ioc
->internal_depth
*
2132 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"request pool(0x%p): "
2133 "depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc
->name
,
2134 ioc
->request
, ioc
->hba_queue_depth
, ioc
->request_sz
,
2135 (ioc
->hba_queue_depth
* ioc
->request_sz
)/1024));
2136 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"chain pool(0x%p): depth"
2137 "(%d), frame_size(%d), pool_size(%d kB)\n", ioc
->name
, ioc
->chain
,
2138 ioc
->chain_depth
, ioc
->request_sz
, ((ioc
->chain_depth
*
2139 ioc
->request_sz
))/1024));
2140 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"request pool: dma(0x%llx)\n",
2141 ioc
->name
, (unsigned long long) ioc
->request_dma
));
2144 sz
= ioc
->scsiio_depth
* sizeof(struct request_tracker
);
2145 ioc
->scsi_lookup_pages
= get_order(sz
);
2146 ioc
->scsi_lookup
= (struct request_tracker
*)__get_free_pages(
2147 GFP_KERNEL
, ioc
->scsi_lookup_pages
);
2148 if (!ioc
->scsi_lookup
) {
2149 printk(MPT2SAS_ERR_FMT
"scsi_lookup: get_free_pages failed, "
2150 "sz(%d)\n", ioc
->name
, (int)sz
);
2154 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"scsiio(0x%p): "
2155 "depth(%d)\n", ioc
->name
, ioc
->request
,
2156 ioc
->scsiio_depth
));
2158 /* initialize hi-priority queue smid's */
2159 ioc
->hpr_lookup
= kcalloc(ioc
->hi_priority_depth
,
2160 sizeof(struct request_tracker
), GFP_KERNEL
);
2161 if (!ioc
->hpr_lookup
) {
2162 printk(MPT2SAS_ERR_FMT
"hpr_lookup: kcalloc failed\n",
2166 ioc
->hi_priority_smid
= ioc
->scsiio_depth
+ 1;
2167 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"hi_priority(0x%p): "
2168 "depth(%d), start smid(%d)\n", ioc
->name
, ioc
->hi_priority
,
2169 ioc
->hi_priority_depth
, ioc
->hi_priority_smid
));
2171 /* initialize internal queue smid's */
2172 ioc
->internal_lookup
= kcalloc(ioc
->internal_depth
,
2173 sizeof(struct request_tracker
), GFP_KERNEL
);
2174 if (!ioc
->internal_lookup
) {
2175 printk(MPT2SAS_ERR_FMT
"internal_lookup: kcalloc failed\n",
2179 ioc
->internal_smid
= ioc
->hi_priority_smid
+ ioc
->hi_priority_depth
;
2180 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"internal(0x%p): "
2181 "depth(%d), start smid(%d)\n", ioc
->name
, ioc
->internal
,
2182 ioc
->internal_depth
, ioc
->internal_smid
));
2184 /* sense buffers, 4 byte align */
2185 sz
= ioc
->scsiio_depth
* SCSI_SENSE_BUFFERSIZE
;
2186 ioc
->sense_dma_pool
= pci_pool_create("sense pool", ioc
->pdev
, sz
, 4,
2188 if (!ioc
->sense_dma_pool
) {
2189 printk(MPT2SAS_ERR_FMT
"sense pool: pci_pool_create failed\n",
2193 ioc
->sense
= pci_pool_alloc(ioc
->sense_dma_pool
, GFP_KERNEL
,
2196 printk(MPT2SAS_ERR_FMT
"sense pool: pci_pool_alloc failed\n",
2200 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
2201 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
2202 "(%d kB)\n", ioc
->name
, ioc
->sense
, ioc
->scsiio_depth
,
2203 SCSI_SENSE_BUFFERSIZE
, sz
/1024));
2204 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"sense_dma(0x%llx)\n",
2205 ioc
->name
, (unsigned long long)ioc
->sense_dma
));
2208 /* reply pool, 4 byte align */
2209 sz
= ioc
->reply_free_queue_depth
* ioc
->reply_sz
;
2210 ioc
->reply_dma_pool
= pci_pool_create("reply pool", ioc
->pdev
, sz
, 4,
2212 if (!ioc
->reply_dma_pool
) {
2213 printk(MPT2SAS_ERR_FMT
"reply pool: pci_pool_create failed\n",
2217 ioc
->reply
= pci_pool_alloc(ioc
->reply_dma_pool
, GFP_KERNEL
,
2220 printk(MPT2SAS_ERR_FMT
"reply pool: pci_pool_alloc failed\n",
2224 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply pool(0x%p): depth"
2225 "(%d), frame_size(%d), pool_size(%d kB)\n", ioc
->name
, ioc
->reply
,
2226 ioc
->reply_free_queue_depth
, ioc
->reply_sz
, sz
/1024));
2227 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply_dma(0x%llx)\n",
2228 ioc
->name
, (unsigned long long)ioc
->reply_dma
));
2231 /* reply free queue, 16 byte align */
2232 sz
= ioc
->reply_free_queue_depth
* 4;
2233 ioc
->reply_free_dma_pool
= pci_pool_create("reply_free pool",
2234 ioc
->pdev
, sz
, 16, 0);
2235 if (!ioc
->reply_free_dma_pool
) {
2236 printk(MPT2SAS_ERR_FMT
"reply_free pool: pci_pool_create "
2237 "failed\n", ioc
->name
);
2240 ioc
->reply_free
= pci_pool_alloc(ioc
->reply_free_dma_pool
, GFP_KERNEL
,
2241 &ioc
->reply_free_dma
);
2242 if (!ioc
->reply_free
) {
2243 printk(MPT2SAS_ERR_FMT
"reply_free pool: pci_pool_alloc "
2244 "failed\n", ioc
->name
);
2247 memset(ioc
->reply_free
, 0, sz
);
2248 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply_free pool(0x%p): "
2249 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc
->name
,
2250 ioc
->reply_free
, ioc
->reply_free_queue_depth
, 4, sz
/1024));
2251 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply_free_dma"
2252 "(0x%llx)\n", ioc
->name
, (unsigned long long)ioc
->reply_free_dma
));
2255 /* reply post queue, 16 byte align */
2256 sz
= ioc
->reply_post_queue_depth
* sizeof(Mpi2DefaultReplyDescriptor_t
);
2257 ioc
->reply_post_free_dma_pool
= pci_pool_create("reply_post_free pool",
2258 ioc
->pdev
, sz
, 16, 0);
2259 if (!ioc
->reply_post_free_dma_pool
) {
2260 printk(MPT2SAS_ERR_FMT
"reply_post_free pool: pci_pool_create "
2261 "failed\n", ioc
->name
);
2264 ioc
->reply_post_free
= pci_pool_alloc(ioc
->reply_post_free_dma_pool
,
2265 GFP_KERNEL
, &ioc
->reply_post_free_dma
);
2266 if (!ioc
->reply_post_free
) {
2267 printk(MPT2SAS_ERR_FMT
"reply_post_free pool: pci_pool_alloc "
2268 "failed\n", ioc
->name
);
2271 memset(ioc
->reply_post_free
, 0, sz
);
2272 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply post free pool"
2273 "(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
2274 ioc
->name
, ioc
->reply_post_free
, ioc
->reply_post_queue_depth
, 8,
2276 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"reply_post_free_dma = "
2277 "(0x%llx)\n", ioc
->name
, (unsigned long long)
2278 ioc
->reply_post_free_dma
));
2281 ioc
->config_page_sz
= 512;
2282 ioc
->config_page
= pci_alloc_consistent(ioc
->pdev
,
2283 ioc
->config_page_sz
, &ioc
->config_page_dma
);
2284 if (!ioc
->config_page
) {
2285 printk(MPT2SAS_ERR_FMT
"config page: pci_pool_alloc "
2286 "failed\n", ioc
->name
);
2289 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"config page(0x%p): size"
2290 "(%d)\n", ioc
->name
, ioc
->config_page
, ioc
->config_page_sz
));
2291 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"config_page_dma"
2292 "(0x%llx)\n", ioc
->name
, (unsigned long long)ioc
->config_page_dma
));
2293 total_sz
+= ioc
->config_page_sz
;
2295 printk(MPT2SAS_INFO_FMT
"Allocated physical memory: size(%d kB)\n",
2296 ioc
->name
, total_sz
/1024);
2297 printk(MPT2SAS_INFO_FMT
"Current Controller Queue Depth(%d), "
2298 "Max Controller Queue Depth(%d)\n",
2299 ioc
->name
, ioc
->shost
->can_queue
, facts
->RequestCredit
);
2300 printk(MPT2SAS_INFO_FMT
"Scatter Gather Elements per IO(%d)\n",
2301 ioc
->name
, ioc
->shost
->sg_tablesize
);
2305 _base_release_memory_pools(ioc
);
2311 * mpt2sas_base_get_iocstate - Get the current state of a MPT adapter.
2312 * @ioc: Pointer to MPT_ADAPTER structure
2313 * @cooked: Request raw or cooked IOC state
2315 * Returns all IOC Doorbell register bits if cooked==0, else just the
2316 * Doorbell bits in MPI_IOC_STATE_MASK.
2319 mpt2sas_base_get_iocstate(struct MPT2SAS_ADAPTER
*ioc
, int cooked
)
2323 s
= readl(&ioc
->chip
->Doorbell
);
2324 sc
= s
& MPI2_IOC_STATE_MASK
;
2325 return cooked
? sc
: s
;
2329 * _base_wait_on_iocstate - waiting on a particular ioc state
2330 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
2331 * @timeout: timeout in second
2332 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2334 * Returns 0 for success, non-zero for failure.
2337 _base_wait_on_iocstate(struct MPT2SAS_ADAPTER
*ioc
, u32 ioc_state
, int timeout
,
2344 cntdn
= (sleep_flag
== CAN_SLEEP
) ? 1000*timeout
: 2000*timeout
;
2346 current_state
= mpt2sas_base_get_iocstate(ioc
, 1);
2347 if (current_state
== ioc_state
)
2349 if (count
&& current_state
== MPI2_IOC_STATE_FAULT
)
2351 if (sleep_flag
== CAN_SLEEP
)
2358 return current_state
;
2362 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
2363 * a write to the doorbell)
2364 * @ioc: per adapter object
2365 * @timeout: timeout in second
2366 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2368 * Returns 0 for success, non-zero for failure.
2370 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
2373 _base_wait_for_doorbell_int(struct MPT2SAS_ADAPTER
*ioc
, int timeout
,
2380 cntdn
= (sleep_flag
== CAN_SLEEP
) ? 1000*timeout
: 2000*timeout
;
2382 int_status
= readl(&ioc
->chip
->HostInterruptStatus
);
2383 if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
2384 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: "
2385 "successfull count(%d), timeout(%d)\n", ioc
->name
,
2386 __func__
, count
, timeout
));
2389 if (sleep_flag
== CAN_SLEEP
)
2396 printk(MPT2SAS_ERR_FMT
"%s: failed due to timeout count(%d), "
2397 "int_status(%x)!\n", ioc
->name
, __func__
, count
, int_status
);
2402 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
2403 * @ioc: per adapter object
2404 * @timeout: timeout in second
2405 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2407 * Returns 0 for success, non-zero for failure.
2409 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
2413 _base_wait_for_doorbell_ack(struct MPT2SAS_ADAPTER
*ioc
, int timeout
,
2421 cntdn
= (sleep_flag
== CAN_SLEEP
) ? 1000*timeout
: 2000*timeout
;
2423 int_status
= readl(&ioc
->chip
->HostInterruptStatus
);
2424 if (!(int_status
& MPI2_HIS_SYS2IOC_DB_STATUS
)) {
2425 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: "
2426 "successfull count(%d), timeout(%d)\n", ioc
->name
,
2427 __func__
, count
, timeout
));
2429 } else if (int_status
& MPI2_HIS_IOC2SYS_DB_STATUS
) {
2430 doorbell
= readl(&ioc
->chip
->Doorbell
);
2431 if ((doorbell
& MPI2_IOC_STATE_MASK
) ==
2432 MPI2_IOC_STATE_FAULT
) {
2433 mpt2sas_base_fault_info(ioc
, doorbell
);
2436 } else if (int_status
== 0xFFFFFFFF)
2439 if (sleep_flag
== CAN_SLEEP
)
2447 printk(MPT2SAS_ERR_FMT
"%s: failed due to timeout count(%d), "
2448 "int_status(%x)!\n", ioc
->name
, __func__
, count
, int_status
);
2453 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
2454 * @ioc: per adapter object
2455 * @timeout: timeout in second
2456 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2458 * Returns 0 for success, non-zero for failure.
2462 _base_wait_for_doorbell_not_used(struct MPT2SAS_ADAPTER
*ioc
, int timeout
,
2469 cntdn
= (sleep_flag
== CAN_SLEEP
) ? 1000*timeout
: 2000*timeout
;
2471 doorbell_reg
= readl(&ioc
->chip
->Doorbell
);
2472 if (!(doorbell_reg
& MPI2_DOORBELL_USED
)) {
2473 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: "
2474 "successfull count(%d), timeout(%d)\n", ioc
->name
,
2475 __func__
, count
, timeout
));
2478 if (sleep_flag
== CAN_SLEEP
)
2485 printk(MPT2SAS_ERR_FMT
"%s: failed due to timeout count(%d), "
2486 "doorbell_reg(%x)!\n", ioc
->name
, __func__
, count
, doorbell_reg
);
2491 * _base_send_ioc_reset - send doorbell reset
2492 * @ioc: per adapter object
2493 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
2494 * @timeout: timeout in second
2495 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2497 * Returns 0 for success, non-zero for failure.
2500 _base_send_ioc_reset(struct MPT2SAS_ADAPTER
*ioc
, u8 reset_type
, int timeout
,
2506 if (reset_type
!= MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
) {
2507 printk(MPT2SAS_ERR_FMT
"%s: unknown reset_type\n",
2508 ioc
->name
, __func__
);
2512 if (!(ioc
->facts
.IOCCapabilities
&
2513 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY
))
2516 printk(MPT2SAS_INFO_FMT
"sending message unit reset !!\n", ioc
->name
);
2518 writel(reset_type
<< MPI2_DOORBELL_FUNCTION_SHIFT
,
2519 &ioc
->chip
->Doorbell
);
2520 if ((_base_wait_for_doorbell_ack(ioc
, 15, sleep_flag
))) {
2524 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
,
2525 timeout
, sleep_flag
);
2527 printk(MPT2SAS_ERR_FMT
"%s: failed going to ready state "
2528 " (ioc_state=0x%x)\n", ioc
->name
, __func__
, ioc_state
);
2533 printk(MPT2SAS_INFO_FMT
"message unit reset: %s\n",
2534 ioc
->name
, ((r
== 0) ? "SUCCESS" : "FAILED"));
2539 * _base_handshake_req_reply_wait - send request thru doorbell interface
2540 * @ioc: per adapter object
2541 * @request_bytes: request length
2542 * @request: pointer having request payload
2543 * @reply_bytes: reply length
2544 * @reply: pointer to reply payload
2545 * @timeout: timeout in second
2546 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2548 * Returns 0 for success, non-zero for failure.
2551 _base_handshake_req_reply_wait(struct MPT2SAS_ADAPTER
*ioc
, int request_bytes
,
2552 u32
*request
, int reply_bytes
, u16
*reply
, int timeout
, int sleep_flag
)
2554 MPI2DefaultReply_t
*default_reply
= (MPI2DefaultReply_t
*)reply
;
2560 /* make sure doorbell is not in use */
2561 if ((readl(&ioc
->chip
->Doorbell
) & MPI2_DOORBELL_USED
)) {
2562 printk(MPT2SAS_ERR_FMT
"doorbell is in use "
2563 " (line=%d)\n", ioc
->name
, __LINE__
);
2567 /* clear pending doorbell interrupts from previous state changes */
2568 if (readl(&ioc
->chip
->HostInterruptStatus
) &
2569 MPI2_HIS_IOC2SYS_DB_STATUS
)
2570 writel(0, &ioc
->chip
->HostInterruptStatus
);
2572 /* send message to ioc */
2573 writel(((MPI2_FUNCTION_HANDSHAKE
<<MPI2_DOORBELL_FUNCTION_SHIFT
) |
2574 ((request_bytes
/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT
)),
2575 &ioc
->chip
->Doorbell
);
2577 if ((_base_wait_for_doorbell_int(ioc
, 5, NO_SLEEP
))) {
2578 printk(MPT2SAS_ERR_FMT
"doorbell handshake "
2579 "int failed (line=%d)\n", ioc
->name
, __LINE__
);
2582 writel(0, &ioc
->chip
->HostInterruptStatus
);
2584 if ((_base_wait_for_doorbell_ack(ioc
, 5, sleep_flag
))) {
2585 printk(MPT2SAS_ERR_FMT
"doorbell handshake "
2586 "ack failed (line=%d)\n", ioc
->name
, __LINE__
);
2590 /* send message 32-bits at a time */
2591 for (i
= 0, failed
= 0; i
< request_bytes
/4 && !failed
; i
++) {
2592 writel(cpu_to_le32(request
[i
]), &ioc
->chip
->Doorbell
);
2593 if ((_base_wait_for_doorbell_ack(ioc
, 5, sleep_flag
)))
2598 printk(MPT2SAS_ERR_FMT
"doorbell handshake "
2599 "sending request failed (line=%d)\n", ioc
->name
, __LINE__
);
2603 /* now wait for the reply */
2604 if ((_base_wait_for_doorbell_int(ioc
, timeout
, sleep_flag
))) {
2605 printk(MPT2SAS_ERR_FMT
"doorbell handshake "
2606 "int failed (line=%d)\n", ioc
->name
, __LINE__
);
2610 /* read the first two 16-bits, it gives the total length of the reply */
2611 reply
[0] = le16_to_cpu(readl(&ioc
->chip
->Doorbell
)
2612 & MPI2_DOORBELL_DATA_MASK
);
2613 writel(0, &ioc
->chip
->HostInterruptStatus
);
2614 if ((_base_wait_for_doorbell_int(ioc
, 5, sleep_flag
))) {
2615 printk(MPT2SAS_ERR_FMT
"doorbell handshake "
2616 "int failed (line=%d)\n", ioc
->name
, __LINE__
);
2619 reply
[1] = le16_to_cpu(readl(&ioc
->chip
->Doorbell
)
2620 & MPI2_DOORBELL_DATA_MASK
);
2621 writel(0, &ioc
->chip
->HostInterruptStatus
);
2623 for (i
= 2; i
< default_reply
->MsgLength
* 2; i
++) {
2624 if ((_base_wait_for_doorbell_int(ioc
, 5, sleep_flag
))) {
2625 printk(MPT2SAS_ERR_FMT
"doorbell "
2626 "handshake int failed (line=%d)\n", ioc
->name
,
2630 if (i
>= reply_bytes
/2) /* overflow case */
2631 dummy
= readl(&ioc
->chip
->Doorbell
);
2633 reply
[i
] = le16_to_cpu(readl(&ioc
->chip
->Doorbell
)
2634 & MPI2_DOORBELL_DATA_MASK
);
2635 writel(0, &ioc
->chip
->HostInterruptStatus
);
2638 _base_wait_for_doorbell_int(ioc
, 5, sleep_flag
);
2639 if (_base_wait_for_doorbell_not_used(ioc
, 5, sleep_flag
) != 0) {
2640 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"doorbell is in use "
2641 " (line=%d)\n", ioc
->name
, __LINE__
));
2643 writel(0, &ioc
->chip
->HostInterruptStatus
);
2645 if (ioc
->logging_level
& MPT_DEBUG_INIT
) {
2647 printk(KERN_INFO
"\toffset:data\n");
2648 for (i
= 0; i
< reply_bytes
/4; i
++)
2649 printk(KERN_INFO
"\t[0x%02x]:%08x\n", i
*4,
2650 le32_to_cpu(mfp
[i
]));
2656 * mpt2sas_base_sas_iounit_control - send sas iounit control to FW
2657 * @ioc: per adapter object
2658 * @mpi_reply: the reply payload from FW
2659 * @mpi_request: the request payload sent to FW
2661 * The SAS IO Unit Control Request message allows the host to perform low-level
2662 * operations, such as resets on the PHYs of the IO Unit, also allows the host
2663 * to obtain the IOC assigned device handles for a device if it has other
2664 * identifying information about the device, in addition allows the host to
2665 * remove IOC resources associated with the device.
2667 * Returns 0 for success, non-zero for failure.
2670 mpt2sas_base_sas_iounit_control(struct MPT2SAS_ADAPTER
*ioc
,
2671 Mpi2SasIoUnitControlReply_t
*mpi_reply
,
2672 Mpi2SasIoUnitControlRequest_t
*mpi_request
)
2676 unsigned long timeleft
;
2680 u16 wait_state_count
;
2682 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2685 mutex_lock(&ioc
->base_cmds
.mutex
);
2687 if (ioc
->base_cmds
.status
!= MPT2_CMD_NOT_USED
) {
2688 printk(MPT2SAS_ERR_FMT
"%s: base_cmd in use\n",
2689 ioc
->name
, __func__
);
2694 wait_state_count
= 0;
2695 ioc_state
= mpt2sas_base_get_iocstate(ioc
, 1);
2696 while (ioc_state
!= MPI2_IOC_STATE_OPERATIONAL
) {
2697 if (wait_state_count
++ == 10) {
2698 printk(MPT2SAS_ERR_FMT
2699 "%s: failed due to ioc not operational\n",
2700 ioc
->name
, __func__
);
2705 ioc_state
= mpt2sas_base_get_iocstate(ioc
, 1);
2706 printk(MPT2SAS_INFO_FMT
"%s: waiting for "
2707 "operational state(count=%d)\n", ioc
->name
,
2708 __func__
, wait_state_count
);
2711 smid
= mpt2sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
2713 printk(MPT2SAS_ERR_FMT
"%s: failed obtaining a smid\n",
2714 ioc
->name
, __func__
);
2720 ioc
->base_cmds
.status
= MPT2_CMD_PENDING
;
2721 request
= mpt2sas_base_get_msg_frame(ioc
, smid
);
2722 ioc
->base_cmds
.smid
= smid
;
2723 memcpy(request
, mpi_request
, sizeof(Mpi2SasIoUnitControlRequest_t
));
2724 if (mpi_request
->Operation
== MPI2_SAS_OP_PHY_HARD_RESET
||
2725 mpi_request
->Operation
== MPI2_SAS_OP_PHY_LINK_RESET
)
2726 ioc
->ioc_link_reset_in_progress
= 1;
2727 mpt2sas_base_put_smid_default(ioc
, smid
);
2728 init_completion(&ioc
->base_cmds
.done
);
2729 timeleft
= wait_for_completion_timeout(&ioc
->base_cmds
.done
,
2730 msecs_to_jiffies(10000));
2731 if ((mpi_request
->Operation
== MPI2_SAS_OP_PHY_HARD_RESET
||
2732 mpi_request
->Operation
== MPI2_SAS_OP_PHY_LINK_RESET
) &&
2733 ioc
->ioc_link_reset_in_progress
)
2734 ioc
->ioc_link_reset_in_progress
= 0;
2735 if (!(ioc
->base_cmds
.status
& MPT2_CMD_COMPLETE
)) {
2736 printk(MPT2SAS_ERR_FMT
"%s: timeout\n",
2737 ioc
->name
, __func__
);
2738 _debug_dump_mf(mpi_request
,
2739 sizeof(Mpi2SasIoUnitControlRequest_t
)/4);
2740 if (!(ioc
->base_cmds
.status
& MPT2_CMD_RESET
))
2742 goto issue_host_reset
;
2744 if (ioc
->base_cmds
.status
& MPT2_CMD_REPLY_VALID
)
2745 memcpy(mpi_reply
, ioc
->base_cmds
.reply
,
2746 sizeof(Mpi2SasIoUnitControlReply_t
));
2748 memset(mpi_reply
, 0, sizeof(Mpi2SasIoUnitControlReply_t
));
2749 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
2754 mpt2sas_base_hard_reset_handler(ioc
, CAN_SLEEP
,
2756 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
2759 mutex_unlock(&ioc
->base_cmds
.mutex
);
2765 * mpt2sas_base_scsi_enclosure_processor - sending request to sep device
2766 * @ioc: per adapter object
2767 * @mpi_reply: the reply payload from FW
2768 * @mpi_request: the request payload sent to FW
2770 * The SCSI Enclosure Processor request message causes the IOC to
2771 * communicate with SES devices to control LED status signals.
2773 * Returns 0 for success, non-zero for failure.
2776 mpt2sas_base_scsi_enclosure_processor(struct MPT2SAS_ADAPTER
*ioc
,
2777 Mpi2SepReply_t
*mpi_reply
, Mpi2SepRequest_t
*mpi_request
)
2781 unsigned long timeleft
;
2785 u16 wait_state_count
;
2787 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2790 mutex_lock(&ioc
->base_cmds
.mutex
);
2792 if (ioc
->base_cmds
.status
!= MPT2_CMD_NOT_USED
) {
2793 printk(MPT2SAS_ERR_FMT
"%s: base_cmd in use\n",
2794 ioc
->name
, __func__
);
2799 wait_state_count
= 0;
2800 ioc_state
= mpt2sas_base_get_iocstate(ioc
, 1);
2801 while (ioc_state
!= MPI2_IOC_STATE_OPERATIONAL
) {
2802 if (wait_state_count
++ == 10) {
2803 printk(MPT2SAS_ERR_FMT
2804 "%s: failed due to ioc not operational\n",
2805 ioc
->name
, __func__
);
2810 ioc_state
= mpt2sas_base_get_iocstate(ioc
, 1);
2811 printk(MPT2SAS_INFO_FMT
"%s: waiting for "
2812 "operational state(count=%d)\n", ioc
->name
,
2813 __func__
, wait_state_count
);
2816 smid
= mpt2sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
2818 printk(MPT2SAS_ERR_FMT
"%s: failed obtaining a smid\n",
2819 ioc
->name
, __func__
);
2825 ioc
->base_cmds
.status
= MPT2_CMD_PENDING
;
2826 request
= mpt2sas_base_get_msg_frame(ioc
, smid
);
2827 ioc
->base_cmds
.smid
= smid
;
2828 memcpy(request
, mpi_request
, sizeof(Mpi2SepReply_t
));
2829 mpt2sas_base_put_smid_default(ioc
, smid
);
2830 init_completion(&ioc
->base_cmds
.done
);
2831 timeleft
= wait_for_completion_timeout(&ioc
->base_cmds
.done
,
2832 msecs_to_jiffies(10000));
2833 if (!(ioc
->base_cmds
.status
& MPT2_CMD_COMPLETE
)) {
2834 printk(MPT2SAS_ERR_FMT
"%s: timeout\n",
2835 ioc
->name
, __func__
);
2836 _debug_dump_mf(mpi_request
,
2837 sizeof(Mpi2SepRequest_t
)/4);
2838 if (!(ioc
->base_cmds
.status
& MPT2_CMD_RESET
))
2840 goto issue_host_reset
;
2842 if (ioc
->base_cmds
.status
& MPT2_CMD_REPLY_VALID
)
2843 memcpy(mpi_reply
, ioc
->base_cmds
.reply
,
2844 sizeof(Mpi2SepReply_t
));
2846 memset(mpi_reply
, 0, sizeof(Mpi2SepReply_t
));
2847 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
2852 mpt2sas_base_hard_reset_handler(ioc
, CAN_SLEEP
,
2854 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
2857 mutex_unlock(&ioc
->base_cmds
.mutex
);
2862 * _base_get_port_facts - obtain port facts reply and save in ioc
2863 * @ioc: per adapter object
2864 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2866 * Returns 0 for success, non-zero for failure.
2869 _base_get_port_facts(struct MPT2SAS_ADAPTER
*ioc
, int port
, int sleep_flag
)
2871 Mpi2PortFactsRequest_t mpi_request
;
2872 Mpi2PortFactsReply_t mpi_reply
, *pfacts
;
2873 int mpi_reply_sz
, mpi_request_sz
, r
;
2875 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2878 mpi_reply_sz
= sizeof(Mpi2PortFactsReply_t
);
2879 mpi_request_sz
= sizeof(Mpi2PortFactsRequest_t
);
2880 memset(&mpi_request
, 0, mpi_request_sz
);
2881 mpi_request
.Function
= MPI2_FUNCTION_PORT_FACTS
;
2882 mpi_request
.PortNumber
= port
;
2883 r
= _base_handshake_req_reply_wait(ioc
, mpi_request_sz
,
2884 (u32
*)&mpi_request
, mpi_reply_sz
, (u16
*)&mpi_reply
, 5, CAN_SLEEP
);
2887 printk(MPT2SAS_ERR_FMT
"%s: handshake failed (r=%d)\n",
2888 ioc
->name
, __func__
, r
);
2892 pfacts
= &ioc
->pfacts
[port
];
2893 memset(pfacts
, 0, sizeof(Mpi2PortFactsReply_t
));
2894 pfacts
->PortNumber
= mpi_reply
.PortNumber
;
2895 pfacts
->VP_ID
= mpi_reply
.VP_ID
;
2896 pfacts
->VF_ID
= mpi_reply
.VF_ID
;
2897 pfacts
->MaxPostedCmdBuffers
=
2898 le16_to_cpu(mpi_reply
.MaxPostedCmdBuffers
);
2904 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
2905 * @ioc: per adapter object
2906 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2908 * Returns 0 for success, non-zero for failure.
2911 _base_get_ioc_facts(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
2913 Mpi2IOCFactsRequest_t mpi_request
;
2914 Mpi2IOCFactsReply_t mpi_reply
, *facts
;
2915 int mpi_reply_sz
, mpi_request_sz
, r
;
2917 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2920 mpi_reply_sz
= sizeof(Mpi2IOCFactsReply_t
);
2921 mpi_request_sz
= sizeof(Mpi2IOCFactsRequest_t
);
2922 memset(&mpi_request
, 0, mpi_request_sz
);
2923 mpi_request
.Function
= MPI2_FUNCTION_IOC_FACTS
;
2924 r
= _base_handshake_req_reply_wait(ioc
, mpi_request_sz
,
2925 (u32
*)&mpi_request
, mpi_reply_sz
, (u16
*)&mpi_reply
, 5, CAN_SLEEP
);
2928 printk(MPT2SAS_ERR_FMT
"%s: handshake failed (r=%d)\n",
2929 ioc
->name
, __func__
, r
);
2933 facts
= &ioc
->facts
;
2934 memset(facts
, 0, sizeof(Mpi2IOCFactsReply_t
));
2935 facts
->MsgVersion
= le16_to_cpu(mpi_reply
.MsgVersion
);
2936 facts
->HeaderVersion
= le16_to_cpu(mpi_reply
.HeaderVersion
);
2937 facts
->VP_ID
= mpi_reply
.VP_ID
;
2938 facts
->VF_ID
= mpi_reply
.VF_ID
;
2939 facts
->IOCExceptions
= le16_to_cpu(mpi_reply
.IOCExceptions
);
2940 facts
->MaxChainDepth
= mpi_reply
.MaxChainDepth
;
2941 facts
->WhoInit
= mpi_reply
.WhoInit
;
2942 facts
->NumberOfPorts
= mpi_reply
.NumberOfPorts
;
2943 facts
->RequestCredit
= le16_to_cpu(mpi_reply
.RequestCredit
);
2944 facts
->MaxReplyDescriptorPostQueueDepth
=
2945 le16_to_cpu(mpi_reply
.MaxReplyDescriptorPostQueueDepth
);
2946 facts
->ProductID
= le16_to_cpu(mpi_reply
.ProductID
);
2947 facts
->IOCCapabilities
= le32_to_cpu(mpi_reply
.IOCCapabilities
);
2948 if ((facts
->IOCCapabilities
& MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID
))
2949 ioc
->ir_firmware
= 1;
2950 facts
->FWVersion
.Word
= le32_to_cpu(mpi_reply
.FWVersion
.Word
);
2951 facts
->IOCRequestFrameSize
=
2952 le16_to_cpu(mpi_reply
.IOCRequestFrameSize
);
2953 facts
->MaxInitiators
= le16_to_cpu(mpi_reply
.MaxInitiators
);
2954 facts
->MaxTargets
= le16_to_cpu(mpi_reply
.MaxTargets
);
2955 ioc
->shost
->max_id
= -1;
2956 facts
->MaxSasExpanders
= le16_to_cpu(mpi_reply
.MaxSasExpanders
);
2957 facts
->MaxEnclosures
= le16_to_cpu(mpi_reply
.MaxEnclosures
);
2958 facts
->ProtocolFlags
= le16_to_cpu(mpi_reply
.ProtocolFlags
);
2959 facts
->HighPriorityCredit
=
2960 le16_to_cpu(mpi_reply
.HighPriorityCredit
);
2961 facts
->ReplyFrameSize
= mpi_reply
.ReplyFrameSize
;
2962 facts
->MaxDevHandle
= le16_to_cpu(mpi_reply
.MaxDevHandle
);
2964 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"hba queue depth(%d), "
2965 "max chains per io(%d)\n", ioc
->name
, facts
->RequestCredit
,
2966 facts
->MaxChainDepth
));
2967 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"request frame size(%d), "
2968 "reply frame size(%d)\n", ioc
->name
,
2969 facts
->IOCRequestFrameSize
* 4, facts
->ReplyFrameSize
* 4));
2974 * _base_send_ioc_init - send ioc_init to firmware
2975 * @ioc: per adapter object
2976 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2978 * Returns 0 for success, non-zero for failure.
2981 _base_send_ioc_init(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
2983 Mpi2IOCInitRequest_t mpi_request
;
2984 Mpi2IOCInitReply_t mpi_reply
;
2986 struct timeval current_time
;
2989 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
2992 memset(&mpi_request
, 0, sizeof(Mpi2IOCInitRequest_t
));
2993 mpi_request
.Function
= MPI2_FUNCTION_IOC_INIT
;
2994 mpi_request
.WhoInit
= MPI2_WHOINIT_HOST_DRIVER
;
2995 mpi_request
.VF_ID
= 0; /* TODO */
2996 mpi_request
.VP_ID
= 0;
2997 mpi_request
.MsgVersion
= cpu_to_le16(MPI2_VERSION
);
2998 mpi_request
.HeaderVersion
= cpu_to_le16(MPI2_HEADER_VERSION
);
3000 /* In MPI Revision I (0xA), the SystemReplyFrameSize(offset 0x18) was
3001 * removed and made reserved. For those with older firmware will need
3002 * this fix. It was decided that the Reply and Request frame sizes are
3005 if ((ioc
->facts
.HeaderVersion
>> 8) < 0xA) {
3006 mpi_request
.Reserved7
= cpu_to_le16(ioc
->reply_sz
);
3007 /* mpi_request.SystemReplyFrameSize =
3008 * cpu_to_le16(ioc->reply_sz);
3012 mpi_request
.SystemRequestFrameSize
= cpu_to_le16(ioc
->request_sz
/4);
3013 mpi_request
.ReplyDescriptorPostQueueDepth
=
3014 cpu_to_le16(ioc
->reply_post_queue_depth
);
3015 mpi_request
.ReplyFreeQueueDepth
=
3016 cpu_to_le16(ioc
->reply_free_queue_depth
);
3018 #if BITS_PER_LONG > 32
3019 mpi_request
.SenseBufferAddressHigh
=
3020 cpu_to_le32(ioc
->sense_dma
>> 32);
3021 mpi_request
.SystemReplyAddressHigh
=
3022 cpu_to_le32(ioc
->reply_dma
>> 32);
3023 mpi_request
.SystemRequestFrameBaseAddress
=
3024 cpu_to_le64(ioc
->request_dma
);
3025 mpi_request
.ReplyFreeQueueAddress
=
3026 cpu_to_le64(ioc
->reply_free_dma
);
3027 mpi_request
.ReplyDescriptorPostQueueAddress
=
3028 cpu_to_le64(ioc
->reply_post_free_dma
);
3030 mpi_request
.SystemRequestFrameBaseAddress
=
3031 cpu_to_le32(ioc
->request_dma
);
3032 mpi_request
.ReplyFreeQueueAddress
=
3033 cpu_to_le32(ioc
->reply_free_dma
);
3034 mpi_request
.ReplyDescriptorPostQueueAddress
=
3035 cpu_to_le32(ioc
->reply_post_free_dma
);
3038 /* This time stamp specifies number of milliseconds
3039 * since epoch ~ midnight January 1, 1970.
3041 do_gettimeofday(¤t_time
);
3042 mpi_request
.TimeStamp
= cpu_to_le64((u64
)current_time
.tv_sec
* 1000 +
3043 (current_time
.tv_usec
/ 1000));
3045 if (ioc
->logging_level
& MPT_DEBUG_INIT
) {
3049 mfp
= (u32
*)&mpi_request
;
3050 printk(KERN_INFO
"\toffset:data\n");
3051 for (i
= 0; i
< sizeof(Mpi2IOCInitRequest_t
)/4; i
++)
3052 printk(KERN_INFO
"\t[0x%02x]:%08x\n", i
*4,
3053 le32_to_cpu(mfp
[i
]));
3056 r
= _base_handshake_req_reply_wait(ioc
,
3057 sizeof(Mpi2IOCInitRequest_t
), (u32
*)&mpi_request
,
3058 sizeof(Mpi2IOCInitReply_t
), (u16
*)&mpi_reply
, 10,
3062 printk(MPT2SAS_ERR_FMT
"%s: handshake failed (r=%d)\n",
3063 ioc
->name
, __func__
, r
);
3067 ioc_status
= le16_to_cpu(mpi_reply
.IOCStatus
) & MPI2_IOCSTATUS_MASK
;
3068 if (ioc_status
!= MPI2_IOCSTATUS_SUCCESS
||
3069 mpi_reply
.IOCLogInfo
) {
3070 printk(MPT2SAS_ERR_FMT
"%s: failed\n", ioc
->name
, __func__
);
3078 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
3079 * @ioc: per adapter object
3080 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3082 * Returns 0 for success, non-zero for failure.
3085 _base_send_port_enable(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
3087 Mpi2PortEnableRequest_t
*mpi_request
;
3089 unsigned long timeleft
;
3093 printk(MPT2SAS_INFO_FMT
"sending port enable !!\n", ioc
->name
);
3095 if (ioc
->base_cmds
.status
& MPT2_CMD_PENDING
) {
3096 printk(MPT2SAS_ERR_FMT
"%s: internal command already in use\n",
3097 ioc
->name
, __func__
);
3101 smid
= mpt2sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
3103 printk(MPT2SAS_ERR_FMT
"%s: failed obtaining a smid\n",
3104 ioc
->name
, __func__
);
3108 ioc
->base_cmds
.status
= MPT2_CMD_PENDING
;
3109 mpi_request
= mpt2sas_base_get_msg_frame(ioc
, smid
);
3110 ioc
->base_cmds
.smid
= smid
;
3111 memset(mpi_request
, 0, sizeof(Mpi2PortEnableRequest_t
));
3112 mpi_request
->Function
= MPI2_FUNCTION_PORT_ENABLE
;
3113 mpi_request
->VF_ID
= 0; /* TODO */
3114 mpi_request
->VP_ID
= 0;
3116 mpt2sas_base_put_smid_default(ioc
, smid
);
3117 init_completion(&ioc
->base_cmds
.done
);
3118 timeleft
= wait_for_completion_timeout(&ioc
->base_cmds
.done
,
3120 if (!(ioc
->base_cmds
.status
& MPT2_CMD_COMPLETE
)) {
3121 printk(MPT2SAS_ERR_FMT
"%s: timeout\n",
3122 ioc
->name
, __func__
);
3123 _debug_dump_mf(mpi_request
,
3124 sizeof(Mpi2PortEnableRequest_t
)/4);
3125 if (ioc
->base_cmds
.status
& MPT2_CMD_RESET
)
3131 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: complete\n",
3132 ioc
->name
, __func__
));
3134 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_OPERATIONAL
,
3137 printk(MPT2SAS_ERR_FMT
"%s: failed going to operational state "
3138 " (ioc_state=0x%x)\n", ioc
->name
, __func__
, ioc_state
);
3142 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
3143 printk(MPT2SAS_INFO_FMT
"port enable: %s\n",
3144 ioc
->name
, ((r
== 0) ? "SUCCESS" : "FAILED"));
3149 * _base_unmask_events - turn on notification for this event
3150 * @ioc: per adapter object
3151 * @event: firmware event
3153 * The mask is stored in ioc->event_masks.
3156 _base_unmask_events(struct MPT2SAS_ADAPTER
*ioc
, u16 event
)
3163 desired_event
= (1 << (event
% 32));
3166 ioc
->event_masks
[0] &= ~desired_event
;
3167 else if (event
< 64)
3168 ioc
->event_masks
[1] &= ~desired_event
;
3169 else if (event
< 96)
3170 ioc
->event_masks
[2] &= ~desired_event
;
3171 else if (event
< 128)
3172 ioc
->event_masks
[3] &= ~desired_event
;
3176 * _base_event_notification - send event notification
3177 * @ioc: per adapter object
3178 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3180 * Returns 0 for success, non-zero for failure.
3183 _base_event_notification(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
3185 Mpi2EventNotificationRequest_t
*mpi_request
;
3186 unsigned long timeleft
;
3191 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
3194 if (ioc
->base_cmds
.status
& MPT2_CMD_PENDING
) {
3195 printk(MPT2SAS_ERR_FMT
"%s: internal command already in use\n",
3196 ioc
->name
, __func__
);
3200 smid
= mpt2sas_base_get_smid(ioc
, ioc
->base_cb_idx
);
3202 printk(MPT2SAS_ERR_FMT
"%s: failed obtaining a smid\n",
3203 ioc
->name
, __func__
);
3206 ioc
->base_cmds
.status
= MPT2_CMD_PENDING
;
3207 mpi_request
= mpt2sas_base_get_msg_frame(ioc
, smid
);
3208 ioc
->base_cmds
.smid
= smid
;
3209 memset(mpi_request
, 0, sizeof(Mpi2EventNotificationRequest_t
));
3210 mpi_request
->Function
= MPI2_FUNCTION_EVENT_NOTIFICATION
;
3211 mpi_request
->VF_ID
= 0; /* TODO */
3212 mpi_request
->VP_ID
= 0;
3213 for (i
= 0; i
< MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++)
3214 mpi_request
->EventMasks
[i
] =
3215 cpu_to_le32(ioc
->event_masks
[i
]);
3216 mpt2sas_base_put_smid_default(ioc
, smid
);
3217 init_completion(&ioc
->base_cmds
.done
);
3218 timeleft
= wait_for_completion_timeout(&ioc
->base_cmds
.done
, 30*HZ
);
3219 if (!(ioc
->base_cmds
.status
& MPT2_CMD_COMPLETE
)) {
3220 printk(MPT2SAS_ERR_FMT
"%s: timeout\n",
3221 ioc
->name
, __func__
);
3222 _debug_dump_mf(mpi_request
,
3223 sizeof(Mpi2EventNotificationRequest_t
)/4);
3224 if (ioc
->base_cmds
.status
& MPT2_CMD_RESET
)
3229 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: complete\n",
3230 ioc
->name
, __func__
));
3231 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
3236 * mpt2sas_base_validate_event_type - validating event types
3237 * @ioc: per adapter object
3238 * @event: firmware event
3240 * This will turn on firmware event notification when application
3241 * ask for that event. We don't mask events that are already enabled.
3244 mpt2sas_base_validate_event_type(struct MPT2SAS_ADAPTER
*ioc
, u32
*event_type
)
3247 u32 event_mask
, desired_event
;
3248 u8 send_update_to_fw
;
3250 for (i
= 0, send_update_to_fw
= 0; i
<
3251 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++) {
3252 event_mask
= ~event_type
[i
];
3254 for (j
= 0; j
< 32; j
++) {
3255 if (!(event_mask
& desired_event
) &&
3256 (ioc
->event_masks
[i
] & desired_event
)) {
3257 ioc
->event_masks
[i
] &= ~desired_event
;
3258 send_update_to_fw
= 1;
3260 desired_event
= (desired_event
<< 1);
3264 if (!send_update_to_fw
)
3267 mutex_lock(&ioc
->base_cmds
.mutex
);
3268 _base_event_notification(ioc
, CAN_SLEEP
);
3269 mutex_unlock(&ioc
->base_cmds
.mutex
);
3273 * _base_diag_reset - the "big hammer" start of day reset
3274 * @ioc: per adapter object
3275 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3277 * Returns 0 for success, non-zero for failure.
3280 _base_diag_reset(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
3282 u32 host_diagnostic
;
3287 printk(MPT2SAS_INFO_FMT
"sending diag reset !!\n", ioc
->name
);
3289 _base_save_msix_table(ioc
);
3291 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"clear interrupts\n",
3296 /* Write magic sequence to WriteSequence register
3297 * Loop until in diagnostic mode
3299 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"write magic "
3300 "sequence\n", ioc
->name
));
3301 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
3302 writel(MPI2_WRSEQ_1ST_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
3303 writel(MPI2_WRSEQ_2ND_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
3304 writel(MPI2_WRSEQ_3RD_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
3305 writel(MPI2_WRSEQ_4TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
3306 writel(MPI2_WRSEQ_5TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
3307 writel(MPI2_WRSEQ_6TH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
3310 if (sleep_flag
== CAN_SLEEP
)
3318 host_diagnostic
= readl(&ioc
->chip
->HostDiagnostic
);
3319 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"wrote magic "
3320 "sequence: count(%d), host_diagnostic(0x%08x)\n",
3321 ioc
->name
, count
, host_diagnostic
));
3323 } while ((host_diagnostic
& MPI2_DIAG_DIAG_WRITE_ENABLE
) == 0);
3325 hcb_size
= readl(&ioc
->chip
->HCBSize
);
3327 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"diag reset: issued\n",
3329 writel(host_diagnostic
| MPI2_DIAG_RESET_ADAPTER
,
3330 &ioc
->chip
->HostDiagnostic
);
3332 /* don't access any registers for 50 milliseconds */
3335 /* 300 second max wait */
3336 for (count
= 0; count
< 3000000 ; count
++) {
3338 host_diagnostic
= readl(&ioc
->chip
->HostDiagnostic
);
3340 if (host_diagnostic
== 0xFFFFFFFF)
3342 if (!(host_diagnostic
& MPI2_DIAG_RESET_ADAPTER
))
3346 if (sleep_flag
== CAN_SLEEP
)
3352 if (host_diagnostic
& MPI2_DIAG_HCB_MODE
) {
3354 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"restart the adapter "
3355 "assuming the HCB Address points to good F/W\n",
3357 host_diagnostic
&= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK
;
3358 host_diagnostic
|= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW
;
3359 writel(host_diagnostic
, &ioc
->chip
->HostDiagnostic
);
3361 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
3362 "re-enable the HCDW\n", ioc
->name
));
3363 writel(hcb_size
| MPI2_HCB_SIZE_HCB_ENABLE
,
3364 &ioc
->chip
->HCBSize
);
3367 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"restart the adapter\n",
3369 writel(host_diagnostic
& ~MPI2_DIAG_HOLD_IOC_RESET
,
3370 &ioc
->chip
->HostDiagnostic
);
3372 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"disable writes to the "
3373 "diagnostic register\n", ioc
->name
));
3374 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE
, &ioc
->chip
->WriteSequence
);
3376 drsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"Wait for FW to go to the "
3377 "READY state\n", ioc
->name
));
3378 ioc_state
= _base_wait_on_iocstate(ioc
, MPI2_IOC_STATE_READY
, 20,
3381 printk(MPT2SAS_ERR_FMT
"%s: failed going to ready state "
3382 " (ioc_state=0x%x)\n", ioc
->name
, __func__
, ioc_state
);
3386 _base_restore_msix_table(ioc
);
3387 printk(MPT2SAS_INFO_FMT
"diag reset: SUCCESS\n", ioc
->name
);
3391 printk(MPT2SAS_ERR_FMT
"diag reset: FAILED\n", ioc
->name
);
3396 * _base_make_ioc_ready - put controller in READY state
3397 * @ioc: per adapter object
3398 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3399 * @type: FORCE_BIG_HAMMER or SOFT_RESET
3401 * Returns 0 for success, non-zero for failure.
3404 _base_make_ioc_ready(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
,
3405 enum reset_type type
)
3410 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
3413 if (ioc
->pci_error_recovery
)
3416 ioc_state
= mpt2sas_base_get_iocstate(ioc
, 0);
3417 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: ioc_state(0x%08x)\n",
3418 ioc
->name
, __func__
, ioc_state
));
3420 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_READY
)
3423 if (ioc_state
& MPI2_DOORBELL_USED
) {
3424 dhsprintk(ioc
, printk(MPT2SAS_INFO_FMT
"unexpected doorbell "
3425 "active!\n", ioc
->name
));
3426 goto issue_diag_reset
;
3429 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_FAULT
) {
3430 mpt2sas_base_fault_info(ioc
, ioc_state
&
3431 MPI2_DOORBELL_DATA_MASK
);
3432 goto issue_diag_reset
;
3435 if (type
== FORCE_BIG_HAMMER
)
3436 goto issue_diag_reset
;
3438 if ((ioc_state
& MPI2_IOC_STATE_MASK
) == MPI2_IOC_STATE_OPERATIONAL
)
3439 if (!(_base_send_ioc_reset(ioc
,
3440 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
, 15, CAN_SLEEP
))) {
3441 ioc
->ioc_reset_count
++;
3446 rc
= _base_diag_reset(ioc
, CAN_SLEEP
);
3447 ioc
->ioc_reset_count
++;
3452 * _base_make_ioc_operational - put controller in OPERATIONAL state
3453 * @ioc: per adapter object
3454 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3456 * Returns 0 for success, non-zero for failure.
3459 _base_make_ioc_operational(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
3462 unsigned long flags
;
3465 struct _tr_list
*delayed_tr
, *delayed_tr_next
;
3467 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
3470 /* clean the delayed target reset list */
3471 list_for_each_entry_safe(delayed_tr
, delayed_tr_next
,
3472 &ioc
->delayed_tr_list
, list
) {
3473 list_del(&delayed_tr
->list
);
3477 list_for_each_entry_safe(delayed_tr
, delayed_tr_next
,
3478 &ioc
->delayed_tr_volume_list
, list
) {
3479 list_del(&delayed_tr
->list
);
3483 /* initialize the scsi lookup free list */
3484 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3485 INIT_LIST_HEAD(&ioc
->free_list
);
3487 for (i
= 0; i
< ioc
->scsiio_depth
; i
++, smid
++) {
3488 ioc
->scsi_lookup
[i
].cb_idx
= 0xFF;
3489 ioc
->scsi_lookup
[i
].smid
= smid
;
3490 ioc
->scsi_lookup
[i
].scmd
= NULL
;
3491 list_add_tail(&ioc
->scsi_lookup
[i
].tracker_list
,
3495 /* hi-priority queue */
3496 INIT_LIST_HEAD(&ioc
->hpr_free_list
);
3497 smid
= ioc
->hi_priority_smid
;
3498 for (i
= 0; i
< ioc
->hi_priority_depth
; i
++, smid
++) {
3499 ioc
->hpr_lookup
[i
].cb_idx
= 0xFF;
3500 ioc
->hpr_lookup
[i
].smid
= smid
;
3501 list_add_tail(&ioc
->hpr_lookup
[i
].tracker_list
,
3502 &ioc
->hpr_free_list
);
3505 /* internal queue */
3506 INIT_LIST_HEAD(&ioc
->internal_free_list
);
3507 smid
= ioc
->internal_smid
;
3508 for (i
= 0; i
< ioc
->internal_depth
; i
++, smid
++) {
3509 ioc
->internal_lookup
[i
].cb_idx
= 0xFF;
3510 ioc
->internal_lookup
[i
].smid
= smid
;
3511 list_add_tail(&ioc
->internal_lookup
[i
].tracker_list
,
3512 &ioc
->internal_free_list
);
3514 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3516 /* initialize Reply Free Queue */
3517 for (i
= 0, reply_address
= (u32
)ioc
->reply_dma
;
3518 i
< ioc
->reply_free_queue_depth
; i
++, reply_address
+=
3520 ioc
->reply_free
[i
] = cpu_to_le32(reply_address
);
3522 /* initialize Reply Post Free Queue */
3523 for (i
= 0; i
< ioc
->reply_post_queue_depth
; i
++)
3524 ioc
->reply_post_free
[i
].Words
= ULLONG_MAX
;
3526 r
= _base_send_ioc_init(ioc
, sleep_flag
);
3530 /* initialize the index's */
3531 ioc
->reply_free_host_index
= ioc
->reply_free_queue_depth
- 1;
3532 ioc
->reply_post_host_index
= 0;
3533 writel(ioc
->reply_free_host_index
, &ioc
->chip
->ReplyFreeHostIndex
);
3534 writel(0, &ioc
->chip
->ReplyPostHostIndex
);
3536 _base_unmask_interrupts(ioc
);
3537 r
= _base_event_notification(ioc
, sleep_flag
);
3541 if (sleep_flag
== CAN_SLEEP
)
3542 _base_static_config_pages(ioc
);
3544 if (ioc
->wait_for_port_enable_to_complete
) {
3545 if (diag_buffer_enable
!= 0)
3546 mpt2sas_enable_diag_buffer(ioc
, diag_buffer_enable
);
3547 if (disable_discovery
> 0)
3551 r
= _base_send_port_enable(ioc
, sleep_flag
);
3559 * mpt2sas_base_free_resources - free resources controller resources (io/irq/memap)
3560 * @ioc: per adapter object
3565 mpt2sas_base_free_resources(struct MPT2SAS_ADAPTER
*ioc
)
3567 struct pci_dev
*pdev
= ioc
->pdev
;
3569 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
3572 _base_mask_interrupts(ioc
);
3573 ioc
->shost_recovery
= 1;
3574 _base_make_ioc_ready(ioc
, CAN_SLEEP
, SOFT_RESET
);
3575 ioc
->shost_recovery
= 0;
3577 synchronize_irq(pdev
->irq
);
3578 free_irq(ioc
->pci_irq
, ioc
);
3580 _base_disable_msix(ioc
);
3585 pci_release_selected_regions(ioc
->pdev
, ioc
->bars
);
3586 pci_disable_pcie_error_reporting(pdev
);
3587 pci_disable_device(pdev
);
3592 * mpt2sas_base_attach - attach controller instance
3593 * @ioc: per adapter object
3595 * Returns 0 for success, non-zero for failure.
3598 mpt2sas_base_attach(struct MPT2SAS_ADAPTER
*ioc
)
3602 dinitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
3605 r
= mpt2sas_base_map_resources(ioc
);
3609 pci_set_drvdata(ioc
->pdev
, ioc
->shost
);
3610 r
= _base_get_ioc_facts(ioc
, CAN_SLEEP
);
3612 goto out_free_resources
;
3614 r
= _base_make_ioc_ready(ioc
, CAN_SLEEP
, SOFT_RESET
);
3616 goto out_free_resources
;
3618 ioc
->pfacts
= kcalloc(ioc
->facts
.NumberOfPorts
,
3619 sizeof(Mpi2PortFactsReply_t
), GFP_KERNEL
);
3622 goto out_free_resources
;
3625 for (i
= 0 ; i
< ioc
->facts
.NumberOfPorts
; i
++) {
3626 r
= _base_get_port_facts(ioc
, i
, CAN_SLEEP
);
3628 goto out_free_resources
;
3631 r
= _base_allocate_memory_pools(ioc
, CAN_SLEEP
);
3633 goto out_free_resources
;
3635 init_waitqueue_head(&ioc
->reset_wq
);
3637 /* allocate memory pd handle bitmask list */
3638 ioc
->pd_handles_sz
= (ioc
->facts
.MaxDevHandle
/ 8);
3639 if (ioc
->facts
.MaxDevHandle
% 8)
3640 ioc
->pd_handles_sz
++;
3641 ioc
->pd_handles
= kzalloc(ioc
->pd_handles_sz
,
3643 if (!ioc
->pd_handles
) {
3645 goto out_free_resources
;
3648 ioc
->fwfault_debug
= mpt2sas_fwfault_debug
;
3650 /* base internal command bits */
3651 mutex_init(&ioc
->base_cmds
.mutex
);
3652 ioc
->base_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
3653 ioc
->base_cmds
.status
= MPT2_CMD_NOT_USED
;
3655 /* transport internal command bits */
3656 ioc
->transport_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
3657 ioc
->transport_cmds
.status
= MPT2_CMD_NOT_USED
;
3658 mutex_init(&ioc
->transport_cmds
.mutex
);
3660 /* scsih internal command bits */
3661 ioc
->scsih_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
3662 ioc
->scsih_cmds
.status
= MPT2_CMD_NOT_USED
;
3663 mutex_init(&ioc
->scsih_cmds
.mutex
);
3665 /* scsih internal command bits */
3666 ioc
->scsih_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
3667 ioc
->scsih_cmds
.status
= MPT2_CMD_NOT_USED
;
3668 mutex_init(&ioc
->scsih_cmds
.mutex
);
3670 /* task management internal command bits */
3671 ioc
->tm_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
3672 ioc
->tm_cmds
.status
= MPT2_CMD_NOT_USED
;
3673 mutex_init(&ioc
->tm_cmds
.mutex
);
3675 /* config page internal command bits */
3676 ioc
->config_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
3677 ioc
->config_cmds
.status
= MPT2_CMD_NOT_USED
;
3678 mutex_init(&ioc
->config_cmds
.mutex
);
3680 /* ctl module internal command bits */
3681 ioc
->ctl_cmds
.reply
= kzalloc(ioc
->reply_sz
, GFP_KERNEL
);
3682 ioc
->ctl_cmds
.sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_KERNEL
);
3683 ioc
->ctl_cmds
.status
= MPT2_CMD_NOT_USED
;
3684 mutex_init(&ioc
->ctl_cmds
.mutex
);
3686 if (!ioc
->base_cmds
.reply
|| !ioc
->transport_cmds
.reply
||
3687 !ioc
->scsih_cmds
.reply
|| !ioc
->tm_cmds
.reply
||
3688 !ioc
->config_cmds
.reply
|| !ioc
->ctl_cmds
.reply
||
3689 !ioc
->ctl_cmds
.sense
) {
3691 goto out_free_resources
;
3694 if (!ioc
->base_cmds
.reply
|| !ioc
->transport_cmds
.reply
||
3695 !ioc
->scsih_cmds
.reply
|| !ioc
->tm_cmds
.reply
||
3696 !ioc
->config_cmds
.reply
|| !ioc
->ctl_cmds
.reply
) {
3698 goto out_free_resources
;
3701 init_completion(&ioc
->shost_recovery_done
);
3703 for (i
= 0; i
< MPI2_EVENT_NOTIFY_EVENTMASK_WORDS
; i
++)
3704 ioc
->event_masks
[i
] = -1;
3706 /* here we enable the events we care about */
3707 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DISCOVERY
);
3708 _base_unmask_events(ioc
, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE
);
3709 _base_unmask_events(ioc
, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST
);
3710 _base_unmask_events(ioc
, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE
);
3711 _base_unmask_events(ioc
, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE
);
3712 _base_unmask_events(ioc
, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST
);
3713 _base_unmask_events(ioc
, MPI2_EVENT_IR_VOLUME
);
3714 _base_unmask_events(ioc
, MPI2_EVENT_IR_PHYSICAL_DISK
);
3715 _base_unmask_events(ioc
, MPI2_EVENT_IR_OPERATION_STATUS
);
3716 _base_unmask_events(ioc
, MPI2_EVENT_TASK_SET_FULL
);
3717 _base_unmask_events(ioc
, MPI2_EVENT_LOG_ENTRY_ADDED
);
3718 r
= _base_make_ioc_operational(ioc
, CAN_SLEEP
);
3720 goto out_free_resources
;
3722 mpt2sas_base_start_watchdog(ioc
);
3727 ioc
->remove_host
= 1;
3728 mpt2sas_base_free_resources(ioc
);
3729 _base_release_memory_pools(ioc
);
3730 pci_set_drvdata(ioc
->pdev
, NULL
);
3731 kfree(ioc
->pd_handles
);
3732 kfree(ioc
->tm_cmds
.reply
);
3733 kfree(ioc
->transport_cmds
.reply
);
3734 kfree(ioc
->scsih_cmds
.reply
);
3735 kfree(ioc
->config_cmds
.reply
);
3736 kfree(ioc
->base_cmds
.reply
);
3737 kfree(ioc
->ctl_cmds
.reply
);
3738 kfree(ioc
->ctl_cmds
.sense
);
3740 ioc
->ctl_cmds
.reply
= NULL
;
3741 ioc
->base_cmds
.reply
= NULL
;
3742 ioc
->tm_cmds
.reply
= NULL
;
3743 ioc
->scsih_cmds
.reply
= NULL
;
3744 ioc
->transport_cmds
.reply
= NULL
;
3745 ioc
->config_cmds
.reply
= NULL
;
3752 * mpt2sas_base_detach - remove controller instance
3753 * @ioc: per adapter object
3758 mpt2sas_base_detach(struct MPT2SAS_ADAPTER
*ioc
)
3761 dexitprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s\n", ioc
->name
,
3764 mpt2sas_base_stop_watchdog(ioc
);
3765 mpt2sas_base_free_resources(ioc
);
3766 _base_release_memory_pools(ioc
);
3767 pci_set_drvdata(ioc
->pdev
, NULL
);
3768 kfree(ioc
->pd_handles
);
3770 kfree(ioc
->ctl_cmds
.reply
);
3771 kfree(ioc
->ctl_cmds
.sense
);
3772 kfree(ioc
->base_cmds
.reply
);
3773 kfree(ioc
->tm_cmds
.reply
);
3774 kfree(ioc
->transport_cmds
.reply
);
3775 kfree(ioc
->scsih_cmds
.reply
);
3776 kfree(ioc
->config_cmds
.reply
);
3780 * _base_reset_handler - reset callback handler (for base)
3781 * @ioc: per adapter object
3782 * @reset_phase: phase
3784 * The handler for doing any required cleanup or initialization.
3786 * The reset phase can be MPT2_IOC_PRE_RESET, MPT2_IOC_AFTER_RESET,
3787 * MPT2_IOC_DONE_RESET
3792 _base_reset_handler(struct MPT2SAS_ADAPTER
*ioc
, int reset_phase
)
3794 mpt2sas_scsih_reset_handler(ioc
, reset_phase
);
3795 mpt2sas_ctl_reset_handler(ioc
, reset_phase
);
3796 switch (reset_phase
) {
3797 case MPT2_IOC_PRE_RESET
:
3798 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: "
3799 "MPT2_IOC_PRE_RESET\n", ioc
->name
, __func__
));
3801 case MPT2_IOC_AFTER_RESET
:
3802 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: "
3803 "MPT2_IOC_AFTER_RESET\n", ioc
->name
, __func__
));
3804 if (ioc
->transport_cmds
.status
& MPT2_CMD_PENDING
) {
3805 ioc
->transport_cmds
.status
|= MPT2_CMD_RESET
;
3806 mpt2sas_base_free_smid(ioc
, ioc
->transport_cmds
.smid
);
3807 complete(&ioc
->transport_cmds
.done
);
3809 if (ioc
->base_cmds
.status
& MPT2_CMD_PENDING
) {
3810 ioc
->base_cmds
.status
|= MPT2_CMD_RESET
;
3811 mpt2sas_base_free_smid(ioc
, ioc
->base_cmds
.smid
);
3812 complete(&ioc
->base_cmds
.done
);
3814 if (ioc
->config_cmds
.status
& MPT2_CMD_PENDING
) {
3815 ioc
->config_cmds
.status
|= MPT2_CMD_RESET
;
3816 mpt2sas_base_free_smid(ioc
, ioc
->config_cmds
.smid
);
3817 ioc
->config_cmds
.smid
= USHRT_MAX
;
3818 complete(&ioc
->config_cmds
.done
);
3821 case MPT2_IOC_DONE_RESET
:
3822 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: "
3823 "MPT2_IOC_DONE_RESET\n", ioc
->name
, __func__
));
3829 * _wait_for_commands_to_complete - reset controller
3830 * @ioc: Pointer to MPT_ADAPTER structure
3831 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3833 * This function waiting(3s) for all pending commands to complete
3834 * prior to putting controller in reset.
3837 _wait_for_commands_to_complete(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
)
3840 unsigned long flags
;
3843 ioc
->pending_io_count
= 0;
3844 if (sleep_flag
!= CAN_SLEEP
)
3847 ioc_state
= mpt2sas_base_get_iocstate(ioc
, 0);
3848 if ((ioc_state
& MPI2_IOC_STATE_MASK
) != MPI2_IOC_STATE_OPERATIONAL
)
3851 /* pending command count */
3852 spin_lock_irqsave(&ioc
->scsi_lookup_lock
, flags
);
3853 for (i
= 0; i
< ioc
->scsiio_depth
; i
++)
3854 if (ioc
->scsi_lookup
[i
].cb_idx
!= 0xFF)
3855 ioc
->pending_io_count
++;
3856 spin_unlock_irqrestore(&ioc
->scsi_lookup_lock
, flags
);
3858 if (!ioc
->pending_io_count
)
3861 /* wait for pending commands to complete */
3862 wait_event_timeout(ioc
->reset_wq
, ioc
->pending_io_count
== 0, 10 * HZ
);
3866 * mpt2sas_base_hard_reset_handler - reset controller
3867 * @ioc: Pointer to MPT_ADAPTER structure
3868 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3869 * @type: FORCE_BIG_HAMMER or SOFT_RESET
3871 * Returns 0 for success, non-zero for failure.
3874 mpt2sas_base_hard_reset_handler(struct MPT2SAS_ADAPTER
*ioc
, int sleep_flag
,
3875 enum reset_type type
)
3878 unsigned long flags
;
3879 u8 pe_complete
= ioc
->wait_for_port_enable_to_complete
;
3881 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: enter\n", ioc
->name
,
3884 if (ioc
->pci_error_recovery
) {
3885 printk(MPT2SAS_ERR_FMT
"%s: pci error recovery reset\n",
3886 ioc
->name
, __func__
);
3891 if (mpt2sas_fwfault_debug
)
3892 mpt2sas_halt_firmware(ioc
);
3894 /* TODO - What we really should be doing is pulling
3895 * out all the code associated with NO_SLEEP; its never used.
3896 * That is legacy code from mpt fusion driver, ported over.
3897 * I will leave this BUG_ON here for now till its been resolved.
3899 BUG_ON(sleep_flag
== NO_SLEEP
);
3901 /* wait for an active reset in progress to complete */
3902 if (!mutex_trylock(&ioc
->reset_in_progress_mutex
)) {
3905 } while (ioc
->shost_recovery
== 1);
3906 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: exit\n", ioc
->name
,
3908 return ioc
->ioc_reset_in_progress_status
;
3911 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
3912 ioc
->shost_recovery
= 1;
3913 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
3915 _base_reset_handler(ioc
, MPT2_IOC_PRE_RESET
);
3916 _wait_for_commands_to_complete(ioc
, sleep_flag
);
3917 _base_mask_interrupts(ioc
);
3918 r
= _base_make_ioc_ready(ioc
, sleep_flag
, type
);
3921 _base_reset_handler(ioc
, MPT2_IOC_AFTER_RESET
);
3923 /* If this hard reset is called while port enable is active, then
3924 * there is no reason to call make_ioc_operational
3930 r
= _base_make_ioc_operational(ioc
, sleep_flag
);
3932 _base_reset_handler(ioc
, MPT2_IOC_DONE_RESET
);
3934 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: %s\n",
3935 ioc
->name
, __func__
, ((r
== 0) ? "SUCCESS" : "FAILED")));
3937 spin_lock_irqsave(&ioc
->ioc_reset_in_progress_lock
, flags
);
3938 ioc
->ioc_reset_in_progress_status
= r
;
3939 ioc
->shost_recovery
= 0;
3940 complete(&ioc
->shost_recovery_done
);
3941 spin_unlock_irqrestore(&ioc
->ioc_reset_in_progress_lock
, flags
);
3942 mutex_unlock(&ioc
->reset_in_progress_mutex
);
3944 dtmprintk(ioc
, printk(MPT2SAS_INFO_FMT
"%s: exit\n", ioc
->name
,