RT-AC56 3.0.0.4.374.37 core
[tomato.git] / release / src-rt-6.x.4708 / linux / linux-2.6.36 / drivers / parport / parport_ip32.c
blob6a2665e77b77cda1b4c3d9f300af53495501c0a9
1 /* Low-level parallel port routines for built-in port on SGI IP32
3 * Author: Arnaud Giersch <arnaud.giersch@free.fr>
5 * Based on parport_pc.c by
6 * Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
7 * Andrea Arcangeli, et al.
9 * Thanks to Ilya A. Volynets-Evenbakh for his help.
11 * Copyright (C) 2005, 2006 Arnaud Giersch.
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 2 of the License, or (at your option)
16 * any later version.
18 * This program is distributed in the hope that it will be useful, but WITHOUT
19 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
20 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
21 * more details.
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc., 59
25 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
28 /* Current status:
30 * Basic SPP and PS2 modes are supported.
31 * Support for parallel port IRQ is present.
32 * Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
33 * supported.
34 * SPP/ECP FIFO can be driven in PIO or DMA mode. PIO mode can work with
35 * or without interrupt support.
37 * Hardware ECP mode is not fully implemented (ecp_read_data and
38 * ecp_write_addr are actually missing).
40 * To do:
42 * Fully implement ECP mode.
43 * EPP and ECP mode need to be tested. I currently do not own any
44 * peripheral supporting these extended mode, and cannot test them.
45 * If DMA mode works well, decide if support for PIO FIFO modes should be
46 * dropped.
47 * Use the io{read,write} family functions when they become available in
48 * the linux-mips.org tree. Note: the MIPS specific functions readsb()
49 * and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
50 * respectively.
53 /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
54 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
55 * This chip supports SPP, bidirectional, EPP and ECP modes. It has a 16 byte
56 * FIFO buffer and supports DMA transfers.
58 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
60 * Theoretically, we could simply use the parport_pc module. It is however
61 * not so simple. The parport_pc code assumes that the parallel port
62 * registers are port-mapped. On the O2, they are memory-mapped.
63 * Furthermore, each register is replicated on 256 consecutive addresses (as
64 * it is for the built-in serial ports on the same chip).
67 /*--- Some configuration defines ---------------------------------------*/
69 /* DEBUG_PARPORT_IP32
70 * 0 disable debug
71 * 1 standard level: pr_debug1 is enabled
72 * 2 parport_ip32_dump_state is enabled
73 * >=3 verbose level: pr_debug is enabled
75 #if !defined(DEBUG_PARPORT_IP32)
76 # define DEBUG_PARPORT_IP32 0 /* 0 (disabled) for production */
77 #endif
79 /*----------------------------------------------------------------------*/
81 /* Setup DEBUG macros. This is done before any includes, just in case we
82 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
84 #if DEBUG_PARPORT_IP32 == 1
85 # warning DEBUG_PARPORT_IP32 == 1
86 #elif DEBUG_PARPORT_IP32 == 2
87 # warning DEBUG_PARPORT_IP32 == 2
88 #elif DEBUG_PARPORT_IP32 >= 3
89 # warning DEBUG_PARPORT_IP32 >= 3
90 # if !defined(DEBUG)
91 # define DEBUG /* enable pr_debug() in kernel.h */
92 # endif
93 #endif
95 #include <linux/completion.h>
96 #include <linux/delay.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/err.h>
99 #include <linux/init.h>
100 #include <linux/interrupt.h>
101 #include <linux/jiffies.h>
102 #include <linux/kernel.h>
103 #include <linux/module.h>
104 #include <linux/parport.h>
105 #include <linux/sched.h>
106 #include <linux/slab.h>
107 #include <linux/spinlock.h>
108 #include <linux/stddef.h>
109 #include <linux/types.h>
110 #include <asm/io.h>
111 #include <asm/ip32/ip32_ints.h>
112 #include <asm/ip32/mace.h>
114 /*--- Global variables -------------------------------------------------*/
116 /* Verbose probing on by default for debugging. */
117 #if DEBUG_PARPORT_IP32 >= 1
118 # define DEFAULT_VERBOSE_PROBING 1
119 #else
120 # define DEFAULT_VERBOSE_PROBING 0
121 #endif
123 /* Default prefix for printk */
124 #define PPIP32 "parport_ip32: "
127 * These are the module parameters:
128 * @features: bit mask of features to enable/disable
129 * (all enabled by default)
130 * @verbose_probing: log chit-chat during initialization
132 #define PARPORT_IP32_ENABLE_IRQ (1U << 0)
133 #define PARPORT_IP32_ENABLE_DMA (1U << 1)
134 #define PARPORT_IP32_ENABLE_SPP (1U << 2)
135 #define PARPORT_IP32_ENABLE_EPP (1U << 3)
136 #define PARPORT_IP32_ENABLE_ECP (1U << 4)
137 static unsigned int features = ~0U;
138 static int verbose_probing = DEFAULT_VERBOSE_PROBING;
140 /* We do not support more than one port. */
141 static struct parport *this_port = NULL;
143 /* Timing constants for FIFO modes. */
144 #define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */
145 #define FIFO_POLLING_INTERVAL 50 /* microseconds */
147 /*--- I/O register definitions -----------------------------------------*/
150 * struct parport_ip32_regs - virtual addresses of parallel port registers
151 * @data: Data Register
152 * @dsr: Device Status Register
153 * @dcr: Device Control Register
154 * @eppAddr: EPP Address Register
155 * @eppData0: EPP Data Register 0
156 * @eppData1: EPP Data Register 1
157 * @eppData2: EPP Data Register 2
158 * @eppData3: EPP Data Register 3
159 * @ecpAFifo: ECP Address FIFO
160 * @fifo: General FIFO register. The same address is used for:
161 * - cFifo, the Parallel Port DATA FIFO
162 * - ecpDFifo, the ECP Data FIFO
163 * - tFifo, the ECP Test FIFO
164 * @cnfgA: Configuration Register A
165 * @cnfgB: Configuration Register B
166 * @ecr: Extended Control Register
168 struct parport_ip32_regs {
169 void __iomem *data;
170 void __iomem *dsr;
171 void __iomem *dcr;
172 void __iomem *eppAddr;
173 void __iomem *eppData0;
174 void __iomem *eppData1;
175 void __iomem *eppData2;
176 void __iomem *eppData3;
177 void __iomem *ecpAFifo;
178 void __iomem *fifo;
179 void __iomem *cnfgA;
180 void __iomem *cnfgB;
181 void __iomem *ecr;
184 /* Device Status Register */
185 #define DSR_nBUSY (1U << 7) /* PARPORT_STATUS_BUSY */
186 #define DSR_nACK (1U << 6) /* PARPORT_STATUS_ACK */
187 #define DSR_PERROR (1U << 5) /* PARPORT_STATUS_PAPEROUT */
188 #define DSR_SELECT (1U << 4) /* PARPORT_STATUS_SELECT */
189 #define DSR_nFAULT (1U << 3) /* PARPORT_STATUS_ERROR */
190 #define DSR_nPRINT (1U << 2) /* specific to TL16PIR552 */
191 /* #define DSR_reserved (1U << 1) */
192 #define DSR_TIMEOUT (1U << 0) /* EPP timeout */
194 /* Device Control Register */
195 /* #define DCR_reserved (1U << 7) | (1U << 6) */
196 #define DCR_DIR (1U << 5) /* direction */
197 #define DCR_IRQ (1U << 4) /* interrupt on nAck */
198 #define DCR_SELECT (1U << 3) /* PARPORT_CONTROL_SELECT */
199 #define DCR_nINIT (1U << 2) /* PARPORT_CONTROL_INIT */
200 #define DCR_AUTOFD (1U << 1) /* PARPORT_CONTROL_AUTOFD */
201 #define DCR_STROBE (1U << 0) /* PARPORT_CONTROL_STROBE */
203 /* ECP Configuration Register A */
204 #define CNFGA_IRQ (1U << 7)
205 #define CNFGA_ID_MASK ((1U << 6) | (1U << 5) | (1U << 4))
206 #define CNFGA_ID_SHIFT 4
207 #define CNFGA_ID_16 (00U << CNFGA_ID_SHIFT)
208 #define CNFGA_ID_8 (01U << CNFGA_ID_SHIFT)
209 #define CNFGA_ID_32 (02U << CNFGA_ID_SHIFT)
210 /* #define CNFGA_reserved (1U << 3) */
211 #define CNFGA_nBYTEINTRANS (1U << 2)
212 #define CNFGA_PWORDLEFT ((1U << 1) | (1U << 0))
214 /* ECP Configuration Register B */
215 #define CNFGB_COMPRESS (1U << 7)
216 #define CNFGB_INTRVAL (1U << 6)
217 #define CNFGB_IRQ_MASK ((1U << 5) | (1U << 4) | (1U << 3))
218 #define CNFGB_IRQ_SHIFT 3
219 #define CNFGB_DMA_MASK ((1U << 2) | (1U << 1) | (1U << 0))
220 #define CNFGB_DMA_SHIFT 0
222 /* Extended Control Register */
223 #define ECR_MODE_MASK ((1U << 7) | (1U << 6) | (1U << 5))
224 #define ECR_MODE_SHIFT 5
225 #define ECR_MODE_SPP (00U << ECR_MODE_SHIFT)
226 #define ECR_MODE_PS2 (01U << ECR_MODE_SHIFT)
227 #define ECR_MODE_PPF (02U << ECR_MODE_SHIFT)
228 #define ECR_MODE_ECP (03U << ECR_MODE_SHIFT)
229 #define ECR_MODE_EPP (04U << ECR_MODE_SHIFT)
230 /* #define ECR_MODE_reserved (05U << ECR_MODE_SHIFT) */
231 #define ECR_MODE_TST (06U << ECR_MODE_SHIFT)
232 #define ECR_MODE_CFG (07U << ECR_MODE_SHIFT)
233 #define ECR_nERRINTR (1U << 4)
234 #define ECR_DMAEN (1U << 3)
235 #define ECR_SERVINTR (1U << 2)
236 #define ECR_F_FULL (1U << 1)
237 #define ECR_F_EMPTY (1U << 0)
239 /*--- Private data -----------------------------------------------------*/
242 * enum parport_ip32_irq_mode - operation mode of interrupt handler
243 * @PARPORT_IP32_IRQ_FWD: forward interrupt to the upper parport layer
244 * @PARPORT_IP32_IRQ_HERE: interrupt is handled locally
246 enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
249 * struct parport_ip32_private - private stuff for &struct parport
250 * @regs: register addresses
251 * @dcr_cache: cached contents of DCR
252 * @dcr_writable: bit mask of writable DCR bits
253 * @pword: number of bytes per PWord
254 * @fifo_depth: number of PWords that FIFO will hold
255 * @readIntrThreshold: minimum number of PWords we can read
256 * if we get an interrupt
257 * @writeIntrThreshold: minimum number of PWords we can write
258 * if we get an interrupt
259 * @irq_mode: operation mode of interrupt handler for this port
260 * @irq_complete: mutex used to wait for an interrupt to occur
262 struct parport_ip32_private {
263 struct parport_ip32_regs regs;
264 unsigned int dcr_cache;
265 unsigned int dcr_writable;
266 unsigned int pword;
267 unsigned int fifo_depth;
268 unsigned int readIntrThreshold;
269 unsigned int writeIntrThreshold;
270 enum parport_ip32_irq_mode irq_mode;
271 struct completion irq_complete;
274 /*--- Debug code -------------------------------------------------------*/
277 * pr_debug1 - print debug messages
279 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
281 #if DEBUG_PARPORT_IP32 >= 1
282 # define pr_debug1(...) printk(KERN_DEBUG __VA_ARGS__)
283 #else /* DEBUG_PARPORT_IP32 < 1 */
284 # define pr_debug1(...) do { } while (0)
285 #endif
288 * pr_trace, pr_trace1 - trace function calls
289 * @p: pointer to &struct parport
290 * @fmt: printk format string
291 * @...: parameters for format string
293 * Macros used to trace function calls. The given string is formatted after
294 * function name. pr_trace() uses pr_debug(), and pr_trace1() uses
295 * pr_debug1(). __pr_trace() is the low-level macro and is not to be used
296 * directly.
298 #define __pr_trace(pr, p, fmt, ...) \
299 pr("%s: %s" fmt "\n", \
300 ({ const struct parport *__p = (p); \
301 __p ? __p->name : "parport_ip32"; }), \
302 __func__ , ##__VA_ARGS__)
303 #define pr_trace(p, fmt, ...) __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
304 #define pr_trace1(p, fmt, ...) __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
307 * __pr_probe, pr_probe - print message if @verbose_probing is true
308 * @p: pointer to &struct parport
309 * @fmt: printk format string
310 * @...: parameters for format string
312 * For new lines, use pr_probe(). Use __pr_probe() for continued lines.
314 #define __pr_probe(...) \
315 do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
316 #define pr_probe(p, fmt, ...) \
317 __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
320 * parport_ip32_dump_state - print register status of parport
321 * @p: pointer to &struct parport
322 * @str: string to add in message
323 * @show_ecp_config: shall we dump ECP configuration registers too?
325 * This function is only here for debugging purpose, and should be used with
326 * care. Reading the parallel port registers may have undesired side effects.
327 * Especially if @show_ecp_config is true, the parallel port is resetted.
328 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
330 #if DEBUG_PARPORT_IP32 >= 2
331 static void parport_ip32_dump_state(struct parport *p, char *str,
332 unsigned int show_ecp_config)
334 struct parport_ip32_private * const priv = p->physport->private_data;
335 unsigned int i;
337 printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
339 static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
340 "ECP", "EPP", "???",
341 "TST", "CFG"};
342 unsigned int ecr = readb(priv->regs.ecr);
343 printk(KERN_DEBUG PPIP32 " ecr=0x%02x", ecr);
344 printk(" %s",
345 ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
346 if (ecr & ECR_nERRINTR)
347 printk(",nErrIntrEn");
348 if (ecr & ECR_DMAEN)
349 printk(",dmaEn");
350 if (ecr & ECR_SERVINTR)
351 printk(",serviceIntr");
352 if (ecr & ECR_F_FULL)
353 printk(",f_full");
354 if (ecr & ECR_F_EMPTY)
355 printk(",f_empty");
356 printk("\n");
358 if (show_ecp_config) {
359 unsigned int oecr, cnfgA, cnfgB;
360 oecr = readb(priv->regs.ecr);
361 writeb(ECR_MODE_PS2, priv->regs.ecr);
362 writeb(ECR_MODE_CFG, priv->regs.ecr);
363 cnfgA = readb(priv->regs.cnfgA);
364 cnfgB = readb(priv->regs.cnfgB);
365 writeb(ECR_MODE_PS2, priv->regs.ecr);
366 writeb(oecr, priv->regs.ecr);
367 printk(KERN_DEBUG PPIP32 " cnfgA=0x%02x", cnfgA);
368 printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
369 switch (cnfgA & CNFGA_ID_MASK) {
370 case CNFGA_ID_8:
371 printk(",8 bits");
372 break;
373 case CNFGA_ID_16:
374 printk(",16 bits");
375 break;
376 case CNFGA_ID_32:
377 printk(",32 bits");
378 break;
379 default:
380 printk(",unknown ID");
381 break;
383 if (!(cnfgA & CNFGA_nBYTEINTRANS))
384 printk(",ByteInTrans");
385 if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
386 printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT,
387 ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
388 printk("\n");
389 printk(KERN_DEBUG PPIP32 " cnfgB=0x%02x", cnfgB);
390 printk(" irq=%u,dma=%u",
391 (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
392 (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
393 printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
394 if (cnfgB & CNFGB_COMPRESS)
395 printk(",compress");
396 printk("\n");
398 for (i = 0; i < 2; i++) {
399 unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
400 printk(KERN_DEBUG PPIP32 " dcr(%s)=0x%02x",
401 i ? "soft" : "hard", dcr);
402 printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
403 if (dcr & DCR_IRQ)
404 printk(",ackIntEn");
405 if (!(dcr & DCR_SELECT))
406 printk(",nSelectIn");
407 if (dcr & DCR_nINIT)
408 printk(",nInit");
409 if (!(dcr & DCR_AUTOFD))
410 printk(",nAutoFD");
411 if (!(dcr & DCR_STROBE))
412 printk(",nStrobe");
413 printk("\n");
415 #define sep (f++ ? ',' : ' ')
417 unsigned int f = 0;
418 unsigned int dsr = readb(priv->regs.dsr);
419 printk(KERN_DEBUG PPIP32 " dsr=0x%02x", dsr);
420 if (!(dsr & DSR_nBUSY))
421 printk("%cBusy", sep);
422 if (dsr & DSR_nACK)
423 printk("%cnAck", sep);
424 if (dsr & DSR_PERROR)
425 printk("%cPError", sep);
426 if (dsr & DSR_SELECT)
427 printk("%cSelect", sep);
428 if (dsr & DSR_nFAULT)
429 printk("%cnFault", sep);
430 if (!(dsr & DSR_nPRINT))
431 printk("%c(Print)", sep);
432 if (dsr & DSR_TIMEOUT)
433 printk("%cTimeout", sep);
434 printk("\n");
436 #undef sep
438 #else /* DEBUG_PARPORT_IP32 < 2 */
439 #define parport_ip32_dump_state(...) do { } while (0)
440 #endif
443 * CHECK_EXTRA_BITS - track and log extra bits
444 * @p: pointer to &struct parport
445 * @b: byte to inspect
446 * @m: bit mask of authorized bits
448 * This is used to track and log extra bits that should not be there in
449 * parport_ip32_write_control() and parport_ip32_frob_control(). It is only
450 * defined if %DEBUG_PARPORT_IP32 >= 1.
452 #if DEBUG_PARPORT_IP32 >= 1
453 #define CHECK_EXTRA_BITS(p, b, m) \
454 do { \
455 unsigned int __b = (b), __m = (m); \
456 if (__b & ~__m) \
457 pr_debug1(PPIP32 "%s: extra bits in %s(%s): " \
458 "0x%02x/0x%02x\n", \
459 (p)->name, __func__, #b, __b, __m); \
460 } while (0)
461 #else /* DEBUG_PARPORT_IP32 < 1 */
462 #define CHECK_EXTRA_BITS(...) do { } while (0)
463 #endif
465 /*--- IP32 parallel port DMA operations --------------------------------*/
468 * struct parport_ip32_dma_data - private data needed for DMA operation
469 * @dir: DMA direction (from or to device)
470 * @buf: buffer physical address
471 * @len: buffer length
472 * @next: address of next bytes to DMA transfer
473 * @left: number of bytes remaining
474 * @ctx: next context to write (0: context_a; 1: context_b)
475 * @irq_on: are the DMA IRQs currently enabled?
476 * @lock: spinlock to protect access to the structure
478 struct parport_ip32_dma_data {
479 enum dma_data_direction dir;
480 dma_addr_t buf;
481 dma_addr_t next;
482 size_t len;
483 size_t left;
484 unsigned int ctx;
485 unsigned int irq_on;
486 spinlock_t lock;
488 static struct parport_ip32_dma_data parport_ip32_dma;
491 * parport_ip32_dma_setup_context - setup next DMA context
492 * @limit: maximum data size for the context
494 * The alignment constraints must be verified in caller function, and the
495 * parameter @limit must be set accordingly.
497 static void parport_ip32_dma_setup_context(unsigned int limit)
499 unsigned long flags;
501 spin_lock_irqsave(&parport_ip32_dma.lock, flags);
502 if (parport_ip32_dma.left > 0) {
503 /* Note: ctxreg is "volatile" here only because
504 * mace->perif.ctrl.parport.context_a and context_b are
505 * "volatile". */
506 volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
507 &mace->perif.ctrl.parport.context_a :
508 &mace->perif.ctrl.parport.context_b;
509 u64 count;
510 u64 ctxval;
511 if (parport_ip32_dma.left <= limit) {
512 count = parport_ip32_dma.left;
513 ctxval = MACEPAR_CONTEXT_LASTFLAG;
514 } else {
515 count = limit;
516 ctxval = 0;
519 pr_trace(NULL,
520 "(%u): 0x%04x:0x%04x, %u -> %u%s",
521 limit,
522 (unsigned int)parport_ip32_dma.buf,
523 (unsigned int)parport_ip32_dma.next,
524 (unsigned int)count,
525 parport_ip32_dma.ctx, ctxval ? "*" : "");
527 ctxval |= parport_ip32_dma.next &
528 MACEPAR_CONTEXT_BASEADDR_MASK;
529 ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
530 MACEPAR_CONTEXT_DATALEN_MASK;
531 writeq(ctxval, ctxreg);
532 parport_ip32_dma.next += count;
533 parport_ip32_dma.left -= count;
534 parport_ip32_dma.ctx ^= 1U;
536 /* If there is nothing more to send, disable IRQs to avoid to
537 * face an IRQ storm which can lock the machine. Disable them
538 * only once. */
539 if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
540 pr_debug(PPIP32 "IRQ off (ctx)\n");
541 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
542 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
543 parport_ip32_dma.irq_on = 0;
545 spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
549 * parport_ip32_dma_interrupt - DMA interrupt handler
550 * @irq: interrupt number
551 * @dev_id: unused
553 static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
555 if (parport_ip32_dma.left)
556 pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
557 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
558 return IRQ_HANDLED;
561 #if DEBUG_PARPORT_IP32
562 static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
564 pr_trace1(NULL, "(%d)", irq);
565 return IRQ_HANDLED;
567 #endif
570 * parport_ip32_dma_start - begins a DMA transfer
571 * @dir: DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
572 * @addr: pointer to data buffer
573 * @count: buffer size
575 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
576 * correctly balanced.
578 static int parport_ip32_dma_start(enum dma_data_direction dir,
579 void *addr, size_t count)
581 unsigned int limit;
582 u64 ctrl;
584 pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
586 BUG_ON(dir != DMA_TO_DEVICE);
588 /* Reset DMA controller */
589 ctrl = MACEPAR_CTLSTAT_RESET;
590 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
592 /* DMA IRQs should normally be enabled */
593 if (!parport_ip32_dma.irq_on) {
594 WARN_ON(1);
595 enable_irq(MACEISA_PAR_CTXA_IRQ);
596 enable_irq(MACEISA_PAR_CTXB_IRQ);
597 parport_ip32_dma.irq_on = 1;
600 /* Prepare DMA pointers */
601 parport_ip32_dma.dir = dir;
602 parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir);
603 parport_ip32_dma.len = count;
604 parport_ip32_dma.next = parport_ip32_dma.buf;
605 parport_ip32_dma.left = parport_ip32_dma.len;
606 parport_ip32_dma.ctx = 0;
608 /* Setup DMA direction and first two contexts */
609 ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
610 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
611 /* Single transfer should not cross a 4K page boundary */
612 limit = MACEPAR_CONTEXT_DATA_BOUND -
613 (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
614 parport_ip32_dma_setup_context(limit);
615 parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
617 /* Real start of DMA transfer */
618 ctrl |= MACEPAR_CTLSTAT_ENABLE;
619 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
621 return 0;
625 * parport_ip32_dma_stop - ends a running DMA transfer
627 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
628 * correctly balanced.
630 static void parport_ip32_dma_stop(void)
632 u64 ctx_a;
633 u64 ctx_b;
634 u64 ctrl;
635 u64 diag;
636 size_t res[2]; /* {[0] = res_a, [1] = res_b} */
638 pr_trace(NULL, "()");
640 /* Disable IRQs */
641 spin_lock_irq(&parport_ip32_dma.lock);
642 if (parport_ip32_dma.irq_on) {
643 pr_debug(PPIP32 "IRQ off (stop)\n");
644 disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
645 disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
646 parport_ip32_dma.irq_on = 0;
648 spin_unlock_irq(&parport_ip32_dma.lock);
649 /* Force IRQ synchronization, even if the IRQs were disabled
650 * elsewhere. */
651 synchronize_irq(MACEISA_PAR_CTXA_IRQ);
652 synchronize_irq(MACEISA_PAR_CTXB_IRQ);
654 /* Stop DMA transfer */
655 ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
656 ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
657 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
659 /* Adjust residue (parport_ip32_dma.left) */
660 ctx_a = readq(&mace->perif.ctrl.parport.context_a);
661 ctx_b = readq(&mace->perif.ctrl.parport.context_b);
662 ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
663 diag = readq(&mace->perif.ctrl.parport.diagnostic);
664 res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
665 1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
666 MACEPAR_CONTEXT_DATALEN_SHIFT) :
668 res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
669 1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
670 MACEPAR_CONTEXT_DATALEN_SHIFT) :
672 if (diag & MACEPAR_DIAG_DMACTIVE)
673 res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
674 1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
675 MACEPAR_DIAG_CTRSHIFT);
676 parport_ip32_dma.left += res[0] + res[1];
678 /* Reset DMA controller, and re-enable IRQs */
679 ctrl = MACEPAR_CTLSTAT_RESET;
680 writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
681 pr_debug(PPIP32 "IRQ on (stop)\n");
682 enable_irq(MACEISA_PAR_CTXA_IRQ);
683 enable_irq(MACEISA_PAR_CTXB_IRQ);
684 parport_ip32_dma.irq_on = 1;
686 dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len,
687 parport_ip32_dma.dir);
691 * parport_ip32_dma_get_residue - get residue from last DMA transfer
693 * Returns the number of bytes remaining from last DMA transfer.
695 static inline size_t parport_ip32_dma_get_residue(void)
697 return parport_ip32_dma.left;
701 * parport_ip32_dma_register - initialize DMA engine
703 * Returns zero for success.
705 static int parport_ip32_dma_register(void)
707 int err;
709 spin_lock_init(&parport_ip32_dma.lock);
710 parport_ip32_dma.irq_on = 1;
712 /* Reset DMA controller */
713 writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
715 /* Request IRQs */
716 err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
717 0, "parport_ip32", NULL);
718 if (err)
719 goto fail_a;
720 err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
721 0, "parport_ip32", NULL);
722 if (err)
723 goto fail_b;
724 #if DEBUG_PARPORT_IP32
725 err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
726 0, "parport_ip32", NULL);
727 if (err)
728 goto fail_merr;
729 #endif
730 return 0;
732 #if DEBUG_PARPORT_IP32
733 fail_merr:
734 free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
735 #endif
736 fail_b:
737 free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
738 fail_a:
739 return err;
743 * parport_ip32_dma_unregister - release and free resources for DMA engine
745 static void parport_ip32_dma_unregister(void)
747 #if DEBUG_PARPORT_IP32
748 free_irq(MACEISA_PAR_MERR_IRQ, NULL);
749 #endif
750 free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
751 free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
754 /*--- Interrupt handlers and associates --------------------------------*/
757 * parport_ip32_wakeup - wakes up code waiting for an interrupt
758 * @p: pointer to &struct parport
760 static inline void parport_ip32_wakeup(struct parport *p)
762 struct parport_ip32_private * const priv = p->physport->private_data;
763 complete(&priv->irq_complete);
767 * parport_ip32_interrupt - interrupt handler
768 * @irq: interrupt number
769 * @dev_id: pointer to &struct parport
771 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
772 * %PARPORT_IP32_IRQ_FWD.
774 static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
776 struct parport * const p = dev_id;
777 struct parport_ip32_private * const priv = p->physport->private_data;
778 enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
780 switch (irq_mode) {
781 case PARPORT_IP32_IRQ_FWD:
782 return parport_irq_handler(irq, dev_id);
784 case PARPORT_IP32_IRQ_HERE:
785 parport_ip32_wakeup(p);
786 break;
789 return IRQ_HANDLED;
792 /*--- Some utility function to manipulate ECR register -----------------*/
795 * parport_ip32_read_econtrol - read contents of the ECR register
796 * @p: pointer to &struct parport
798 static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
800 struct parport_ip32_private * const priv = p->physport->private_data;
801 return readb(priv->regs.ecr);
805 * parport_ip32_write_econtrol - write new contents to the ECR register
806 * @p: pointer to &struct parport
807 * @c: new value to write
809 static inline void parport_ip32_write_econtrol(struct parport *p,
810 unsigned int c)
812 struct parport_ip32_private * const priv = p->physport->private_data;
813 writeb(c, priv->regs.ecr);
817 * parport_ip32_frob_econtrol - change bits from the ECR register
818 * @p: pointer to &struct parport
819 * @mask: bit mask of bits to change
820 * @val: new value for changed bits
822 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
823 * in @val, and write the result to the ECR.
825 static inline void parport_ip32_frob_econtrol(struct parport *p,
826 unsigned int mask,
827 unsigned int val)
829 unsigned int c;
830 c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
831 parport_ip32_write_econtrol(p, c);
835 * parport_ip32_set_mode - change mode of ECP port
836 * @p: pointer to &struct parport
837 * @mode: new mode to write in ECR
839 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
840 * mode @mode. Go through PS2 mode if needed.
842 static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
844 unsigned int omode;
846 mode &= ECR_MODE_MASK;
847 omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
849 if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
850 || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
851 /* We have to go through PS2 mode */
852 unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
853 parport_ip32_write_econtrol(p, ecr);
855 parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
858 /*--- Basic functions needed for parport -------------------------------*/
861 * parport_ip32_read_data - return current contents of the DATA register
862 * @p: pointer to &struct parport
864 static inline unsigned char parport_ip32_read_data(struct parport *p)
866 struct parport_ip32_private * const priv = p->physport->private_data;
867 return readb(priv->regs.data);
871 * parport_ip32_write_data - set new contents for the DATA register
872 * @p: pointer to &struct parport
873 * @d: new value to write
875 static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
877 struct parport_ip32_private * const priv = p->physport->private_data;
878 writeb(d, priv->regs.data);
882 * parport_ip32_read_status - return current contents of the DSR register
883 * @p: pointer to &struct parport
885 static inline unsigned char parport_ip32_read_status(struct parport *p)
887 struct parport_ip32_private * const priv = p->physport->private_data;
888 return readb(priv->regs.dsr);
892 * __parport_ip32_read_control - return cached contents of the DCR register
893 * @p: pointer to &struct parport
895 static inline unsigned int __parport_ip32_read_control(struct parport *p)
897 struct parport_ip32_private * const priv = p->physport->private_data;
898 return priv->dcr_cache; /* use soft copy */
902 * __parport_ip32_write_control - set new contents for the DCR register
903 * @p: pointer to &struct parport
904 * @c: new value to write
906 static inline void __parport_ip32_write_control(struct parport *p,
907 unsigned int c)
909 struct parport_ip32_private * const priv = p->physport->private_data;
910 CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
911 c &= priv->dcr_writable; /* only writable bits */
912 writeb(c, priv->regs.dcr);
913 priv->dcr_cache = c; /* update soft copy */
917 * __parport_ip32_frob_control - change bits from the DCR register
918 * @p: pointer to &struct parport
919 * @mask: bit mask of bits to change
920 * @val: new value for changed bits
922 * This is equivalent to read from the DCR, mask out the bits in @mask,
923 * exclusive-or with the bits in @val, and write the result to the DCR.
924 * Actually, the cached contents of the DCR is used.
926 static inline void __parport_ip32_frob_control(struct parport *p,
927 unsigned int mask,
928 unsigned int val)
930 unsigned int c;
931 c = (__parport_ip32_read_control(p) & ~mask) ^ val;
932 __parport_ip32_write_control(p, c);
936 * parport_ip32_read_control - return cached contents of the DCR register
937 * @p: pointer to &struct parport
939 * The return value is masked so as to only return the value of %DCR_STROBE,
940 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
942 static inline unsigned char parport_ip32_read_control(struct parport *p)
944 const unsigned int rm =
945 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
946 return __parport_ip32_read_control(p) & rm;
950 * parport_ip32_write_control - set new contents for the DCR register
951 * @p: pointer to &struct parport
952 * @c: new value to write
954 * The value is masked so as to only change the value of %DCR_STROBE,
955 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
957 static inline void parport_ip32_write_control(struct parport *p,
958 unsigned char c)
960 const unsigned int wm =
961 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
962 CHECK_EXTRA_BITS(p, c, wm);
963 __parport_ip32_frob_control(p, wm, c & wm);
967 * parport_ip32_frob_control - change bits from the DCR register
968 * @p: pointer to &struct parport
969 * @mask: bit mask of bits to change
970 * @val: new value for changed bits
972 * This differs from __parport_ip32_frob_control() in that it only allows to
973 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
975 static inline unsigned char parport_ip32_frob_control(struct parport *p,
976 unsigned char mask,
977 unsigned char val)
979 const unsigned int wm =
980 DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
981 CHECK_EXTRA_BITS(p, mask, wm);
982 CHECK_EXTRA_BITS(p, val, wm);
983 __parport_ip32_frob_control(p, mask & wm, val & wm);
984 return parport_ip32_read_control(p);
988 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
989 * @p: pointer to &struct parport
991 static inline void parport_ip32_disable_irq(struct parport *p)
993 __parport_ip32_frob_control(p, DCR_IRQ, 0);
997 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
998 * @p: pointer to &struct parport
1000 static inline void parport_ip32_enable_irq(struct parport *p)
1002 __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
1006 * parport_ip32_data_forward - enable host-to-peripheral communications
1007 * @p: pointer to &struct parport
1009 * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1011 static inline void parport_ip32_data_forward(struct parport *p)
1013 __parport_ip32_frob_control(p, DCR_DIR, 0);
1017 * parport_ip32_data_reverse - enable peripheral-to-host communications
1018 * @p: pointer to &struct parport
1020 * Place the data bus in a high impedance state, if @p->modes has the
1021 * PARPORT_MODE_TRISTATE bit set.
1023 static inline void parport_ip32_data_reverse(struct parport *p)
1025 __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1029 * parport_ip32_init_state - for core parport code
1030 * @dev: pointer to &struct pardevice
1031 * @s: pointer to &struct parport_state to initialize
1033 static void parport_ip32_init_state(struct pardevice *dev,
1034 struct parport_state *s)
1036 s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1037 s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1041 * parport_ip32_save_state - for core parport code
1042 * @p: pointer to &struct parport
1043 * @s: pointer to &struct parport_state to save state to
1045 static void parport_ip32_save_state(struct parport *p,
1046 struct parport_state *s)
1048 s->u.ip32.dcr = __parport_ip32_read_control(p);
1049 s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1053 * parport_ip32_restore_state - for core parport code
1054 * @p: pointer to &struct parport
1055 * @s: pointer to &struct parport_state to restore state from
1057 static void parport_ip32_restore_state(struct parport *p,
1058 struct parport_state *s)
1060 parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1061 parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1062 __parport_ip32_write_control(p, s->u.ip32.dcr);
1065 /*--- EPP mode functions -----------------------------------------------*/
1068 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1069 * @p: pointer to &struct parport
1071 * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1073 static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1075 struct parport_ip32_private * const priv = p->physport->private_data;
1076 unsigned int cleared;
1078 if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1079 cleared = 1;
1080 else {
1081 unsigned int r;
1082 /* To clear timeout some chips require double read */
1083 parport_ip32_read_status(p);
1084 r = parport_ip32_read_status(p);
1085 /* Some reset by writing 1 */
1086 writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1087 /* Others by writing 0 */
1088 writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1090 r = parport_ip32_read_status(p);
1091 cleared = !(r & DSR_TIMEOUT);
1094 pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1095 return cleared;
1099 * parport_ip32_epp_read - generic EPP read function
1100 * @eppreg: I/O register to read from
1101 * @p: pointer to &struct parport
1102 * @buf: buffer to store read data
1103 * @len: length of buffer @buf
1104 * @flags: may be PARPORT_EPP_FAST
1106 static size_t parport_ip32_epp_read(void __iomem *eppreg,
1107 struct parport *p, void *buf,
1108 size_t len, int flags)
1110 struct parport_ip32_private * const priv = p->physport->private_data;
1111 size_t got;
1112 parport_ip32_set_mode(p, ECR_MODE_EPP);
1113 parport_ip32_data_reverse(p);
1114 parport_ip32_write_control(p, DCR_nINIT);
1115 if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1116 readsb(eppreg, buf, len);
1117 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1118 parport_ip32_clear_epp_timeout(p);
1119 return -EIO;
1121 got = len;
1122 } else {
1123 u8 *bufp = buf;
1124 for (got = 0; got < len; got++) {
1125 *bufp++ = readb(eppreg);
1126 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1127 parport_ip32_clear_epp_timeout(p);
1128 break;
1132 parport_ip32_data_forward(p);
1133 parport_ip32_set_mode(p, ECR_MODE_PS2);
1134 return got;
1138 * parport_ip32_epp_write - generic EPP write function
1139 * @eppreg: I/O register to write to
1140 * @p: pointer to &struct parport
1141 * @buf: buffer of data to write
1142 * @len: length of buffer @buf
1143 * @flags: may be PARPORT_EPP_FAST
1145 static size_t parport_ip32_epp_write(void __iomem *eppreg,
1146 struct parport *p, const void *buf,
1147 size_t len, int flags)
1149 struct parport_ip32_private * const priv = p->physport->private_data;
1150 size_t written;
1151 parport_ip32_set_mode(p, ECR_MODE_EPP);
1152 parport_ip32_data_forward(p);
1153 parport_ip32_write_control(p, DCR_nINIT);
1154 if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1155 writesb(eppreg, buf, len);
1156 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1157 parport_ip32_clear_epp_timeout(p);
1158 return -EIO;
1160 written = len;
1161 } else {
1162 const u8 *bufp = buf;
1163 for (written = 0; written < len; written++) {
1164 writeb(*bufp++, eppreg);
1165 if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1166 parport_ip32_clear_epp_timeout(p);
1167 break;
1171 parport_ip32_set_mode(p, ECR_MODE_PS2);
1172 return written;
1176 * parport_ip32_epp_read_data - read a block of data in EPP mode
1177 * @p: pointer to &struct parport
1178 * @buf: buffer to store read data
1179 * @len: length of buffer @buf
1180 * @flags: may be PARPORT_EPP_FAST
1182 static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1183 size_t len, int flags)
1185 struct parport_ip32_private * const priv = p->physport->private_data;
1186 return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1190 * parport_ip32_epp_write_data - write a block of data in EPP mode
1191 * @p: pointer to &struct parport
1192 * @buf: buffer of data to write
1193 * @len: length of buffer @buf
1194 * @flags: may be PARPORT_EPP_FAST
1196 static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1197 size_t len, int flags)
1199 struct parport_ip32_private * const priv = p->physport->private_data;
1200 return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1204 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1205 * @p: pointer to &struct parport
1206 * @buf: buffer to store read data
1207 * @len: length of buffer @buf
1208 * @flags: may be PARPORT_EPP_FAST
1210 static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1211 size_t len, int flags)
1213 struct parport_ip32_private * const priv = p->physport->private_data;
1214 return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1218 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1219 * @p: pointer to &struct parport
1220 * @buf: buffer of data to write
1221 * @len: length of buffer @buf
1222 * @flags: may be PARPORT_EPP_FAST
1224 static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1225 size_t len, int flags)
1227 struct parport_ip32_private * const priv = p->physport->private_data;
1228 return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1231 /*--- ECP mode functions (FIFO) ----------------------------------------*/
1234 * parport_ip32_fifo_wait_break - check if the waiting function should return
1235 * @p: pointer to &struct parport
1236 * @expire: timeout expiring date, in jiffies
1238 * parport_ip32_fifo_wait_break() checks if the waiting function should return
1239 * immediately or not. The break conditions are:
1240 * - expired timeout;
1241 * - a pending signal;
1242 * - nFault asserted low.
1243 * This function also calls cond_resched().
1245 static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1246 unsigned long expire)
1248 cond_resched();
1249 if (time_after(jiffies, expire)) {
1250 pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1251 return 1;
1253 if (signal_pending(current)) {
1254 pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1255 return 1;
1257 if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1258 pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1259 return 1;
1261 return 0;
1265 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1266 * @p: pointer to &struct parport
1268 * Returns the number of bytes that can safely be written in the FIFO. A
1269 * return value of zero means that the calling function should terminate as
1270 * fast as possible.
1272 static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1274 struct parport_ip32_private * const priv = p->physport->private_data;
1275 struct parport * const physport = p->physport;
1276 unsigned long expire;
1277 unsigned int count;
1278 unsigned int ecr;
1280 expire = jiffies + physport->cad->timeout;
1281 count = 0;
1282 while (1) {
1283 if (parport_ip32_fifo_wait_break(p, expire))
1284 break;
1286 /* Check FIFO state. We do nothing when the FIFO is nor full,
1287 * nor empty. It appears that the FIFO full bit is not always
1288 * reliable, the FIFO state is sometimes wrongly reported, and
1289 * the chip gets confused if we give it another byte. */
1290 ecr = parport_ip32_read_econtrol(p);
1291 if (ecr & ECR_F_EMPTY) {
1292 /* FIFO is empty, fill it up */
1293 count = priv->fifo_depth;
1294 break;
1297 /* Wait a moment... */
1298 udelay(FIFO_POLLING_INTERVAL);
1299 } /* while (1) */
1301 return count;
1305 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1306 * @p: pointer to &struct parport
1308 * Returns the number of bytes that can safely be written in the FIFO. A
1309 * return value of zero means that the calling function should terminate as
1310 * fast as possible.
1312 static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1314 static unsigned int lost_interrupt = 0;
1315 struct parport_ip32_private * const priv = p->physport->private_data;
1316 struct parport * const physport = p->physport;
1317 unsigned long nfault_timeout;
1318 unsigned long expire;
1319 unsigned int count;
1320 unsigned int ecr;
1322 nfault_timeout = min((unsigned long)physport->cad->timeout,
1323 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1324 expire = jiffies + physport->cad->timeout;
1325 count = 0;
1326 while (1) {
1327 if (parport_ip32_fifo_wait_break(p, expire))
1328 break;
1330 /* Initialize mutex used to take interrupts into account */
1331 INIT_COMPLETION(priv->irq_complete);
1333 /* Enable serviceIntr */
1334 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1336 /* Enabling serviceIntr while the FIFO is empty does not
1337 * always generate an interrupt, so check for emptiness
1338 * now. */
1339 ecr = parport_ip32_read_econtrol(p);
1340 if (!(ecr & ECR_F_EMPTY)) {
1341 /* FIFO is not empty: wait for an interrupt or a
1342 * timeout to occur */
1343 wait_for_completion_interruptible_timeout(
1344 &priv->irq_complete, nfault_timeout);
1345 ecr = parport_ip32_read_econtrol(p);
1346 if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1347 && !lost_interrupt) {
1348 printk(KERN_WARNING PPIP32
1349 "%s: lost interrupt in %s\n",
1350 p->name, __func__);
1351 lost_interrupt = 1;
1355 /* Disable serviceIntr */
1356 parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1358 /* Check FIFO state */
1359 if (ecr & ECR_F_EMPTY) {
1360 /* FIFO is empty, fill it up */
1361 count = priv->fifo_depth;
1362 break;
1363 } else if (ecr & ECR_SERVINTR) {
1364 /* FIFO is not empty, but we know that can safely push
1365 * writeIntrThreshold bytes into it */
1366 count = priv->writeIntrThreshold;
1367 break;
1369 /* FIFO is not empty, and we did not get any interrupt.
1370 * Either it's time to check for nFault, or a signal is
1371 * pending. This is verified in
1372 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1373 } /* while (1) */
1375 return count;
1379 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1380 * @p: pointer to &struct parport
1381 * @buf: buffer of data to write
1382 * @len: length of buffer @buf
1384 * Uses PIO to write the contents of the buffer @buf into the parallel port
1385 * FIFO. Returns the number of bytes that were actually written. It can work
1386 * with or without the help of interrupts. The parallel port must be
1387 * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1389 static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1390 const void *buf, size_t len)
1392 struct parport_ip32_private * const priv = p->physport->private_data;
1393 const u8 *bufp = buf;
1394 size_t left = len;
1396 priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1398 while (left > 0) {
1399 unsigned int count;
1401 count = (p->irq == PARPORT_IRQ_NONE) ?
1402 parport_ip32_fwp_wait_polling(p) :
1403 parport_ip32_fwp_wait_interrupt(p);
1404 if (count == 0)
1405 break; /* Transmission should be stopped */
1406 if (count > left)
1407 count = left;
1408 if (count == 1) {
1409 writeb(*bufp, priv->regs.fifo);
1410 bufp++, left--;
1411 } else {
1412 writesb(priv->regs.fifo, bufp, count);
1413 bufp += count, left -= count;
1417 priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1419 return len - left;
1423 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1424 * @p: pointer to &struct parport
1425 * @buf: buffer of data to write
1426 * @len: length of buffer @buf
1428 * Uses DMA to write the contents of the buffer @buf into the parallel port
1429 * FIFO. Returns the number of bytes that were actually written. The
1430 * parallel port must be correctly initialized before calling
1431 * parport_ip32_fifo_write_block_dma().
1433 static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1434 const void *buf, size_t len)
1436 struct parport_ip32_private * const priv = p->physport->private_data;
1437 struct parport * const physport = p->physport;
1438 unsigned long nfault_timeout;
1439 unsigned long expire;
1440 size_t written;
1441 unsigned int ecr;
1443 priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1445 parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len);
1446 INIT_COMPLETION(priv->irq_complete);
1447 parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1449 nfault_timeout = min((unsigned long)physport->cad->timeout,
1450 msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1451 expire = jiffies + physport->cad->timeout;
1452 while (1) {
1453 if (parport_ip32_fifo_wait_break(p, expire))
1454 break;
1455 wait_for_completion_interruptible_timeout(&priv->irq_complete,
1456 nfault_timeout);
1457 ecr = parport_ip32_read_econtrol(p);
1458 if (ecr & ECR_SERVINTR)
1459 break; /* DMA transfer just finished */
1461 parport_ip32_dma_stop();
1462 written = len - parport_ip32_dma_get_residue();
1464 priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1466 return written;
1470 * parport_ip32_fifo_write_block - write a block of data
1471 * @p: pointer to &struct parport
1472 * @buf: buffer of data to write
1473 * @len: length of buffer @buf
1475 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1476 * p FIFO. Returns the number of bytes that were actually written.
1478 static size_t parport_ip32_fifo_write_block(struct parport *p,
1479 const void *buf, size_t len)
1481 size_t written = 0;
1482 if (len)
1483 written = (p->modes & PARPORT_MODE_DMA) ?
1484 parport_ip32_fifo_write_block_dma(p, buf, len) :
1485 parport_ip32_fifo_write_block_pio(p, buf, len);
1486 return written;
1490 * parport_ip32_drain_fifo - wait for FIFO to empty
1491 * @p: pointer to &struct parport
1492 * @timeout: timeout, in jiffies
1494 * This function waits for FIFO to empty. It returns 1 when FIFO is empty, or
1495 * 0 if the timeout @timeout is reached before, or if a signal is pending.
1497 static unsigned int parport_ip32_drain_fifo(struct parport *p,
1498 unsigned long timeout)
1500 unsigned long expire = jiffies + timeout;
1501 unsigned int polling_interval;
1502 unsigned int counter;
1504 /* Busy wait for approx. 200us */
1505 for (counter = 0; counter < 40; counter++) {
1506 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1507 break;
1508 if (time_after(jiffies, expire))
1509 break;
1510 if (signal_pending(current))
1511 break;
1512 udelay(5);
1514 /* Poll slowly. Polling interval starts with 1 millisecond, and is
1515 * increased exponentially until 128. */
1516 polling_interval = 1; /* msecs */
1517 while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1518 if (time_after_eq(jiffies, expire))
1519 break;
1520 msleep_interruptible(polling_interval);
1521 if (signal_pending(current))
1522 break;
1523 if (polling_interval < 128)
1524 polling_interval *= 2;
1527 return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1531 * parport_ip32_get_fifo_residue - reset FIFO
1532 * @p: pointer to &struct parport
1533 * @mode: current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1535 * This function resets FIFO, and returns the number of bytes remaining in it.
1537 static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1538 unsigned int mode)
1540 struct parport_ip32_private * const priv = p->physport->private_data;
1541 unsigned int residue;
1542 unsigned int cnfga;
1544 if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1545 residue = 0;
1546 else {
1547 pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1549 /* Stop all transfers.
1551 * Microsoft's document instructs to drive DCR_STROBE to 0,
1552 * but it doesn't work (at least in Compatibility mode, not
1553 * tested in ECP mode). Switching directly to Test mode (as
1554 * in parport_pc) is not an option: it does confuse the port,
1555 * ECP service interrupts are no more working after that. A
1556 * hard reset is then needed to revert to a sane state.
1558 * Let's hope that the FIFO is really stuck and that the
1559 * peripheral doesn't wake up now.
1561 parport_ip32_frob_control(p, DCR_STROBE, 0);
1563 /* Fill up FIFO */
1564 for (residue = priv->fifo_depth; residue > 0; residue--) {
1565 if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1566 break;
1567 writeb(0x00, priv->regs.fifo);
1570 if (residue)
1571 pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1572 p->name, residue,
1573 (residue == 1) ? " was" : "s were");
1575 /* Now reset the FIFO */
1576 parport_ip32_set_mode(p, ECR_MODE_PS2);
1578 /* Host recovery for ECP mode */
1579 if (mode == ECR_MODE_ECP) {
1580 parport_ip32_data_reverse(p);
1581 parport_ip32_frob_control(p, DCR_nINIT, 0);
1582 if (parport_wait_peripheral(p, DSR_PERROR, 0))
1583 pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1584 p->name, __func__);
1585 parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1586 parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1587 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1588 pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1589 p->name, __func__);
1592 /* Adjust residue if needed */
1593 parport_ip32_set_mode(p, ECR_MODE_CFG);
1594 cnfga = readb(priv->regs.cnfgA);
1595 if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1596 pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1597 p->name, cnfga);
1598 pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1599 p->name);
1600 residue++;
1603 /* Don't care about partial PWords since we do not support
1604 * PWord != 1 byte. */
1606 /* Back to forward PS2 mode. */
1607 parport_ip32_set_mode(p, ECR_MODE_PS2);
1608 parport_ip32_data_forward(p);
1610 return residue;
1614 * parport_ip32_compat_write_data - write a block of data in SPP mode
1615 * @p: pointer to &struct parport
1616 * @buf: buffer of data to write
1617 * @len: length of buffer @buf
1618 * @flags: ignored
1620 static size_t parport_ip32_compat_write_data(struct parport *p,
1621 const void *buf, size_t len,
1622 int flags)
1624 static unsigned int ready_before = 1;
1625 struct parport_ip32_private * const priv = p->physport->private_data;
1626 struct parport * const physport = p->physport;
1627 size_t written = 0;
1629 /* Special case: a timeout of zero means we cannot call schedule().
1630 * Also if O_NONBLOCK is set then use the default implementation. */
1631 if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1632 return parport_ieee1284_write_compat(p, buf, len, flags);
1634 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1635 parport_ip32_set_mode(p, ECR_MODE_PS2);
1636 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1637 parport_ip32_data_forward(p);
1638 parport_ip32_disable_irq(p);
1639 parport_ip32_set_mode(p, ECR_MODE_PPF);
1640 physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1642 /* Wait for peripheral to become ready */
1643 if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1644 DSR_nBUSY | DSR_nFAULT)) {
1645 /* Avoid to flood the logs */
1646 if (ready_before)
1647 printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1648 p->name, __func__);
1649 ready_before = 0;
1650 goto stop;
1652 ready_before = 1;
1654 written = parport_ip32_fifo_write_block(p, buf, len);
1656 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1657 parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1659 /* Check for a potential residue */
1660 written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1662 /* Then, wait for BUSY to get low. */
1663 if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1664 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1665 p->name, __func__);
1667 stop:
1668 /* Reset FIFO */
1669 parport_ip32_set_mode(p, ECR_MODE_PS2);
1670 physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1672 return written;
1677 * parport_ip32_ecp_write_data - write a block of data in ECP mode
1678 * @p: pointer to &struct parport
1679 * @buf: buffer of data to write
1680 * @len: length of buffer @buf
1681 * @flags: ignored
1683 static size_t parport_ip32_ecp_write_data(struct parport *p,
1684 const void *buf, size_t len,
1685 int flags)
1687 static unsigned int ready_before = 1;
1688 struct parport_ip32_private * const priv = p->physport->private_data;
1689 struct parport * const physport = p->physport;
1690 size_t written = 0;
1692 /* Special case: a timeout of zero means we cannot call schedule().
1693 * Also if O_NONBLOCK is set then use the default implementation. */
1694 if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1695 return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1697 /* Negotiate to forward mode if necessary. */
1698 if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1699 /* Event 47: Set nInit high. */
1700 parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1701 DCR_nINIT | DCR_AUTOFD);
1703 /* Event 49: PError goes high. */
1704 if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1705 printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s",
1706 p->name, __func__);
1707 physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1708 return 0;
1712 /* Reset FIFO, go in forward mode, and disable ackIntEn */
1713 parport_ip32_set_mode(p, ECR_MODE_PS2);
1714 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1715 parport_ip32_data_forward(p);
1716 parport_ip32_disable_irq(p);
1717 parport_ip32_set_mode(p, ECR_MODE_ECP);
1718 physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1720 /* Wait for peripheral to become ready */
1721 if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1722 DSR_nBUSY | DSR_nFAULT)) {
1723 /* Avoid to flood the logs */
1724 if (ready_before)
1725 printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1726 p->name, __func__);
1727 ready_before = 0;
1728 goto stop;
1730 ready_before = 1;
1732 written = parport_ip32_fifo_write_block(p, buf, len);
1734 /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */
1735 parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1737 /* Check for a potential residue */
1738 written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1740 /* Then, wait for BUSY to get low. */
1741 if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1742 printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1743 p->name, __func__);
1745 stop:
1746 /* Reset FIFO */
1747 parport_ip32_set_mode(p, ECR_MODE_PS2);
1748 physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1750 return written;
1754 /*--- Default parport operations ---------------------------------------*/
1756 static __initdata struct parport_operations parport_ip32_ops = {
1757 .write_data = parport_ip32_write_data,
1758 .read_data = parport_ip32_read_data,
1760 .write_control = parport_ip32_write_control,
1761 .read_control = parport_ip32_read_control,
1762 .frob_control = parport_ip32_frob_control,
1764 .read_status = parport_ip32_read_status,
1766 .enable_irq = parport_ip32_enable_irq,
1767 .disable_irq = parport_ip32_disable_irq,
1769 .data_forward = parport_ip32_data_forward,
1770 .data_reverse = parport_ip32_data_reverse,
1772 .init_state = parport_ip32_init_state,
1773 .save_state = parport_ip32_save_state,
1774 .restore_state = parport_ip32_restore_state,
1776 .epp_write_data = parport_ieee1284_epp_write_data,
1777 .epp_read_data = parport_ieee1284_epp_read_data,
1778 .epp_write_addr = parport_ieee1284_epp_write_addr,
1779 .epp_read_addr = parport_ieee1284_epp_read_addr,
1781 .ecp_write_data = parport_ieee1284_ecp_write_data,
1782 .ecp_read_data = parport_ieee1284_ecp_read_data,
1783 .ecp_write_addr = parport_ieee1284_ecp_write_addr,
1785 .compat_write_data = parport_ieee1284_write_compat,
1786 .nibble_read_data = parport_ieee1284_read_nibble,
1787 .byte_read_data = parport_ieee1284_read_byte,
1789 .owner = THIS_MODULE,
1792 /*--- Device detection -------------------------------------------------*/
1795 * parport_ip32_ecp_supported - check for an ECP port
1796 * @p: pointer to the &parport structure
1798 * Returns 1 if an ECP port is found, and 0 otherwise. This function actually
1799 * checks if an Extended Control Register seems to be present. On successful
1800 * return, the port is placed in SPP mode.
1802 static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1804 struct parport_ip32_private * const priv = p->physport->private_data;
1805 unsigned int ecr;
1807 ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1808 writeb(ecr, priv->regs.ecr);
1809 if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1810 goto fail;
1812 pr_probe(p, "Found working ECR register\n");
1813 parport_ip32_set_mode(p, ECR_MODE_SPP);
1814 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1815 return 1;
1817 fail:
1818 pr_probe(p, "ECR register not found\n");
1819 return 0;
1823 * parport_ip32_fifo_supported - check for FIFO parameters
1824 * @p: pointer to the &parport structure
1826 * Check for FIFO parameters of an Extended Capabilities Port. Returns 1 on
1827 * success, and 0 otherwise. Adjust FIFO parameters in the parport structure.
1828 * On return, the port is placed in SPP mode.
1830 static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1832 struct parport_ip32_private * const priv = p->physport->private_data;
1833 unsigned int configa, configb;
1834 unsigned int pword;
1835 unsigned int i;
1837 /* Configuration mode */
1838 parport_ip32_set_mode(p, ECR_MODE_CFG);
1839 configa = readb(priv->regs.cnfgA);
1840 configb = readb(priv->regs.cnfgB);
1842 /* Find out PWord size */
1843 switch (configa & CNFGA_ID_MASK) {
1844 case CNFGA_ID_8:
1845 pword = 1;
1846 break;
1847 case CNFGA_ID_16:
1848 pword = 2;
1849 break;
1850 case CNFGA_ID_32:
1851 pword = 4;
1852 break;
1853 default:
1854 pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1855 (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1856 goto fail;
1857 break;
1859 if (pword != 1) {
1860 pr_probe(p, "Unsupported PWord size: %u\n", pword);
1861 goto fail;
1863 priv->pword = pword;
1864 pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1866 /* Check for compression support */
1867 writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1868 if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1869 pr_probe(p, "Hardware compression detected (unsupported)\n");
1870 writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1872 /* Reset FIFO and go in test mode (no interrupt, no DMA) */
1873 parport_ip32_set_mode(p, ECR_MODE_TST);
1875 /* FIFO must be empty now */
1876 if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1877 pr_probe(p, "FIFO not reset\n");
1878 goto fail;
1881 /* Find out FIFO depth. */
1882 priv->fifo_depth = 0;
1883 for (i = 0; i < 1024; i++) {
1884 if (readb(priv->regs.ecr) & ECR_F_FULL) {
1885 /* FIFO full */
1886 priv->fifo_depth = i;
1887 break;
1889 writeb((u8)i, priv->regs.fifo);
1891 if (i >= 1024) {
1892 pr_probe(p, "Can't fill FIFO\n");
1893 goto fail;
1895 if (!priv->fifo_depth) {
1896 pr_probe(p, "Can't get FIFO depth\n");
1897 goto fail;
1899 pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1901 /* Enable interrupts */
1902 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1904 /* Find out writeIntrThreshold: number of PWords we know we can write
1905 * if we get an interrupt. */
1906 priv->writeIntrThreshold = 0;
1907 for (i = 0; i < priv->fifo_depth; i++) {
1908 if (readb(priv->regs.fifo) != (u8)i) {
1909 pr_probe(p, "Invalid data in FIFO\n");
1910 goto fail;
1912 if (!priv->writeIntrThreshold
1913 && readb(priv->regs.ecr) & ECR_SERVINTR)
1914 /* writeIntrThreshold reached */
1915 priv->writeIntrThreshold = i + 1;
1916 if (i + 1 < priv->fifo_depth
1917 && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1918 /* FIFO empty before the last byte? */
1919 pr_probe(p, "Data lost in FIFO\n");
1920 goto fail;
1923 if (!priv->writeIntrThreshold) {
1924 pr_probe(p, "Can't get writeIntrThreshold\n");
1925 goto fail;
1927 pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1929 /* FIFO must be empty now */
1930 if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1931 pr_probe(p, "Can't empty FIFO\n");
1932 goto fail;
1935 /* Reset FIFO */
1936 parport_ip32_set_mode(p, ECR_MODE_PS2);
1937 /* Set reverse direction (must be in PS2 mode) */
1938 parport_ip32_data_reverse(p);
1939 /* Test FIFO, no interrupt, no DMA */
1940 parport_ip32_set_mode(p, ECR_MODE_TST);
1941 /* Enable interrupts */
1942 parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1944 /* Find out readIntrThreshold: number of PWords we can read if we get
1945 * an interrupt. */
1946 priv->readIntrThreshold = 0;
1947 for (i = 0; i < priv->fifo_depth; i++) {
1948 writeb(0xaa, priv->regs.fifo);
1949 if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1950 /* readIntrThreshold reached */
1951 priv->readIntrThreshold = i + 1;
1952 break;
1955 if (!priv->readIntrThreshold) {
1956 pr_probe(p, "Can't get readIntrThreshold\n");
1957 goto fail;
1959 pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1961 /* Reset ECR */
1962 parport_ip32_set_mode(p, ECR_MODE_PS2);
1963 parport_ip32_data_forward(p);
1964 parport_ip32_set_mode(p, ECR_MODE_SPP);
1965 return 1;
1967 fail:
1968 priv->fifo_depth = 0;
1969 parport_ip32_set_mode(p, ECR_MODE_SPP);
1970 return 0;
1973 /*--- Initialization code ----------------------------------------------*/
1976 * parport_ip32_make_isa_registers - compute (ISA) register addresses
1977 * @regs: pointer to &struct parport_ip32_regs to fill
1978 * @base: base address of standard and EPP registers
1979 * @base_hi: base address of ECP registers
1980 * @regshift: how much to shift register offset by
1982 * Compute register addresses, according to the ISA standard. The addresses
1983 * of the standard and EPP registers are computed from address @base. The
1984 * addresses of the ECP registers are computed from address @base_hi.
1986 static void __init
1987 parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
1988 void __iomem *base, void __iomem *base_hi,
1989 unsigned int regshift)
1991 #define r_base(offset) ((u8 __iomem *)base + ((offset) << regshift))
1992 #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
1993 *regs = (struct parport_ip32_regs){
1994 .data = r_base(0),
1995 .dsr = r_base(1),
1996 .dcr = r_base(2),
1997 .eppAddr = r_base(3),
1998 .eppData0 = r_base(4),
1999 .eppData1 = r_base(5),
2000 .eppData2 = r_base(6),
2001 .eppData3 = r_base(7),
2002 .ecpAFifo = r_base(0),
2003 .fifo = r_base_hi(0),
2004 .cnfgA = r_base_hi(0),
2005 .cnfgB = r_base_hi(1),
2006 .ecr = r_base_hi(2)
2008 #undef r_base_hi
2009 #undef r_base
2013 * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2015 * Returns the new allocated &parport structure. On error, an error code is
2016 * encoded in return value with the ERR_PTR function.
2018 static __init struct parport *parport_ip32_probe_port(void)
2020 struct parport_ip32_regs regs;
2021 struct parport_ip32_private *priv = NULL;
2022 struct parport_operations *ops = NULL;
2023 struct parport *p = NULL;
2024 int err;
2026 parport_ip32_make_isa_registers(&regs, &mace->isa.parallel,
2027 &mace->isa.ecp1284, 8 /* regshift */);
2029 ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2030 priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2031 p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2032 if (ops == NULL || priv == NULL || p == NULL) {
2033 err = -ENOMEM;
2034 goto fail;
2036 p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2037 p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2038 p->private_data = priv;
2040 *ops = parport_ip32_ops;
2041 *priv = (struct parport_ip32_private){
2042 .regs = regs,
2043 .dcr_writable = DCR_DIR | DCR_SELECT | DCR_nINIT |
2044 DCR_AUTOFD | DCR_STROBE,
2045 .irq_mode = PARPORT_IP32_IRQ_FWD,
2047 init_completion(&priv->irq_complete);
2049 /* Probe port. */
2050 if (!parport_ip32_ecp_supported(p)) {
2051 err = -ENODEV;
2052 goto fail;
2054 parport_ip32_dump_state(p, "begin init", 0);
2056 /* We found what looks like a working ECR register. Simply assume
2057 * that all modes are correctly supported. Enable basic modes. */
2058 p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2059 p->modes |= PARPORT_MODE_TRISTATE;
2061 if (!parport_ip32_fifo_supported(p)) {
2062 printk(KERN_WARNING PPIP32
2063 "%s: error: FIFO disabled\n", p->name);
2064 /* Disable hardware modes depending on a working FIFO. */
2065 features &= ~PARPORT_IP32_ENABLE_SPP;
2066 features &= ~PARPORT_IP32_ENABLE_ECP;
2067 /* DMA is not needed if FIFO is not supported. */
2068 features &= ~PARPORT_IP32_ENABLE_DMA;
2071 /* Request IRQ */
2072 if (features & PARPORT_IP32_ENABLE_IRQ) {
2073 int irq = MACEISA_PARALLEL_IRQ;
2074 if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2075 printk(KERN_WARNING PPIP32
2076 "%s: error: IRQ disabled\n", p->name);
2077 /* DMA cannot work without interrupts. */
2078 features &= ~PARPORT_IP32_ENABLE_DMA;
2079 } else {
2080 pr_probe(p, "Interrupt support enabled\n");
2081 p->irq = irq;
2082 priv->dcr_writable |= DCR_IRQ;
2086 /* Allocate DMA resources */
2087 if (features & PARPORT_IP32_ENABLE_DMA) {
2088 if (parport_ip32_dma_register())
2089 printk(KERN_WARNING PPIP32
2090 "%s: error: DMA disabled\n", p->name);
2091 else {
2092 pr_probe(p, "DMA support enabled\n");
2093 p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2094 p->modes |= PARPORT_MODE_DMA;
2098 if (features & PARPORT_IP32_ENABLE_SPP) {
2099 /* Enable compatibility FIFO mode */
2100 p->ops->compat_write_data = parport_ip32_compat_write_data;
2101 p->modes |= PARPORT_MODE_COMPAT;
2102 pr_probe(p, "Hardware support for SPP mode enabled\n");
2104 if (features & PARPORT_IP32_ENABLE_EPP) {
2105 /* Set up access functions to use EPP hardware. */
2106 p->ops->epp_read_data = parport_ip32_epp_read_data;
2107 p->ops->epp_write_data = parport_ip32_epp_write_data;
2108 p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2109 p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2110 p->modes |= PARPORT_MODE_EPP;
2111 pr_probe(p, "Hardware support for EPP mode enabled\n");
2113 if (features & PARPORT_IP32_ENABLE_ECP) {
2114 /* Enable ECP FIFO mode */
2115 p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2116 /* p->ops->ecp_read_data = parport_ip32_ecp_read_data; */
2117 /* p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2118 p->modes |= PARPORT_MODE_ECP;
2119 pr_probe(p, "Hardware support for ECP mode enabled\n");
2122 /* Initialize the port with sensible values */
2123 parport_ip32_set_mode(p, ECR_MODE_PS2);
2124 parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2125 parport_ip32_data_forward(p);
2126 parport_ip32_disable_irq(p);
2127 parport_ip32_write_data(p, 0x00);
2128 parport_ip32_dump_state(p, "end init", 0);
2130 /* Print out what we found */
2131 printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)",
2132 p->name, p->base, p->base_hi);
2133 if (p->irq != PARPORT_IRQ_NONE)
2134 printk(", irq %d", p->irq);
2135 printk(" [");
2136 #define printmode(x) if (p->modes & PARPORT_MODE_##x) \
2137 printk("%s%s", f++ ? "," : "", #x)
2139 unsigned int f = 0;
2140 printmode(PCSPP);
2141 printmode(TRISTATE);
2142 printmode(COMPAT);
2143 printmode(EPP);
2144 printmode(ECP);
2145 printmode(DMA);
2147 #undef printmode
2148 printk("]\n");
2150 parport_announce_port(p);
2151 return p;
2153 fail:
2154 if (p)
2155 parport_put_port(p);
2156 kfree(priv);
2157 kfree(ops);
2158 return ERR_PTR(err);
2162 * parport_ip32_unregister_port - unregister a parallel port
2163 * @p: pointer to the &struct parport
2165 * Unregisters a parallel port and free previously allocated resources
2166 * (memory, IRQ, ...).
2168 static __exit void parport_ip32_unregister_port(struct parport *p)
2170 struct parport_ip32_private * const priv = p->physport->private_data;
2171 struct parport_operations *ops = p->ops;
2173 parport_remove_port(p);
2174 if (p->modes & PARPORT_MODE_DMA)
2175 parport_ip32_dma_unregister();
2176 if (p->irq != PARPORT_IRQ_NONE)
2177 free_irq(p->irq, p);
2178 parport_put_port(p);
2179 kfree(priv);
2180 kfree(ops);
2184 * parport_ip32_init - module initialization function
2186 static int __init parport_ip32_init(void)
2188 pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2189 pr_debug1(PPIP32 "Compiled on %s, %s\n", __DATE__, __TIME__);
2190 this_port = parport_ip32_probe_port();
2191 return IS_ERR(this_port) ? PTR_ERR(this_port) : 0;
2195 * parport_ip32_exit - module termination function
2197 static void __exit parport_ip32_exit(void)
2199 parport_ip32_unregister_port(this_port);
2202 /*--- Module stuff -----------------------------------------------------*/
2204 MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2205 MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2206 MODULE_LICENSE("GPL");
2207 MODULE_VERSION("0.6"); /* update in parport_ip32_init() too */
2209 module_init(parport_ip32_init);
2210 module_exit(parport_ip32_exit);
2212 module_param(verbose_probing, bool, S_IRUGO);
2213 MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2215 module_param(features, uint, S_IRUGO);
2216 MODULE_PARM_DESC(features,
2217 "Bit mask of features to enable"
2218 ", bit 0: IRQ support"
2219 ", bit 1: DMA support"
2220 ", bit 2: hardware SPP mode"
2221 ", bit 3: hardware EPP mode"
2222 ", bit 4: hardware ECP mode");
2224 /*--- Inform (X)Emacs about preferred coding style ---------------------*/
2226 * Local Variables:
2227 * mode: c
2228 * c-file-style: "linux"
2229 * indent-tabs-mode: t
2230 * tab-width: 8
2231 * fill-column: 78
2232 * ispell-local-dictionary: "american"
2233 * End: