update/add new 3G modem modules
[tomato.git] / release / src-rt / linux / linux-2.6 / drivers / usb / core / message.c
blob0f9df72a108386545f8bf5ff5ef5029f6c670041
1 /*
2 * message.c - synchronous message handling
3 */
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <asm/byteorder.h>
18 #include <asm/scatterlist.h>
20 #include "hcd.h" /* for usbcore internals */
21 #include "usb.h"
23 struct api_context {
24 struct completion done;
25 int status;
28 static void usb_api_blocking_completion(struct urb *urb)
30 struct api_context *ctx = urb->context;
32 ctx->status = urb->status;
33 complete(&ctx->done);
38 * Starts urb and waits for completion or timeout. Note that this call
39 * is NOT interruptible. Many device driver i/o requests should be
40 * interruptible and therefore these drivers should implement their
41 * own interruptible routines.
43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 struct api_context ctx;
46 unsigned long expire;
47 int retval;
49 init_completion(&ctx.done);
50 urb->context = &ctx;
51 urb->actual_length = 0;
52 retval = usb_submit_urb(urb, GFP_NOIO);
53 if (unlikely(retval))
54 goto out;
56 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 usb_kill_urb(urb);
59 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 dev_dbg(&urb->dev->dev,
62 "%s timed out on ep%d%s len=%u/%u\n",
63 current->comm,
64 usb_endpoint_num(&urb->ep->desc),
65 usb_urb_dir_in(urb) ? "in" : "out",
66 urb->actual_length,
67 urb->transfer_buffer_length);
68 } else
69 retval = ctx.status;
70 out:
71 if (actual_length)
72 *actual_length = urb->actual_length;
74 usb_free_urb(urb);
75 return retval;
78 /*-------------------------------------------------------------------*/
79 /* returns status (negative) or length (positive) */
80 static int usb_internal_control_msg(struct usb_device *usb_dev,
81 unsigned int pipe,
82 struct usb_ctrlrequest *cmd,
83 void *data, int len, int timeout)
85 struct urb *urb;
86 int retv;
87 int length;
89 urb = usb_alloc_urb(0, GFP_NOIO);
90 if (!urb)
91 return -ENOMEM;
93 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 len, usb_api_blocking_completion, NULL);
96 retv = usb_start_wait_urb(urb, timeout, &length);
97 if (retv < 0)
98 return retv;
99 else
100 return length;
104 * usb_control_msg - Builds a control urb, sends it off and waits for completion
105 * @dev: pointer to the usb device to send the message to
106 * @pipe: endpoint "pipe" to send the message to
107 * @request: USB message request value
108 * @requesttype: USB message request type value
109 * @value: USB message value
110 * @index: USB message index value
111 * @data: pointer to the data to send
112 * @size: length in bytes of the data to send
113 * @timeout: time in msecs to wait for the message to complete before timing
114 * out (if 0 the wait is forever)
116 * Context: !in_interrupt ()
118 * This function sends a simple control message to a specified endpoint and
119 * waits for the message to complete, or timeout.
121 * If successful, it returns the number of bytes transferred, otherwise a
122 * negative error number.
124 * Don't use this function from within an interrupt context, like a bottom half
125 * handler. If you need an asynchronous message, or need to send a message
126 * from within interrupt context, use usb_submit_urb().
127 * If a thread in your driver uses this call, make sure your disconnect()
128 * method can wait for it to complete. Since you don't have a handle on the
129 * URB used, you can't cancel the request.
131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 __u8 requesttype, __u16 value, __u16 index, void *data,
133 __u16 size, int timeout)
135 struct usb_ctrlrequest *dr;
136 int ret;
138 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 if (!dr)
140 return -ENOMEM;
142 dr->bRequestType = requesttype;
143 dr->bRequest = request;
144 dr->wValue = cpu_to_le16(value);
145 dr->wIndex = cpu_to_le16(index);
146 dr->wLength = cpu_to_le16(size);
148 /* dbg("usb_control_msg"); */
150 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
152 kfree(dr);
154 return ret;
156 EXPORT_SYMBOL_GPL(usb_control_msg);
159 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
160 * @usb_dev: pointer to the usb device to send the message to
161 * @pipe: endpoint "pipe" to send the message to
162 * @data: pointer to the data to send
163 * @len: length in bytes of the data to send
164 * @actual_length: pointer to a location to put the actual length transferred
165 * in bytes
166 * @timeout: time in msecs to wait for the message to complete before
167 * timing out (if 0 the wait is forever)
169 * Context: !in_interrupt ()
171 * This function sends a simple interrupt message to a specified endpoint and
172 * waits for the message to complete, or timeout.
174 * If successful, it returns 0, otherwise a negative error number. The number
175 * of actual bytes transferred will be stored in the actual_length paramater.
177 * Don't use this function from within an interrupt context, like a bottom half
178 * handler. If you need an asynchronous message, or need to send a message
179 * from within interrupt context, use usb_submit_urb() If a thread in your
180 * driver uses this call, make sure your disconnect() method can wait for it to
181 * complete. Since you don't have a handle on the URB used, you can't cancel
182 * the request.
184 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
185 void *data, int len, int *actual_length, int timeout)
187 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
189 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
192 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
193 * @usb_dev: pointer to the usb device to send the message to
194 * @pipe: endpoint "pipe" to send the message to
195 * @data: pointer to the data to send
196 * @len: length in bytes of the data to send
197 * @actual_length: pointer to a location to put the actual length transferred
198 * in bytes
199 * @timeout: time in msecs to wait for the message to complete before
200 * timing out (if 0 the wait is forever)
202 * Context: !in_interrupt ()
204 * This function sends a simple bulk message to a specified endpoint
205 * and waits for the message to complete, or timeout.
207 * If successful, it returns 0, otherwise a negative error number. The number
208 * of actual bytes transferred will be stored in the actual_length paramater.
210 * Don't use this function from within an interrupt context, like a bottom half
211 * handler. If you need an asynchronous message, or need to send a message
212 * from within interrupt context, use usb_submit_urb() If a thread in your
213 * driver uses this call, make sure your disconnect() method can wait for it to
214 * complete. Since you don't have a handle on the URB used, you can't cancel
215 * the request.
217 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
218 * users are forced to abuse this routine by using it to submit URBs for
219 * interrupt endpoints. We will take the liberty of creating an interrupt URB
220 * (with the default interval) if the target is an interrupt endpoint.
222 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
223 void *data, int len, int *actual_length, int timeout)
225 struct urb *urb;
226 struct usb_host_endpoint *ep;
228 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
229 [usb_pipeendpoint(pipe)];
230 if (!ep || len < 0)
231 return -EINVAL;
233 urb = usb_alloc_urb(0, GFP_KERNEL);
234 if (!urb)
235 return -ENOMEM;
237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 USB_ENDPOINT_XFER_INT) {
239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 usb_api_blocking_completion, NULL,
242 ep->desc.bInterval);
243 } else
244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL);
247 return usb_start_wait_urb(urb, timeout, actual_length);
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
251 /*-------------------------------------------------------------------*/
253 static void sg_clean(struct usb_sg_request *io)
255 if (io->urbs) {
256 while (io->entries--)
257 usb_free_urb(io->urbs [io->entries]);
258 kfree(io->urbs);
259 io->urbs = NULL;
261 if (io->dev->dev.dma_mask != NULL)
262 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
263 io->sg, io->nents);
264 io->dev = NULL;
267 static void sg_complete(struct urb *urb)
269 struct usb_sg_request *io = urb->context;
270 int status = urb->status;
272 spin_lock(&io->lock);
274 /* In 2.5 we require hcds' endpoint queues not to progress after fault
275 * reports, until the completion callback (this!) returns. That lets
276 * device driver code (like this routine) unlink queued urbs first,
277 * if it needs to, since the HC won't work on them at all. So it's
278 * not possible for page N+1 to overwrite page N, and so on.
280 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
281 * complete before the HCD can get requests away from hardware,
282 * though never during cleanup after a hard fault.
284 if (io->status
285 && (io->status != -ECONNRESET
286 || status != -ECONNRESET)
287 && urb->actual_length) {
288 dev_err(io->dev->bus->controller,
289 "dev %s ep%d%s scatterlist error %d/%d\n",
290 io->dev->devpath,
291 usb_endpoint_num(&urb->ep->desc),
292 usb_urb_dir_in(urb) ? "in" : "out",
293 status, io->status);
294 /* BUG (); */
297 if (io->status == 0 && status && status != -ECONNRESET) {
298 int i, found, retval;
300 io->status = status;
302 /* the previous urbs, and this one, completed already.
303 * unlink pending urbs so they won't rx/tx bad data.
304 * careful: unlink can sometimes be synchronous...
306 spin_unlock(&io->lock);
307 for (i = 0, found = 0; i < io->entries; i++) {
308 if (!io->urbs [i] || !io->urbs [i]->dev)
309 continue;
310 if (found) {
311 retval = usb_unlink_urb(io->urbs [i]);
312 if (retval != -EINPROGRESS &&
313 retval != -ENODEV &&
314 retval != -EBUSY)
315 dev_err(&io->dev->dev,
316 "%s, unlink --> %d\n",
317 __FUNCTION__, retval);
318 } else if (urb == io->urbs [i])
319 found = 1;
321 spin_lock(&io->lock);
323 urb->dev = NULL;
325 /* on the last completion, signal usb_sg_wait() */
326 io->bytes += urb->actual_length;
327 io->count--;
328 if (!io->count)
329 complete(&io->complete);
331 spin_unlock(&io->lock);
336 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
337 * @io: request block being initialized. until usb_sg_wait() returns,
338 * treat this as a pointer to an opaque block of memory,
339 * @dev: the usb device that will send or receive the data
340 * @pipe: endpoint "pipe" used to transfer the data
341 * @period: polling rate for interrupt endpoints, in frames or
342 * (for high speed endpoints) microframes; ignored for bulk
343 * @sg: scatterlist entries
344 * @nents: how many entries in the scatterlist
345 * @length: how many bytes to send from the scatterlist, or zero to
346 * send every byte identified in the list.
347 * @mem_flags: SLAB_* flags affecting memory allocations in this call
349 * Returns zero for success, else a negative errno value. This initializes a
350 * scatter/gather request, allocating resources such as I/O mappings and urb
351 * memory (except maybe memory used by USB controller drivers).
353 * The request must be issued using usb_sg_wait(), which waits for the I/O to
354 * complete (or to be canceled) and then cleans up all resources allocated by
355 * usb_sg_init().
357 * The request may be canceled with usb_sg_cancel(), either before or after
358 * usb_sg_wait() is called.
360 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
361 unsigned pipe, unsigned period, struct scatterlist *sg,
362 int nents, size_t length, gfp_t mem_flags)
364 int i;
365 int urb_flags;
366 int dma;
368 if (!io || !dev || !sg
369 || usb_pipecontrol(pipe)
370 || usb_pipeisoc(pipe)
371 || nents <= 0)
372 return -EINVAL;
374 spin_lock_init(&io->lock);
375 io->dev = dev;
376 io->pipe = pipe;
377 io->sg = sg;
378 io->nents = nents;
380 /* not all host controllers use DMA (like the mainstream pci ones);
381 * they can use PIO (sl811) or be software over another transport.
383 dma = (dev->dev.dma_mask != NULL);
384 if (dma)
385 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
386 sg, nents);
387 else
388 io->entries = nents;
390 /* initialize all the urbs we'll use */
391 if (io->entries <= 0)
392 return io->entries;
394 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
395 if (!io->urbs)
396 goto nomem;
398 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
399 if (usb_pipein(pipe))
400 urb_flags |= URB_SHORT_NOT_OK;
402 for (i = 0; i < io->entries; i++) {
403 unsigned len;
405 io->urbs[i] = usb_alloc_urb(0, mem_flags);
406 if (!io->urbs[i]) {
407 io->entries = i;
408 goto nomem;
411 io->urbs[i]->dev = NULL;
412 io->urbs[i]->pipe = pipe;
413 io->urbs[i]->interval = period;
414 io->urbs[i]->transfer_flags = urb_flags;
416 io->urbs[i]->complete = sg_complete;
417 io->urbs[i]->context = io;
420 * Some systems need to revert to PIO when DMA is temporarily
421 * unavailable. For their sakes, both transfer_buffer and
422 * transfer_dma are set when possible. However this can only
423 * work on systems without:
425 * - HIGHMEM, since DMA buffers located in high memory are
426 * not directly addressable by the CPU for PIO;
428 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to
429 * make virtually discontiguous buffers be "dma-contiguous"
430 * so that PIO and DMA need diferent numbers of URBs.
432 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL
433 * to prevent stale pointers and to help spot bugs.
435 if (dma) {
436 io->urbs[i]->transfer_dma = sg_dma_address(sg + i);
437 len = sg_dma_len(sg + i);
438 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_IOMMU)
439 io->urbs[i]->transfer_buffer = NULL;
440 #else
441 io->urbs[i]->transfer_buffer = sg_virt(&sg[i]);
442 #endif
443 } else {
444 /* hc may use _only_ transfer_buffer */
445 io->urbs[i]->transfer_buffer = sg_virt(&sg[i]);
446 len = sg[i].length;
449 if (length) {
450 len = min_t(unsigned, len, length);
451 length -= len;
452 if (length == 0)
453 io->entries = i + 1;
455 io->urbs[i]->transfer_buffer_length = len;
457 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
459 /* transaction state */
460 io->count = io->entries;
461 io->status = 0;
462 io->bytes = 0;
463 init_completion(&io->complete);
464 return 0;
466 nomem:
467 sg_clean(io);
468 return -ENOMEM;
470 EXPORT_SYMBOL_GPL(usb_sg_init);
473 * usb_sg_wait - synchronously execute scatter/gather request
474 * @io: request block handle, as initialized with usb_sg_init().
475 * some fields become accessible when this call returns.
476 * Context: !in_interrupt ()
478 * This function blocks until the specified I/O operation completes. It
479 * leverages the grouping of the related I/O requests to get good transfer
480 * rates, by queueing the requests. At higher speeds, such queuing can
481 * significantly improve USB throughput.
483 * There are three kinds of completion for this function.
484 * (1) success, where io->status is zero. The number of io->bytes
485 * transferred is as requested.
486 * (2) error, where io->status is a negative errno value. The number
487 * of io->bytes transferred before the error is usually less
488 * than requested, and can be nonzero.
489 * (3) cancellation, a type of error with status -ECONNRESET that
490 * is initiated by usb_sg_cancel().
492 * When this function returns, all memory allocated through usb_sg_init() or
493 * this call will have been freed. The request block parameter may still be
494 * passed to usb_sg_cancel(), or it may be freed. It could also be
495 * reinitialized and then reused.
497 * Data Transfer Rates:
499 * Bulk transfers are valid for full or high speed endpoints.
500 * The best full speed data rate is 19 packets of 64 bytes each
501 * per frame, or 1216 bytes per millisecond.
502 * The best high speed data rate is 13 packets of 512 bytes each
503 * per microframe, or 52 KBytes per millisecond.
505 * The reason to use interrupt transfers through this API would most likely
506 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
507 * could be transferred. That capability is less useful for low or full
508 * speed interrupt endpoints, which allow at most one packet per millisecond,
509 * of at most 8 or 64 bytes (respectively).
511 void usb_sg_wait(struct usb_sg_request *io)
513 int i;
514 int entries = io->entries;
516 /* queue the urbs. */
517 spin_lock_irq(&io->lock);
518 i = 0;
519 while (i < entries && !io->status) {
520 int retval;
522 io->urbs[i]->dev = io->dev;
523 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
525 /* after we submit, let completions or cancelations fire;
526 * we handshake using io->status.
528 spin_unlock_irq(&io->lock);
529 switch (retval) {
530 /* maybe we retrying will recover */
531 case -ENXIO: /* hc didn't queue this one */
532 case -EAGAIN:
533 case -ENOMEM:
534 io->urbs[i]->dev = NULL;
535 retval = 0;
536 yield();
537 break;
539 /* no error? continue immediately.
541 * NOTE: to work better with UHCI (4K I/O buffer may
542 * need 3K of TDs) it may be good to limit how many
543 * URBs are queued at once; N milliseconds?
545 case 0:
546 ++i;
547 cpu_relax();
548 break;
550 /* fail any uncompleted urbs */
551 default:
552 io->urbs[i]->dev = NULL;
553 io->urbs[i]->status = retval;
554 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
555 __FUNCTION__, retval);
556 usb_sg_cancel(io);
558 spin_lock_irq(&io->lock);
559 if (retval && (io->status == 0 || io->status == -ECONNRESET))
560 io->status = retval;
562 io->count -= entries - i;
563 if (io->count == 0)
564 complete(&io->complete);
565 spin_unlock_irq(&io->lock);
567 /* OK, yes, this could be packaged as non-blocking.
568 * So could the submit loop above ... but it's easier to
569 * solve neither problem than to solve both!
571 wait_for_completion(&io->complete);
573 sg_clean(io);
575 EXPORT_SYMBOL_GPL(usb_sg_wait);
578 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
579 * @io: request block, initialized with usb_sg_init()
581 * This stops a request after it has been started by usb_sg_wait().
582 * It can also prevents one initialized by usb_sg_init() from starting,
583 * so that call just frees resources allocated to the request.
585 void usb_sg_cancel(struct usb_sg_request *io)
587 unsigned long flags;
589 spin_lock_irqsave(&io->lock, flags);
591 /* shut everything down, if it didn't already */
592 if (!io->status) {
593 int i;
595 io->status = -ECONNRESET;
596 spin_unlock(&io->lock);
597 for (i = 0; i < io->entries; i++) {
598 int retval;
600 if (!io->urbs [i]->dev)
601 continue;
602 retval = usb_unlink_urb(io->urbs [i]);
603 if (retval != -EINPROGRESS && retval != -EBUSY)
604 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
605 __FUNCTION__, retval);
607 spin_lock(&io->lock);
609 spin_unlock_irqrestore(&io->lock, flags);
611 EXPORT_SYMBOL_GPL(usb_sg_cancel);
613 /*-------------------------------------------------------------------*/
616 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
617 * @dev: the device whose descriptor is being retrieved
618 * @type: the descriptor type (USB_DT_*)
619 * @index: the number of the descriptor
620 * @buf: where to put the descriptor
621 * @size: how big is "buf"?
622 * Context: !in_interrupt ()
624 * Gets a USB descriptor. Convenience functions exist to simplify
625 * getting some types of descriptors. Use
626 * usb_get_string() or usb_string() for USB_DT_STRING.
627 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
628 * are part of the device structure.
629 * In addition to a number of USB-standard descriptors, some
630 * devices also use class-specific or vendor-specific descriptors.
632 * This call is synchronous, and may not be used in an interrupt context.
634 * Returns the number of bytes received on success, or else the status code
635 * returned by the underlying usb_control_msg() call.
637 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
638 unsigned char index, void *buf, int size)
640 int i;
641 int result;
643 memset(buf, 0, size); /* Make sure we parse really received data */
645 for (i = 0; i < 3; ++i) {
646 /* retry on length 0 or error; some devices are flakey */
647 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
648 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
649 (type << 8) + index, 0, buf, size,
650 USB_CTRL_GET_TIMEOUT);
651 if (result <= 0 && result != -ETIMEDOUT)
652 continue;
653 if (result > 1 && ((u8 *)buf)[1] != type) {
654 result = -ENODATA;
655 continue;
657 break;
659 return result;
661 EXPORT_SYMBOL_GPL(usb_get_descriptor);
664 * usb_get_string - gets a string descriptor
665 * @dev: the device whose string descriptor is being retrieved
666 * @langid: code for language chosen (from string descriptor zero)
667 * @index: the number of the descriptor
668 * @buf: where to put the string
669 * @size: how big is "buf"?
670 * Context: !in_interrupt ()
672 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
673 * in little-endian byte order).
674 * The usb_string() function will often be a convenient way to turn
675 * these strings into kernel-printable form.
677 * Strings may be referenced in device, configuration, interface, or other
678 * descriptors, and could also be used in vendor-specific ways.
680 * This call is synchronous, and may not be used in an interrupt context.
682 * Returns the number of bytes received on success, or else the status code
683 * returned by the underlying usb_control_msg() call.
685 static int usb_get_string(struct usb_device *dev, unsigned short langid,
686 unsigned char index, void *buf, int size)
688 int i;
689 int result;
691 for (i = 0; i < 3; ++i) {
692 /* retry on length 0 or stall; some devices are flakey */
693 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
694 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
695 (USB_DT_STRING << 8) + index, langid, buf, size,
696 USB_CTRL_GET_TIMEOUT);
697 if (result == 0 || result == -EPIPE)
698 continue;
699 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
700 result = -ENODATA;
701 continue;
703 break;
705 return result;
708 static void usb_try_string_workarounds(unsigned char *buf, int *length)
710 int newlength, oldlength = *length;
712 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
713 if (!isprint(buf[newlength]) || buf[newlength + 1])
714 break;
716 if (newlength > 2) {
717 buf[0] = newlength;
718 *length = newlength;
722 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
723 unsigned int index, unsigned char *buf)
725 int rc;
727 /* Try to read the string descriptor by asking for the maximum
728 * possible number of bytes */
729 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
730 rc = -EIO;
731 else
732 rc = usb_get_string(dev, langid, index, buf, 255);
734 /* If that failed try to read the descriptor length, then
735 * ask for just that many bytes */
736 if (rc < 2) {
737 rc = usb_get_string(dev, langid, index, buf, 2);
738 if (rc == 2)
739 rc = usb_get_string(dev, langid, index, buf, buf[0]);
742 if (rc >= 2) {
743 if (!buf[0] && !buf[1])
744 usb_try_string_workarounds(buf, &rc);
746 /* There might be extra junk at the end of the descriptor */
747 if (buf[0] < rc)
748 rc = buf[0];
750 rc = rc - (rc & 1); /* force a multiple of two */
753 if (rc < 2)
754 rc = (rc < 0 ? rc : -EINVAL);
756 return rc;
759 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
761 int err;
763 if (dev->have_langid)
764 return 0;
766 if (dev->string_langid < 0)
767 return -EPIPE;
769 err = usb_string_sub(dev, 0, 0, tbuf);
771 /* If the string was reported but is malformed, default to english
772 * (0x0409) */
773 if (err == -ENODATA || (err > 0 && err < 4)) {
774 dev->string_langid = 0x0409;
775 dev->have_langid = 1;
776 dev_err(&dev->dev,
777 "string descriptor 0 malformed (err = %d), "
778 "defaulting to 0x%04x\n",
779 err, dev->string_langid);
780 return 0;
783 /* In case of all other errors, we assume the device is not able to
784 * deal with strings at all. Set string_langid to -1 in order to
785 * prevent any string to be retrieved from the device */
786 if (err < 0) {
787 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
788 err);
789 dev->string_langid = -1;
790 return -EPIPE;
793 /* always use the first langid listed */
794 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
795 dev->have_langid = 1;
796 dev_dbg(&dev->dev, "default language 0x%04x\n",
797 dev->string_langid);
798 return 0;
802 * usb_string - returns UTF-8 version of a string descriptor
803 * @dev: the device whose string descriptor is being retrieved
804 * @index: the number of the descriptor
805 * @buf: where to put the string
806 * @size: how big is "buf"?
807 * Context: !in_interrupt ()
809 * This converts the UTF-16LE encoded strings returned by devices, from
810 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
811 * that are more usable in most kernel contexts. Note that this function
812 * chooses strings in the first language supported by the device.
814 * This call is synchronous, and may not be used in an interrupt context.
816 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
818 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
820 unsigned char *tbuf;
821 int err;
822 unsigned int u;
824 if (dev->state == USB_STATE_SUSPENDED)
825 return -EHOSTUNREACH;
826 if (size <= 0 || !buf || !index)
827 return -EINVAL;
828 buf[0] = 0;
829 tbuf = kmalloc(256 + 2, GFP_NOIO);
830 if (!tbuf)
831 return -ENOMEM;
833 err = usb_get_langid(dev, tbuf);
834 if (err < 0)
835 goto errout;
837 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
838 if (err < 0)
839 goto errout;
841 for (u = 2; u < err; u += 2)
842 le16_to_cpus((u16 *)&tbuf[u]);
843 tbuf[u] = 0;
844 tbuf[u + 1] = 0;
845 size--; /* leave room for trailing NULL char in output buffer */
846 err = utf8_wcstombs(buf, (u16 *)&tbuf[2], size);
847 buf[err] = 0;
849 if (tbuf[1] != USB_DT_STRING)
850 dev_dbg(&dev->dev,
851 "wrong descriptor type %02x for string %d (\"%s\")\n",
852 tbuf[1], index, buf);
854 errout:
855 kfree(tbuf);
856 return err;
858 EXPORT_SYMBOL_GPL(usb_string);
860 /* one UTF-8-encoded 16-bit character has at most three bytes */
861 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
864 * usb_cache_string - read a string descriptor and cache it for later use
865 * @udev: the device whose string descriptor is being read
866 * @index: the descriptor index
868 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
869 * or NULL if the index is 0 or the string could not be read.
871 char *usb_cache_string(struct usb_device *udev, int index)
873 char *buf;
874 char *smallbuf = NULL;
875 int len;
877 if (index <= 0)
878 return NULL;
880 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
881 if (buf) {
882 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
883 if (len > 0) {
884 smallbuf = kmalloc(++len, GFP_NOIO);
885 if (!smallbuf)
886 return buf;
887 memcpy(smallbuf, buf, len);
889 kfree(buf);
891 return smallbuf;
895 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
896 * @dev: the device whose device descriptor is being updated
897 * @size: how much of the descriptor to read
898 * Context: !in_interrupt ()
900 * Updates the copy of the device descriptor stored in the device structure,
901 * which dedicates space for this purpose.
903 * Not exported, only for use by the core. If drivers really want to read
904 * the device descriptor directly, they can call usb_get_descriptor() with
905 * type = USB_DT_DEVICE and index = 0.
907 * This call is synchronous, and may not be used in an interrupt context.
909 * Returns the number of bytes received on success, or else the status code
910 * returned by the underlying usb_control_msg() call.
912 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
914 struct usb_device_descriptor *desc;
915 int ret;
917 if (size > sizeof(*desc))
918 return -EINVAL;
919 desc = kmalloc(sizeof(*desc), GFP_NOIO);
920 if (!desc)
921 return -ENOMEM;
923 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
924 if (ret >= 0)
925 memcpy(&dev->descriptor, desc, size);
926 kfree(desc);
927 return ret;
931 * usb_get_status - issues a GET_STATUS call
932 * @dev: the device whose status is being checked
933 * @type: USB_RECIP_*; for device, interface, or endpoint
934 * @target: zero (for device), else interface or endpoint number
935 * @data: pointer to two bytes of bitmap data
936 * Context: !in_interrupt ()
938 * Returns device, interface, or endpoint status. Normally only of
939 * interest to see if the device is self powered, or has enabled the
940 * remote wakeup facility; or whether a bulk or interrupt endpoint
941 * is halted ("stalled").
943 * Bits in these status bitmaps are set using the SET_FEATURE request,
944 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
945 * function should be used to clear halt ("stall") status.
947 * This call is synchronous, and may not be used in an interrupt context.
949 * Returns the number of bytes received on success, or else the status code
950 * returned by the underlying usb_control_msg() call.
952 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
954 int ret;
955 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
957 if (!status)
958 return -ENOMEM;
960 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
961 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
962 sizeof(*status), USB_CTRL_GET_TIMEOUT);
964 *(u16 *)data = *status;
965 kfree(status);
966 return ret;
968 EXPORT_SYMBOL_GPL(usb_get_status);
971 * usb_clear_halt - tells device to clear endpoint halt/stall condition
972 * @dev: device whose endpoint is halted
973 * @pipe: endpoint "pipe" being cleared
974 * Context: !in_interrupt ()
976 * This is used to clear halt conditions for bulk and interrupt endpoints,
977 * as reported by URB completion status. Endpoints that are halted are
978 * sometimes referred to as being "stalled". Such endpoints are unable
979 * to transmit or receive data until the halt status is cleared. Any URBs
980 * queued for such an endpoint should normally be unlinked by the driver
981 * before clearing the halt condition, as described in sections 5.7.5
982 * and 5.8.5 of the USB 2.0 spec.
984 * Note that control and isochronous endpoints don't halt, although control
985 * endpoints report "protocol stall" (for unsupported requests) using the
986 * same status code used to report a true stall.
988 * This call is synchronous, and may not be used in an interrupt context.
990 * Returns zero on success, or else the status code returned by the
991 * underlying usb_control_msg() call.
993 int usb_clear_halt(struct usb_device *dev, int pipe)
995 int result;
996 int endp = usb_pipeendpoint(pipe);
998 if (usb_pipein(pipe))
999 endp |= USB_DIR_IN;
1001 /* we don't care if it wasn't halted first. in fact some devices
1002 * (like some ibmcam model 1 units) seem to expect hosts to make
1003 * this request for iso endpoints, which can't halt!
1005 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1006 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1007 USB_ENDPOINT_HALT, endp, NULL, 0,
1008 USB_CTRL_SET_TIMEOUT);
1010 /* don't un-halt or force to DATA0 except on success */
1011 if (result < 0)
1012 return result;
1014 /* NOTE: seems like Microsoft and Apple don't bother verifying
1015 * the clear "took", so some devices could lock up if you check...
1016 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1018 * NOTE: make sure the logic here doesn't diverge much from
1019 * the copy in usb-storage, for as long as we need two copies.
1022 /* toggle was reset by the clear */
1023 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
1025 return 0;
1027 EXPORT_SYMBOL_GPL(usb_clear_halt);
1030 * usb_disable_endpoint -- Disable an endpoint by address
1031 * @dev: the device whose endpoint is being disabled
1032 * @epaddr: the endpoint's address. Endpoint number for output,
1033 * endpoint number + USB_DIR_IN for input
1035 * Deallocates hcd/hardware state for this endpoint ... and nukes all
1036 * pending urbs.
1038 * If the HCD hasn't registered a disable() function, this sets the
1039 * endpoint's maxpacket size to 0 to prevent further submissions.
1041 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
1043 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1044 struct usb_host_endpoint *ep;
1046 if (!dev)
1047 return;
1049 if (usb_endpoint_out(epaddr)) {
1050 ep = dev->ep_out[epnum];
1051 dev->ep_out[epnum] = NULL;
1052 } else {
1053 ep = dev->ep_in[epnum];
1054 dev->ep_in[epnum] = NULL;
1056 if (ep) {
1057 ep->enabled = 0;
1058 usb_hcd_flush_endpoint(dev, ep);
1059 usb_hcd_disable_endpoint(dev, ep);
1064 * usb_disable_interface -- Disable all endpoints for an interface
1065 * @dev: the device whose interface is being disabled
1066 * @intf: pointer to the interface descriptor
1068 * Disables all the endpoints for the interface's current altsetting.
1070 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1072 struct usb_host_interface *alt = intf->cur_altsetting;
1073 int i;
1075 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1076 usb_disable_endpoint(dev,
1077 alt->endpoint[i].desc.bEndpointAddress);
1082 * usb_disable_device - Disable all the endpoints for a USB device
1083 * @dev: the device whose endpoints are being disabled
1084 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1086 * Disables all the device's endpoints, potentially including endpoint 0.
1087 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1088 * pending urbs) and usbcore state for the interfaces, so that usbcore
1089 * must usb_set_configuration() before any interfaces could be used.
1091 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1093 int i;
1095 dev->toggle[0] = dev->toggle[1] = 0;
1097 /* getting rid of interfaces will disconnect
1098 * any drivers bound to them (a key side effect)
1100 if (dev->actconfig) {
1101 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1102 struct usb_interface *interface;
1104 /* remove this interface if it has been registered */
1105 interface = dev->actconfig->interface[i];
1106 if (!device_is_registered(&interface->dev))
1107 continue;
1108 dev_dbg(&dev->dev, "unregistering interface %s\n",
1109 interface->dev.bus_id);
1110 interface->unregistering = 1;
1111 usb_remove_sysfs_intf_files(interface);
1112 device_del(&interface->dev);
1115 /* Now that the interfaces are unbound, nobody should
1116 * try to access them.
1118 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1119 put_device(&dev->actconfig->interface[i]->dev);
1120 dev->actconfig->interface[i] = NULL;
1122 dev->actconfig = NULL;
1123 if (dev->state == USB_STATE_CONFIGURED)
1124 usb_set_device_state(dev, USB_STATE_ADDRESS);
1127 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1128 skip_ep0 ? "non-ep0" : "all");
1129 for (i = skip_ep0; i < 16; ++i) {
1130 usb_disable_endpoint(dev, i);
1131 usb_disable_endpoint(dev, i + USB_DIR_IN);
1136 * usb_enable_endpoint - Enable an endpoint for USB communications
1137 * @dev: the device whose interface is being enabled
1138 * @ep: the endpoint
1140 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1141 * For control endpoints, both the input and output sides are handled.
1143 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1145 int epnum = usb_endpoint_num(&ep->desc);
1146 int is_out = usb_endpoint_dir_out(&ep->desc);
1147 int is_control = usb_endpoint_xfer_control(&ep->desc);
1149 if (is_out || is_control) {
1150 usb_settoggle(dev, epnum, 1, 0);
1151 dev->ep_out[epnum] = ep;
1153 if (!is_out || is_control) {
1154 usb_settoggle(dev, epnum, 0, 0);
1155 dev->ep_in[epnum] = ep;
1157 ep->enabled = 1;
1161 * usb_enable_interface - Enable all the endpoints for an interface
1162 * @dev: the device whose interface is being enabled
1163 * @intf: pointer to the interface descriptor
1165 * Enables all the endpoints for the interface's current altsetting.
1167 static void usb_enable_interface(struct usb_device *dev,
1168 struct usb_interface *intf)
1170 struct usb_host_interface *alt = intf->cur_altsetting;
1171 int i;
1173 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1174 usb_enable_endpoint(dev, &alt->endpoint[i]);
1178 * usb_set_interface - Makes a particular alternate setting be current
1179 * @dev: the device whose interface is being updated
1180 * @interface: the interface being updated
1181 * @alternate: the setting being chosen.
1182 * Context: !in_interrupt ()
1184 * This is used to enable data transfers on interfaces that may not
1185 * be enabled by default. Not all devices support such configurability.
1186 * Only the driver bound to an interface may change its setting.
1188 * Within any given configuration, each interface may have several
1189 * alternative settings. These are often used to control levels of
1190 * bandwidth consumption. For example, the default setting for a high
1191 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1192 * while interrupt transfers of up to 3KBytes per microframe are legal.
1193 * Also, isochronous endpoints may never be part of an
1194 * interface's default setting. To access such bandwidth, alternate
1195 * interface settings must be made current.
1197 * Note that in the Linux USB subsystem, bandwidth associated with
1198 * an endpoint in a given alternate setting is not reserved until an URB
1199 * is submitted that needs that bandwidth. Some other operating systems
1200 * allocate bandwidth early, when a configuration is chosen.
1202 * This call is synchronous, and may not be used in an interrupt context.
1203 * Also, drivers must not change altsettings while urbs are scheduled for
1204 * endpoints in that interface; all such urbs must first be completed
1205 * (perhaps forced by unlinking).
1207 * Returns zero on success, or else the status code returned by the
1208 * underlying usb_control_msg() call.
1210 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1212 struct usb_interface *iface;
1213 struct usb_host_interface *alt;
1214 int ret;
1215 int manual = 0;
1216 unsigned int epaddr;
1217 unsigned int pipe;
1219 if (dev->state == USB_STATE_SUSPENDED)
1220 return -EHOSTUNREACH;
1222 iface = usb_ifnum_to_if(dev, interface);
1223 if (!iface) {
1224 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1225 interface);
1226 return -EINVAL;
1229 alt = usb_altnum_to_altsetting(iface, alternate);
1230 if (!alt) {
1231 warn("selecting invalid altsetting %d\n", alternate);
1232 return -EINVAL;
1235 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1236 ret = -EPIPE;
1237 else
1238 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1239 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1240 alternate, interface, NULL, 0, 5000);
1242 /* 9.4.10 says devices don't need this and are free to STALL the
1243 * request if the interface only has one alternate setting.
1245 if (ret == -EPIPE && iface->num_altsetting == 1) {
1246 dev_dbg(&dev->dev,
1247 "manual set_interface for iface %d, alt %d\n",
1248 interface, alternate);
1249 manual = 1;
1250 } else if (ret < 0)
1251 return ret;
1253 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1254 * when they implement async or easily-killable versions of this or
1255 * other "should-be-internal" functions (like clear_halt).
1256 * should hcd+usbcore postprocess control requests?
1259 /* prevent submissions using previous endpoint settings */
1260 if (iface->cur_altsetting != alt)
1261 usb_remove_sysfs_intf_files(iface);
1262 usb_disable_interface(dev, iface);
1264 iface->cur_altsetting = alt;
1266 /* If the interface only has one altsetting and the device didn't
1267 * accept the request, we attempt to carry out the equivalent action
1268 * by manually clearing the HALT feature for each endpoint in the
1269 * new altsetting.
1271 if (manual) {
1272 int i;
1274 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1275 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1276 pipe = __create_pipe(dev,
1277 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1278 (usb_endpoint_out(epaddr) ?
1279 USB_DIR_OUT : USB_DIR_IN);
1281 usb_clear_halt(dev, pipe);
1285 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1287 * Note:
1288 * Despite EP0 is always present in all interfaces/AS, the list of
1289 * endpoints from the descriptor does not contain EP0. Due to its
1290 * omnipresence one might expect EP0 being considered "affected" by
1291 * any SetInterface request and hence assume toggles need to be reset.
1292 * However, EP0 toggles are re-synced for every individual transfer
1293 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1294 * (Likewise, EP0 never "halts" on well designed devices.)
1296 usb_enable_interface(dev, iface);
1297 if (device_is_registered(&iface->dev))
1298 usb_create_sysfs_intf_files(iface);
1300 return 0;
1302 EXPORT_SYMBOL_GPL(usb_set_interface);
1305 * usb_reset_configuration - lightweight device reset
1306 * @dev: the device whose configuration is being reset
1308 * This issues a standard SET_CONFIGURATION request to the device using
1309 * the current configuration. The effect is to reset most USB-related
1310 * state in the device, including interface altsettings (reset to zero),
1311 * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1312 * endpoints). Other usbcore state is unchanged, including bindings of
1313 * usb device drivers to interfaces.
1315 * Because this affects multiple interfaces, avoid using this with composite
1316 * (multi-interface) devices. Instead, the driver for each interface may
1317 * use usb_set_interface() on the interfaces it claims. Be careful though;
1318 * some devices don't support the SET_INTERFACE request, and others won't
1319 * reset all the interface state (notably data toggles). Resetting the whole
1320 * configuration would affect other drivers' interfaces.
1322 * The caller must own the device lock.
1324 * Returns zero on success, else a negative error code.
1326 int usb_reset_configuration(struct usb_device *dev)
1328 int i, retval;
1329 struct usb_host_config *config;
1331 if (dev->state == USB_STATE_SUSPENDED)
1332 return -EHOSTUNREACH;
1334 /* caller must have locked the device and must own
1335 * the usb bus readlock (so driver bindings are stable);
1336 * calls during probe() are fine
1339 for (i = 1; i < 16; ++i) {
1340 usb_disable_endpoint(dev, i);
1341 usb_disable_endpoint(dev, i + USB_DIR_IN);
1344 config = dev->actconfig;
1345 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1346 USB_REQ_SET_CONFIGURATION, 0,
1347 config->desc.bConfigurationValue, 0,
1348 NULL, 0, USB_CTRL_SET_TIMEOUT);
1349 if (retval < 0)
1350 return retval;
1352 dev->toggle[0] = dev->toggle[1] = 0;
1354 /* re-init hc/hcd interface/endpoint state */
1355 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1356 struct usb_interface *intf = config->interface[i];
1357 struct usb_host_interface *alt;
1359 usb_remove_sysfs_intf_files(intf);
1360 alt = usb_altnum_to_altsetting(intf, 0);
1362 /* No altsetting 0? We'll assume the first altsetting.
1363 * We could use a GetInterface call, but if a device is
1364 * so non-compliant that it doesn't have altsetting 0
1365 * then I wouldn't trust its reply anyway.
1367 if (!alt)
1368 alt = &intf->altsetting[0];
1370 intf->cur_altsetting = alt;
1371 usb_enable_interface(dev, intf);
1372 if (device_is_registered(&intf->dev))
1373 usb_create_sysfs_intf_files(intf);
1375 return 0;
1377 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1379 static void usb_release_interface(struct device *dev)
1381 struct usb_interface *intf = to_usb_interface(dev);
1382 struct usb_interface_cache *intfc =
1383 altsetting_to_usb_interface_cache(intf->altsetting);
1385 kref_put(&intfc->ref, usb_release_interface_cache);
1386 kfree(intf);
1389 #ifdef CONFIG_HOTPLUG
1390 static int usb_if_uevent(struct device *dev, char **envp, int num_envp,
1391 char *buffer, int buffer_size)
1393 struct usb_device *usb_dev;
1394 struct usb_interface *intf;
1395 struct usb_host_interface *alt;
1396 int i = 0;
1397 int length = 0;
1399 if (!dev)
1400 return -ENODEV;
1402 /* driver is often null here; dev_dbg() would oops */
1403 pr_debug ("usb %s: uevent\n", dev->bus_id);
1405 intf = to_usb_interface(dev);
1406 usb_dev = interface_to_usbdev(intf);
1407 alt = intf->cur_altsetting;
1409 #ifdef CONFIG_USB_DEVICEFS
1410 if (add_uevent_var(envp, num_envp, &i,
1411 buffer, buffer_size, &length,
1412 "DEVICE=/proc/bus/usb/%03d/%03d",
1413 usb_dev->bus->busnum, usb_dev->devnum))
1414 return -ENOMEM;
1415 #endif
1417 if (add_uevent_var(envp, num_envp, &i,
1418 buffer, buffer_size, &length,
1419 "PRODUCT=%x/%x/%x",
1420 le16_to_cpu(usb_dev->descriptor.idVendor),
1421 le16_to_cpu(usb_dev->descriptor.idProduct),
1422 le16_to_cpu(usb_dev->descriptor.bcdDevice)))
1423 return -ENOMEM;
1425 if (add_uevent_var(envp, num_envp, &i,
1426 buffer, buffer_size, &length,
1427 "TYPE=%d/%d/%d",
1428 usb_dev->descriptor.bDeviceClass,
1429 usb_dev->descriptor.bDeviceSubClass,
1430 usb_dev->descriptor.bDeviceProtocol))
1431 return -ENOMEM;
1433 if (add_uevent_var(envp, num_envp, &i,
1434 buffer, buffer_size, &length,
1435 "INTERFACE=%d/%d/%d",
1436 alt->desc.bInterfaceClass,
1437 alt->desc.bInterfaceSubClass,
1438 alt->desc.bInterfaceProtocol))
1439 return -ENOMEM;
1441 if (add_uevent_var(envp, num_envp, &i,
1442 buffer, buffer_size, &length,
1443 "USBDEVICE_PATH=%s",
1444 usb_dev->devpath))
1445 return -ENOMEM;
1447 if (add_uevent_var(envp, num_envp, &i,
1448 buffer, buffer_size, &length,
1449 "MODALIAS=usb:"
1450 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1451 le16_to_cpu(usb_dev->descriptor.idVendor),
1452 le16_to_cpu(usb_dev->descriptor.idProduct),
1453 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1454 usb_dev->descriptor.bDeviceClass,
1455 usb_dev->descriptor.bDeviceSubClass,
1456 usb_dev->descriptor.bDeviceProtocol,
1457 alt->desc.bInterfaceClass,
1458 alt->desc.bInterfaceSubClass,
1459 alt->desc.bInterfaceProtocol,
1460 alt->desc.bInterfaceNumber))
1461 return -ENOMEM;
1463 envp[i] = NULL;
1464 return 0;
1467 #else
1469 static int usb_if_uevent(struct device *dev, char **envp,
1470 int num_envp, char *buffer, int buffer_size)
1472 return -ENODEV;
1474 #endif /* CONFIG_HOTPLUG */
1476 struct device_type usb_if_device_type = {
1477 .name = "usb_interface",
1478 .release = usb_release_interface,
1479 .uevent = usb_if_uevent,
1482 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1483 struct usb_host_config *config,
1484 u8 inum)
1486 struct usb_interface_assoc_descriptor *retval = NULL;
1487 struct usb_interface_assoc_descriptor *intf_assoc;
1488 int first_intf;
1489 int last_intf;
1490 int i;
1492 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1493 intf_assoc = config->intf_assoc[i];
1494 if (intf_assoc->bInterfaceCount == 0)
1495 continue;
1497 first_intf = intf_assoc->bFirstInterface;
1498 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1499 if (inum >= first_intf && inum <= last_intf) {
1500 if (!retval)
1501 retval = intf_assoc;
1502 else
1503 dev_err(&dev->dev, "Interface #%d referenced"
1504 " by multiple IADs\n", inum);
1508 return retval;
1513 * Internal function to queue a device reset
1515 * This is initialized into the workstruct in 'struct
1516 * usb_device->reset_ws' that is launched by
1517 * message.c:usb_set_configuration() when initializing each 'struct
1518 * usb_interface'.
1520 * It is safe to get the USB device without reference counts because
1521 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1522 * this function will be ran only if @iface is alive (and before
1523 * freeing it any scheduled instances of it will have been cancelled).
1525 * We need to set a flag (usb_dev->reset_running) because when we call
1526 * the reset, the interfaces might be unbound. The current interface
1527 * cannot try to remove the queued work as it would cause a deadlock
1528 * (you cannot remove your work from within your executing
1529 * workqueue). This flag lets it know, so that
1530 * usb_cancel_queued_reset() doesn't try to do it.
1532 * See usb_queue_reset_device() for more details
1534 static void __usb_queue_reset_device(struct work_struct *ws)
1536 int rc;
1537 struct usb_interface *iface =
1538 container_of(ws, struct usb_interface, reset_ws);
1539 struct usb_device *udev = interface_to_usbdev(iface);
1541 rc = usb_lock_device_for_reset(udev, iface);
1542 if (rc >= 0) {
1543 iface->reset_running = 1;
1544 usb_reset_device(udev);
1545 iface->reset_running = 0;
1546 usb_unlock_device(udev);
1552 * usb_set_configuration - Makes a particular device setting be current
1553 * @dev: the device whose configuration is being updated
1554 * @configuration: the configuration being chosen.
1555 * Context: !in_interrupt(), caller owns the device lock
1557 * This is used to enable non-default device modes. Not all devices
1558 * use this kind of configurability; many devices only have one
1559 * configuration.
1561 * @configuration is the value of the configuration to be installed.
1562 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1563 * must be non-zero; a value of zero indicates that the device in
1564 * unconfigured. However some devices erroneously use 0 as one of their
1565 * configuration values. To help manage such devices, this routine will
1566 * accept @configuration = -1 as indicating the device should be put in
1567 * an unconfigured state.
1569 * USB device configurations may affect Linux interoperability,
1570 * power consumption and the functionality available. For example,
1571 * the default configuration is limited to using 100mA of bus power,
1572 * so that when certain device functionality requires more power,
1573 * and the device is bus powered, that functionality should be in some
1574 * non-default device configuration. Other device modes may also be
1575 * reflected as configuration options, such as whether two ISDN
1576 * channels are available independently; and choosing between open
1577 * standard device protocols (like CDC) or proprietary ones.
1579 * Note that USB has an additional level of device configurability,
1580 * associated with interfaces. That configurability is accessed using
1581 * usb_set_interface().
1583 * This call is synchronous. The calling context must be able to sleep,
1584 * must own the device lock, and must not hold the driver model's USB
1585 * bus mutex; usb interface driver probe() methods cannot use this routine.
1587 * Returns zero on success, or else the status code returned by the
1588 * underlying call that failed. On successful completion, each interface
1589 * in the original device configuration has been destroyed, and each one
1590 * in the new configuration has been probed by all relevant usb device
1591 * drivers currently known to the kernel.
1593 int usb_set_configuration(struct usb_device *dev, int configuration)
1595 int i, ret;
1596 struct usb_host_config *cp = NULL;
1597 struct usb_interface **new_interfaces = NULL;
1598 int n, nintf;
1600 if (configuration == -1)
1601 configuration = 0;
1602 else {
1603 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1604 if (dev->config[i].desc.bConfigurationValue ==
1605 configuration) {
1606 cp = &dev->config[i];
1607 break;
1611 if ((!cp && configuration != 0))
1612 return -EINVAL;
1614 /* The USB spec says configuration 0 means unconfigured.
1615 * But if a device includes a configuration numbered 0,
1616 * we will accept it as a correctly configured state.
1617 * Use -1 if you really want to unconfigure the device.
1619 if (cp && configuration == 0)
1620 dev_warn(&dev->dev, "config 0 descriptor??\n");
1622 /* Allocate memory for new interfaces before doing anything else,
1623 * so that if we run out then nothing will have changed. */
1624 n = nintf = 0;
1625 if (cp) {
1626 nintf = cp->desc.bNumInterfaces;
1627 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1628 GFP_NOIO);
1629 if (!new_interfaces) {
1630 dev_err(&dev->dev, "Out of memory\n");
1631 return -ENOMEM;
1634 for (; n < nintf; ++n) {
1635 new_interfaces[n] = kzalloc(
1636 sizeof(struct usb_interface),
1637 GFP_NOIO);
1638 if (!new_interfaces[n]) {
1639 dev_err(&dev->dev, "Out of memory\n");
1640 ret = -ENOMEM;
1641 free_interfaces:
1642 while (--n >= 0)
1643 kfree(new_interfaces[n]);
1644 kfree(new_interfaces);
1645 return ret;
1649 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1650 if (i < 0)
1651 dev_warn(&dev->dev, "new config #%d exceeds power "
1652 "limit by %dmA\n",
1653 configuration, -i);
1656 /* Wake up the device so we can send it the Set-Config request */
1657 ret = usb_autoresume_device(dev);
1658 if (ret)
1659 goto free_interfaces;
1661 /* if it's already configured, clear out old state first.
1662 * getting rid of old interfaces means unbinding their drivers.
1664 if (dev->state != USB_STATE_ADDRESS)
1665 usb_disable_device(dev, 1); /* Skip ep0 */
1667 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1668 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1669 NULL, 0, USB_CTRL_SET_TIMEOUT);
1670 if (ret < 0) {
1671 /* All the old state is gone, so what else can we do?
1672 * The device is probably useless now anyway.
1674 cp = NULL;
1677 dev->actconfig = cp;
1678 if (!cp) {
1679 usb_set_device_state(dev, USB_STATE_ADDRESS);
1680 usb_autosuspend_device(dev);
1681 goto free_interfaces;
1683 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1685 /* Initialize the new interface structures and the
1686 * hc/hcd/usbcore interface/endpoint state.
1688 for (i = 0; i < nintf; ++i) {
1689 struct usb_interface_cache *intfc;
1690 struct usb_interface *intf;
1691 struct usb_host_interface *alt;
1693 cp->interface[i] = intf = new_interfaces[i];
1694 intfc = cp->intf_cache[i];
1695 intf->altsetting = intfc->altsetting;
1696 intf->num_altsetting = intfc->num_altsetting;
1697 intf->intf_assoc = find_iad(dev, cp, i);
1698 kref_get(&intfc->ref);
1700 alt = usb_altnum_to_altsetting(intf, 0);
1702 /* No altsetting 0? We'll assume the first altsetting.
1703 * We could use a GetInterface call, but if a device is
1704 * so non-compliant that it doesn't have altsetting 0
1705 * then I wouldn't trust its reply anyway.
1707 if (!alt)
1708 alt = &intf->altsetting[0];
1710 intf->cur_altsetting = alt;
1711 usb_enable_interface(dev, intf);
1712 intf->dev.parent = &dev->dev;
1713 intf->dev.driver = NULL;
1714 intf->dev.bus = &usb_bus_type;
1715 intf->dev.type = &usb_if_device_type;
1716 intf->dev.groups = usb_interface_groups;
1717 intf->dev.dma_mask = dev->dev.dma_mask;
1718 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1719 intf->minor = -1;
1720 device_initialize(&intf->dev);
1721 mark_quiesced(intf);
1722 sprintf(&intf->dev.bus_id[0], "%d-%s:%d.%d",
1723 dev->bus->busnum, dev->devpath,
1724 configuration, alt->desc.bInterfaceNumber);
1726 kfree(new_interfaces);
1728 if (cp->string == NULL &&
1729 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1730 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1732 /* Now that all the interfaces are set up, register them
1733 * to trigger binding of drivers to interfaces. probe()
1734 * routines may install different altsettings and may
1735 * claim() any interfaces not yet bound. Many class drivers
1736 * need that: CDC, audio, video, etc.
1738 for (i = 0; i < nintf; ++i) {
1739 struct usb_interface *intf = cp->interface[i];
1741 dev_dbg(&dev->dev,
1742 "adding %s (config #%d, interface %d)\n",
1743 intf->dev.bus_id, configuration,
1744 intf->cur_altsetting->desc.bInterfaceNumber);
1745 ret = device_add(&intf->dev);
1746 if (ret != 0) {
1747 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1748 intf->dev.bus_id, ret);
1749 continue;
1751 usb_create_sysfs_intf_files(intf);
1754 usb_autosuspend_device(dev);
1755 return 0;
1758 struct set_config_request {
1759 struct usb_device *udev;
1760 int config;
1761 struct work_struct work;
1764 /* Worker routine for usb_driver_set_configuration() */
1765 static void driver_set_config_work(struct work_struct *work)
1767 struct set_config_request *req =
1768 container_of(work, struct set_config_request, work);
1770 usb_lock_device(req->udev);
1771 usb_set_configuration(req->udev, req->config);
1772 usb_unlock_device(req->udev);
1773 usb_put_dev(req->udev);
1774 kfree(req);
1778 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1779 * @udev: the device whose configuration is being updated
1780 * @config: the configuration being chosen.
1781 * Context: In process context, must be able to sleep
1783 * Device interface drivers are not allowed to change device configurations.
1784 * This is because changing configurations will destroy the interface the
1785 * driver is bound to and create new ones; it would be like a floppy-disk
1786 * driver telling the computer to replace the floppy-disk drive with a
1787 * tape drive!
1789 * Still, in certain specialized circumstances the need may arise. This
1790 * routine gets around the normal restrictions by using a work thread to
1791 * submit the change-config request.
1793 * Returns 0 if the request was succesfully queued, error code otherwise.
1794 * The caller has no way to know whether the queued request will eventually
1795 * succeed.
1797 int usb_driver_set_configuration(struct usb_device *udev, int config)
1799 struct set_config_request *req;
1801 req = kmalloc(sizeof(*req), GFP_KERNEL);
1802 if (!req)
1803 return -ENOMEM;
1804 req->udev = udev;
1805 req->config = config;
1806 INIT_WORK(&req->work, driver_set_config_work);
1808 usb_get_dev(udev);
1809 schedule_work(&req->work);
1810 return 0;
1812 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);