RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / net / socket.c
blob4b42929d965e2c89bdb53c5c1365e87cd2ae6c56
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
91 #include <net/compat.h>
93 #include <net/sock.h>
94 #include <linux/netfilter.h>
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
107 #ifdef CONFIG_COMPAT
108 static long compat_sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
110 #endif
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 int offset, size_t size, loff_t *ppos, int more);
114 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
115 struct pipe_inode_info *pipe, size_t len,
116 unsigned int flags);
119 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
120 * in the operation structures but are done directly via the socketcall() multiplexor.
123 static const struct file_operations socket_file_ops = {
124 .owner = THIS_MODULE,
125 .llseek = no_llseek,
126 .aio_read = sock_aio_read,
127 .aio_write = sock_aio_write,
128 .poll = sock_poll,
129 .unlocked_ioctl = sock_ioctl,
130 #ifdef CONFIG_COMPAT
131 .compat_ioctl = compat_sock_ioctl,
132 #endif
133 .mmap = sock_mmap,
134 .open = sock_no_open, /* special open code to disallow open via /proc */
135 .release = sock_close,
136 .fasync = sock_fasync,
137 .sendpage = sock_sendpage,
138 .splice_write = generic_splice_sendpage,
139 .splice_read = sock_splice_read,
143 * The protocol list. Each protocol is registered in here.
146 static DEFINE_SPINLOCK(net_family_lock);
147 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
150 * Statistics counters of the socket lists
153 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
156 * Support routines.
157 * Move socket addresses back and forth across the kernel/user
158 * divide and look after the messy bits.
161 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
162 16 for IP, 16 for IPX,
163 24 for IPv6,
164 about 80 for AX.25
165 must be at least one bigger than
166 the AF_UNIX size (see net/unix/af_unix.c
167 :unix_mkname()).
171 * move_addr_to_kernel - copy a socket address into kernel space
172 * @uaddr: Address in user space
173 * @kaddr: Address in kernel space
174 * @ulen: Length in user space
176 * The address is copied into kernel space. If the provided address is
177 * too long an error code of -EINVAL is returned. If the copy gives
178 * invalid addresses -EFAULT is returned. On a success 0 is returned.
181 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
183 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
184 return -EINVAL;
185 if (ulen == 0)
186 return 0;
187 if (copy_from_user(kaddr, uaddr, ulen))
188 return -EFAULT;
189 return audit_sockaddr(ulen, kaddr);
193 * move_addr_to_user - copy an address to user space
194 * @kaddr: kernel space address
195 * @klen: length of address in kernel
196 * @uaddr: user space address
197 * @ulen: pointer to user length field
199 * The value pointed to by ulen on entry is the buffer length available.
200 * This is overwritten with the buffer space used. -EINVAL is returned
201 * if an overlong buffer is specified or a negative buffer size. -EFAULT
202 * is returned if either the buffer or the length field are not
203 * accessible.
204 * After copying the data up to the limit the user specifies, the true
205 * length of the data is written over the length limit the user
206 * specified. Zero is returned for a success.
209 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
210 int __user *ulen)
212 int err;
213 int len;
215 err = get_user(len, ulen);
216 if (err)
217 return err;
218 if (len > klen)
219 len = klen;
220 if (len < 0 || len > MAX_SOCK_ADDR)
221 return -EINVAL;
222 if (len) {
223 if (audit_sockaddr(klen, kaddr))
224 return -ENOMEM;
225 if (copy_to_user(uaddr, kaddr, len))
226 return -EFAULT;
229 * "fromlen shall refer to the value before truncation.."
230 * 1003.1g
232 return __put_user(klen, ulen);
235 #define SOCKFS_MAGIC 0x534F434B
237 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 static struct inode *sock_alloc_inode(struct super_block *sb)
241 struct socket_alloc *ei;
243 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
244 if (!ei)
245 return NULL;
246 init_waitqueue_head(&ei->socket.wait);
248 ei->socket.fasync_list = NULL;
249 ei->socket.state = SS_UNCONNECTED;
250 ei->socket.flags = 0;
251 ei->socket.ops = NULL;
252 ei->socket.sk = NULL;
253 ei->socket.file = NULL;
255 return &ei->vfs_inode;
258 static void sock_destroy_inode(struct inode *inode)
260 kmem_cache_free(sock_inode_cachep,
261 container_of(inode, struct socket_alloc, vfs_inode));
264 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
266 struct socket_alloc *ei = (struct socket_alloc *)foo;
268 inode_init_once(&ei->vfs_inode);
271 static int init_inodecache(void)
273 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
274 sizeof(struct socket_alloc),
276 (SLAB_HWCACHE_ALIGN |
277 SLAB_RECLAIM_ACCOUNT |
278 SLAB_MEM_SPREAD),
279 init_once,
280 NULL);
281 if (sock_inode_cachep == NULL)
282 return -ENOMEM;
283 return 0;
286 static struct super_operations sockfs_ops = {
287 .alloc_inode = sock_alloc_inode,
288 .destroy_inode =sock_destroy_inode,
289 .statfs = simple_statfs,
292 static int sockfs_get_sb(struct file_system_type *fs_type,
293 int flags, const char *dev_name, void *data,
294 struct vfsmount *mnt)
296 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
297 mnt);
300 static struct vfsmount *sock_mnt __read_mostly;
302 static struct file_system_type sock_fs_type = {
303 .name = "sockfs",
304 .get_sb = sockfs_get_sb,
305 .kill_sb = kill_anon_super,
308 static int sockfs_delete_dentry(struct dentry *dentry)
311 * At creation time, we pretended this dentry was hashed
312 * (by clearing DCACHE_UNHASHED bit in d_flags)
313 * At delete time, we restore the truth : not hashed.
314 * (so that dput() can proceed correctly)
316 dentry->d_flags |= DCACHE_UNHASHED;
317 return 0;
321 * sockfs_dname() is called from d_path().
323 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
325 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
326 dentry->d_inode->i_ino);
329 static struct dentry_operations sockfs_dentry_operations = {
330 .d_delete = sockfs_delete_dentry,
331 .d_dname = sockfs_dname,
335 * Obtains the first available file descriptor and sets it up for use.
337 * These functions create file structures and maps them to fd space
338 * of the current process. On success it returns file descriptor
339 * and file struct implicitly stored in sock->file.
340 * Note that another thread may close file descriptor before we return
341 * from this function. We use the fact that now we do not refer
342 * to socket after mapping. If one day we will need it, this
343 * function will increment ref. count on file by 1.
345 * In any case returned fd MAY BE not valid!
346 * This race condition is unavoidable
347 * with shared fd spaces, we cannot solve it inside kernel,
348 * but we take care of internal coherence yet.
351 static int sock_alloc_fd(struct file **filep)
353 int fd;
355 fd = get_unused_fd();
356 if (likely(fd >= 0)) {
357 struct file *file = get_empty_filp();
359 *filep = file;
360 if (unlikely(!file)) {
361 put_unused_fd(fd);
362 return -ENFILE;
364 } else
365 *filep = NULL;
366 return fd;
369 static int sock_attach_fd(struct socket *sock, struct file *file)
371 struct qstr name = { .name = "" };
373 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
374 if (unlikely(!file->f_path.dentry))
375 return -ENOMEM;
377 file->f_path.dentry->d_op = &sockfs_dentry_operations;
379 * We dont want to push this dentry into global dentry hash table.
380 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
381 * This permits a working /proc/$pid/fd/XXX on sockets
383 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
384 d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
385 file->f_path.mnt = mntget(sock_mnt);
386 file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
388 sock->file = file;
389 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
390 file->f_mode = FMODE_READ | FMODE_WRITE;
391 file->f_flags = O_RDWR;
392 file->f_pos = 0;
393 file->private_data = sock;
395 return 0;
398 int sock_map_fd(struct socket *sock)
400 struct file *newfile;
401 int fd = sock_alloc_fd(&newfile);
403 if (likely(fd >= 0)) {
404 int err = sock_attach_fd(sock, newfile);
406 if (unlikely(err < 0)) {
407 put_filp(newfile);
408 put_unused_fd(fd);
409 return err;
411 fd_install(fd, newfile);
413 return fd;
416 static struct socket *sock_from_file(struct file *file, int *err)
418 if (file->f_op == &socket_file_ops)
419 return file->private_data; /* set in sock_map_fd */
421 *err = -ENOTSOCK;
422 return NULL;
426 * sockfd_lookup - Go from a file number to its socket slot
427 * @fd: file handle
428 * @err: pointer to an error code return
430 * The file handle passed in is locked and the socket it is bound
431 * too is returned. If an error occurs the err pointer is overwritten
432 * with a negative errno code and NULL is returned. The function checks
433 * for both invalid handles and passing a handle which is not a socket.
435 * On a success the socket object pointer is returned.
438 struct socket *sockfd_lookup(int fd, int *err)
440 struct file *file;
441 struct socket *sock;
443 file = fget(fd);
444 if (!file) {
445 *err = -EBADF;
446 return NULL;
449 sock = sock_from_file(file, err);
450 if (!sock)
451 fput(file);
452 return sock;
455 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
457 struct file *file;
458 struct socket *sock;
460 *err = -EBADF;
461 file = fget_light(fd, fput_needed);
462 if (file) {
463 sock = sock_from_file(file, err);
464 if (sock)
465 return sock;
466 fput_light(file, *fput_needed);
468 return NULL;
472 * sock_alloc - allocate a socket
474 * Allocate a new inode and socket object. The two are bound together
475 * and initialised. The socket is then returned. If we are out of inodes
476 * NULL is returned.
479 static struct socket *sock_alloc(void)
481 struct inode *inode;
482 struct socket *sock;
484 inode = new_inode(sock_mnt->mnt_sb);
485 if (!inode)
486 return NULL;
488 sock = SOCKET_I(inode);
490 inode->i_mode = S_IFSOCK | S_IRWXUGO;
491 inode->i_uid = current->fsuid;
492 inode->i_gid = current->fsgid;
494 get_cpu_var(sockets_in_use)++;
495 put_cpu_var(sockets_in_use);
496 return sock;
500 * In theory you can't get an open on this inode, but /proc provides
501 * a back door. Remember to keep it shut otherwise you'll let the
502 * creepy crawlies in.
505 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
507 return -ENXIO;
510 const struct file_operations bad_sock_fops = {
511 .owner = THIS_MODULE,
512 .open = sock_no_open,
516 * sock_release - close a socket
517 * @sock: socket to close
519 * The socket is released from the protocol stack if it has a release
520 * callback, and the inode is then released if the socket is bound to
521 * an inode not a file.
524 void sock_release(struct socket *sock)
526 if (sock->ops) {
527 struct module *owner = sock->ops->owner;
529 sock->ops->release(sock);
530 sock->ops = NULL;
531 module_put(owner);
534 if (sock->fasync_list)
535 printk(KERN_ERR "sock_release: fasync list not empty!\n");
537 get_cpu_var(sockets_in_use)--;
538 put_cpu_var(sockets_in_use);
539 if (!sock->file) {
540 iput(SOCK_INODE(sock));
541 return;
543 sock->file = NULL;
546 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
547 struct msghdr *msg, size_t size)
549 struct sock_iocb *si = kiocb_to_siocb(iocb);
550 int err;
552 si->sock = sock;
553 si->scm = NULL;
554 si->msg = msg;
555 si->size = size;
557 err = security_socket_sendmsg(sock, msg, size);
558 if (err)
559 return err;
561 return sock->ops->sendmsg(iocb, sock, msg, size);
564 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
566 struct kiocb iocb;
567 struct sock_iocb siocb;
568 int ret;
570 init_sync_kiocb(&iocb, NULL);
571 iocb.private = &siocb;
572 ret = __sock_sendmsg(&iocb, sock, msg, size);
573 if (-EIOCBQUEUED == ret)
574 ret = wait_on_sync_kiocb(&iocb);
575 return ret;
578 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
579 struct kvec *vec, size_t num, size_t size)
581 mm_segment_t oldfs = get_fs();
582 int result;
584 set_fs(KERNEL_DS);
586 * the following is safe, since for compiler definitions of kvec and
587 * iovec are identical, yielding the same in-core layout and alignment
589 msg->msg_iov = (struct iovec *)vec;
590 msg->msg_iovlen = num;
591 result = sock_sendmsg(sock, msg, size);
592 set_fs(oldfs);
593 return result;
597 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
599 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
600 struct sk_buff *skb)
602 ktime_t kt = skb->tstamp;
604 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
605 struct timeval tv;
606 /* Race occurred between timestamp enabling and packet
607 receiving. Fill in the current time for now. */
608 if (kt.tv64 == 0)
609 kt = ktime_get_real();
610 skb->tstamp = kt;
611 tv = ktime_to_timeval(kt);
612 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
613 } else {
614 struct timespec ts;
615 /* Race occurred between timestamp enabling and packet
616 receiving. Fill in the current time for now. */
617 if (kt.tv64 == 0)
618 kt = ktime_get_real();
619 skb->tstamp = kt;
620 ts = ktime_to_timespec(kt);
621 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
625 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
627 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
628 struct msghdr *msg, size_t size, int flags)
630 int err;
631 struct sock_iocb *si = kiocb_to_siocb(iocb);
633 si->sock = sock;
634 si->scm = NULL;
635 si->msg = msg;
636 si->size = size;
637 si->flags = flags;
639 err = security_socket_recvmsg(sock, msg, size, flags);
640 if (err)
641 return err;
643 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
646 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
647 size_t size, int flags)
649 struct kiocb iocb;
650 struct sock_iocb siocb;
651 int ret;
653 init_sync_kiocb(&iocb, NULL);
654 iocb.private = &siocb;
655 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
656 if (-EIOCBQUEUED == ret)
657 ret = wait_on_sync_kiocb(&iocb);
658 return ret;
661 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
662 struct kvec *vec, size_t num, size_t size, int flags)
664 mm_segment_t oldfs = get_fs();
665 int result;
667 set_fs(KERNEL_DS);
669 * the following is safe, since for compiler definitions of kvec and
670 * iovec are identical, yielding the same in-core layout and alignment
672 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
673 result = sock_recvmsg(sock, msg, size, flags);
674 set_fs(oldfs);
675 return result;
678 static void sock_aio_dtor(struct kiocb *iocb)
680 kfree(iocb->private);
683 static ssize_t sock_sendpage(struct file *file, struct page *page,
684 int offset, size_t size, loff_t *ppos, int more)
686 struct socket *sock;
687 int flags;
689 sock = file->private_data;
691 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
692 if (more)
693 flags |= MSG_MORE;
695 return kernel_sendpage(sock, page, offset, size, flags);
698 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
699 struct pipe_inode_info *pipe, size_t len,
700 unsigned int flags)
702 struct socket *sock = file->private_data;
704 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
707 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
708 struct sock_iocb *siocb)
710 if (!is_sync_kiocb(iocb)) {
711 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
712 if (!siocb)
713 return NULL;
714 iocb->ki_dtor = sock_aio_dtor;
717 siocb->kiocb = iocb;
718 iocb->private = siocb;
719 return siocb;
722 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
723 struct file *file, const struct iovec *iov,
724 unsigned long nr_segs)
726 struct socket *sock = file->private_data;
727 size_t size = 0;
728 int i;
730 for (i = 0; i < nr_segs; i++)
731 size += iov[i].iov_len;
733 msg->msg_name = NULL;
734 msg->msg_namelen = 0;
735 msg->msg_control = NULL;
736 msg->msg_controllen = 0;
737 msg->msg_iov = (struct iovec *)iov;
738 msg->msg_iovlen = nr_segs;
739 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
741 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
744 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
745 unsigned long nr_segs, loff_t pos)
747 struct sock_iocb siocb, *x;
749 if (pos != 0)
750 return -ESPIPE;
752 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
753 return 0;
756 x = alloc_sock_iocb(iocb, &siocb);
757 if (!x)
758 return -ENOMEM;
759 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
762 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
763 struct file *file, const struct iovec *iov,
764 unsigned long nr_segs)
766 struct socket *sock = file->private_data;
767 size_t size = 0;
768 int i;
770 for (i = 0; i < nr_segs; i++)
771 size += iov[i].iov_len;
773 msg->msg_name = NULL;
774 msg->msg_namelen = 0;
775 msg->msg_control = NULL;
776 msg->msg_controllen = 0;
777 msg->msg_iov = (struct iovec *)iov;
778 msg->msg_iovlen = nr_segs;
779 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
780 if (sock->type == SOCK_SEQPACKET)
781 msg->msg_flags |= MSG_EOR;
783 return __sock_sendmsg(iocb, sock, msg, size);
786 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
787 unsigned long nr_segs, loff_t pos)
789 struct sock_iocb siocb, *x;
791 if (pos != 0)
792 return -ESPIPE;
794 x = alloc_sock_iocb(iocb, &siocb);
795 if (!x)
796 return -ENOMEM;
798 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
802 * Atomic setting of ioctl hooks to avoid race
803 * with module unload.
806 static DEFINE_MUTEX(br_ioctl_mutex);
807 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
809 void brioctl_set(int (*hook) (unsigned int, void __user *))
811 mutex_lock(&br_ioctl_mutex);
812 br_ioctl_hook = hook;
813 mutex_unlock(&br_ioctl_mutex);
816 EXPORT_SYMBOL(brioctl_set);
818 static DEFINE_MUTEX(vlan_ioctl_mutex);
819 static int (*vlan_ioctl_hook) (void __user *arg);
821 void vlan_ioctl_set(int (*hook) (void __user *))
823 mutex_lock(&vlan_ioctl_mutex);
824 vlan_ioctl_hook = hook;
825 mutex_unlock(&vlan_ioctl_mutex);
828 EXPORT_SYMBOL(vlan_ioctl_set);
830 static DEFINE_MUTEX(dlci_ioctl_mutex);
831 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
833 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
835 mutex_lock(&dlci_ioctl_mutex);
836 dlci_ioctl_hook = hook;
837 mutex_unlock(&dlci_ioctl_mutex);
840 EXPORT_SYMBOL(dlci_ioctl_set);
843 * With an ioctl, arg may well be a user mode pointer, but we don't know
844 * what to do with it - that's up to the protocol still.
847 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
849 struct socket *sock;
850 void __user *argp = (void __user *)arg;
851 int pid, err;
853 sock = file->private_data;
854 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
855 err = dev_ioctl(cmd, argp);
856 } else
857 #ifdef CONFIG_WIRELESS_EXT
858 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
859 err = dev_ioctl(cmd, argp);
860 } else
861 #endif /* CONFIG_WIRELESS_EXT */
862 switch (cmd) {
863 case FIOSETOWN:
864 case SIOCSPGRP:
865 err = -EFAULT;
866 if (get_user(pid, (int __user *)argp))
867 break;
868 err = f_setown(sock->file, pid, 1);
869 break;
870 case FIOGETOWN:
871 case SIOCGPGRP:
872 err = put_user(f_getown(sock->file),
873 (int __user *)argp);
874 break;
875 case SIOCGIFBR:
876 case SIOCSIFBR:
877 case SIOCBRADDBR:
878 case SIOCBRDELBR:
879 err = -ENOPKG;
880 if (!br_ioctl_hook)
881 request_module("bridge");
883 mutex_lock(&br_ioctl_mutex);
884 if (br_ioctl_hook)
885 err = br_ioctl_hook(cmd, argp);
886 mutex_unlock(&br_ioctl_mutex);
887 break;
888 case SIOCGIFVLAN:
889 case SIOCSIFVLAN:
890 err = -ENOPKG;
891 if (!vlan_ioctl_hook)
892 request_module("8021q");
894 mutex_lock(&vlan_ioctl_mutex);
895 if (vlan_ioctl_hook)
896 err = vlan_ioctl_hook(argp);
897 mutex_unlock(&vlan_ioctl_mutex);
898 break;
899 case SIOCADDDLCI:
900 case SIOCDELDLCI:
901 err = -ENOPKG;
902 if (!dlci_ioctl_hook)
903 request_module("dlci");
905 if (dlci_ioctl_hook) {
906 mutex_lock(&dlci_ioctl_mutex);
907 err = dlci_ioctl_hook(cmd, argp);
908 mutex_unlock(&dlci_ioctl_mutex);
910 break;
911 default:
912 err = sock->ops->ioctl(sock, cmd, arg);
915 * If this ioctl is unknown try to hand it down
916 * to the NIC driver.
918 if (err == -ENOIOCTLCMD)
919 err = dev_ioctl(cmd, argp);
920 break;
922 return err;
925 int sock_create_lite(int family, int type, int protocol, struct socket **res)
927 int err;
928 struct socket *sock = NULL;
930 err = security_socket_create(family, type, protocol, 1);
931 if (err)
932 goto out;
934 sock = sock_alloc();
935 if (!sock) {
936 err = -ENOMEM;
937 goto out;
940 sock->type = type;
941 err = security_socket_post_create(sock, family, type, protocol, 1);
942 if (err)
943 goto out_release;
945 out:
946 *res = sock;
947 return err;
948 out_release:
949 sock_release(sock);
950 sock = NULL;
951 goto out;
954 /* No kernel lock held - perfect */
955 static unsigned int sock_poll(struct file *file, poll_table *wait)
957 struct socket *sock;
960 * We can't return errors to poll, so it's either yes or no.
962 sock = file->private_data;
963 return sock->ops->poll(file, sock, wait);
966 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
968 struct socket *sock = file->private_data;
970 return sock->ops->mmap(file, sock, vma);
973 static int sock_close(struct inode *inode, struct file *filp)
976 * It was possible the inode is NULL we were
977 * closing an unfinished socket.
980 if (!inode) {
981 printk(KERN_DEBUG "sock_close: NULL inode\n");
982 return 0;
984 sock_fasync(-1, filp, 0);
985 sock_release(SOCKET_I(inode));
986 return 0;
990 * Update the socket async list
992 * Fasync_list locking strategy.
994 * 1. fasync_list is modified only under process context socket lock
995 * i.e. under semaphore.
996 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
997 * or under socket lock.
998 * 3. fasync_list can be used from softirq context, so that
999 * modification under socket lock have to be enhanced with
1000 * write_lock_bh(&sk->sk_callback_lock).
1001 * --ANK (990710)
1004 static int sock_fasync(int fd, struct file *filp, int on)
1006 struct fasync_struct *fa, *fna = NULL, **prev;
1007 struct socket *sock;
1008 struct sock *sk;
1010 if (on) {
1011 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1012 if (fna == NULL)
1013 return -ENOMEM;
1016 sock = filp->private_data;
1018 sk = sock->sk;
1019 if (sk == NULL) {
1020 kfree(fna);
1021 return -EINVAL;
1024 lock_sock(sk);
1026 prev = &(sock->fasync_list);
1028 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1029 if (fa->fa_file == filp)
1030 break;
1032 if (on) {
1033 if (fa != NULL) {
1034 write_lock_bh(&sk->sk_callback_lock);
1035 fa->fa_fd = fd;
1036 write_unlock_bh(&sk->sk_callback_lock);
1038 kfree(fna);
1039 goto out;
1041 fna->fa_file = filp;
1042 fna->fa_fd = fd;
1043 fna->magic = FASYNC_MAGIC;
1044 fna->fa_next = sock->fasync_list;
1045 write_lock_bh(&sk->sk_callback_lock);
1046 sock->fasync_list = fna;
1047 write_unlock_bh(&sk->sk_callback_lock);
1048 } else {
1049 if (fa != NULL) {
1050 write_lock_bh(&sk->sk_callback_lock);
1051 *prev = fa->fa_next;
1052 write_unlock_bh(&sk->sk_callback_lock);
1053 kfree(fa);
1057 out:
1058 release_sock(sock->sk);
1059 return 0;
1062 /* This function may be called only under socket lock or callback_lock */
1064 int sock_wake_async(struct socket *sock, int how, int band)
1066 if (!sock || !sock->fasync_list)
1067 return -1;
1068 switch (how) {
1069 case 1:
1071 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1072 break;
1073 goto call_kill;
1074 case 2:
1075 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1076 break;
1077 /* fall through */
1078 case 0:
1079 call_kill:
1080 __kill_fasync(sock->fasync_list, SIGIO, band);
1081 break;
1082 case 3:
1083 __kill_fasync(sock->fasync_list, SIGURG, band);
1085 return 0;
1088 static int __sock_create(int family, int type, int protocol,
1089 struct socket **res, int kern)
1091 int err;
1092 struct socket *sock;
1093 const struct net_proto_family *pf;
1096 * Check protocol is in range
1098 if (family < 0 || family >= NPROTO)
1099 return -EAFNOSUPPORT;
1100 if (type < 0 || type >= SOCK_MAX)
1101 return -EINVAL;
1103 /* Compatibility.
1105 This uglymoron is moved from INET layer to here to avoid
1106 deadlock in module load.
1108 if (family == PF_INET && type == SOCK_PACKET) {
1109 static int warned;
1110 if (!warned) {
1111 warned = 1;
1112 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1113 current->comm);
1115 family = PF_PACKET;
1118 err = security_socket_create(family, type, protocol, kern);
1119 if (err)
1120 return err;
1123 * Allocate the socket and allow the family to set things up. if
1124 * the protocol is 0, the family is instructed to select an appropriate
1125 * default.
1127 sock = sock_alloc();
1128 if (!sock) {
1129 if (net_ratelimit())
1130 printk(KERN_WARNING "socket: no more sockets\n");
1131 return -ENFILE; /* Not exactly a match, but its the
1132 closest posix thing */
1135 sock->type = type;
1137 #if defined(CONFIG_KMOD)
1138 /* Attempt to load a protocol module if the find failed.
1140 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1141 * requested real, full-featured networking support upon configuration.
1142 * Otherwise module support will break!
1144 if (net_families[family] == NULL)
1145 request_module("net-pf-%d", family);
1146 #endif
1148 rcu_read_lock();
1149 pf = rcu_dereference(net_families[family]);
1150 err = -EAFNOSUPPORT;
1151 if (!pf)
1152 goto out_release;
1155 * We will call the ->create function, that possibly is in a loadable
1156 * module, so we have to bump that loadable module refcnt first.
1158 if (!try_module_get(pf->owner))
1159 goto out_release;
1161 /* Now protected by module ref count */
1162 rcu_read_unlock();
1164 err = pf->create(sock, protocol);
1165 if (err < 0)
1166 goto out_module_put;
1169 * Now to bump the refcnt of the [loadable] module that owns this
1170 * socket at sock_release time we decrement its refcnt.
1172 if (!try_module_get(sock->ops->owner))
1173 goto out_module_busy;
1176 * Now that we're done with the ->create function, the [loadable]
1177 * module can have its refcnt decremented
1179 module_put(pf->owner);
1180 err = security_socket_post_create(sock, family, type, protocol, kern);
1181 if (err)
1182 goto out_sock_release;
1183 *res = sock;
1185 return 0;
1187 out_module_busy:
1188 err = -EAFNOSUPPORT;
1189 out_module_put:
1190 sock->ops = NULL;
1191 module_put(pf->owner);
1192 out_sock_release:
1193 sock_release(sock);
1194 return err;
1196 out_release:
1197 rcu_read_unlock();
1198 goto out_sock_release;
1201 int sock_create(int family, int type, int protocol, struct socket **res)
1203 return __sock_create(family, type, protocol, res, 0);
1206 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1208 return __sock_create(family, type, protocol, res, 1);
1211 asmlinkage long sys_socket(int family, int type, int protocol)
1213 int retval;
1214 struct socket *sock;
1216 retval = sock_create(family, type, protocol, &sock);
1217 if (retval < 0)
1218 goto out;
1220 retval = sock_map_fd(sock);
1221 if (retval < 0)
1222 goto out_release;
1224 out:
1225 /* It may be already another descriptor 8) Not kernel problem. */
1226 return retval;
1228 out_release:
1229 sock_release(sock);
1230 return retval;
1234 * Create a pair of connected sockets.
1237 asmlinkage long sys_socketpair(int family, int type, int protocol,
1238 int __user *usockvec)
1240 struct socket *sock1, *sock2;
1241 int fd1, fd2, err;
1242 struct file *newfile1, *newfile2;
1245 * Obtain the first socket and check if the underlying protocol
1246 * supports the socketpair call.
1249 err = sock_create(family, type, protocol, &sock1);
1250 if (err < 0)
1251 goto out;
1253 err = sock_create(family, type, protocol, &sock2);
1254 if (err < 0)
1255 goto out_release_1;
1257 err = sock1->ops->socketpair(sock1, sock2);
1258 if (err < 0)
1259 goto out_release_both;
1261 fd1 = sock_alloc_fd(&newfile1);
1262 if (unlikely(fd1 < 0)) {
1263 err = fd1;
1264 goto out_release_both;
1267 fd2 = sock_alloc_fd(&newfile2);
1268 if (unlikely(fd2 < 0)) {
1269 err = fd2;
1270 put_filp(newfile1);
1271 put_unused_fd(fd1);
1272 goto out_release_both;
1275 err = sock_attach_fd(sock1, newfile1);
1276 if (unlikely(err < 0)) {
1277 goto out_fd2;
1280 err = sock_attach_fd(sock2, newfile2);
1281 if (unlikely(err < 0)) {
1282 fput(newfile1);
1283 goto out_fd1;
1286 err = audit_fd_pair(fd1, fd2);
1287 if (err < 0) {
1288 fput(newfile1);
1289 fput(newfile2);
1290 goto out_fd;
1293 fd_install(fd1, newfile1);
1294 fd_install(fd2, newfile2);
1295 /* fd1 and fd2 may be already another descriptors.
1296 * Not kernel problem.
1299 err = put_user(fd1, &usockvec[0]);
1300 if (!err)
1301 err = put_user(fd2, &usockvec[1]);
1302 if (!err)
1303 return 0;
1305 sys_close(fd2);
1306 sys_close(fd1);
1307 return err;
1309 out_release_both:
1310 sock_release(sock2);
1311 out_release_1:
1312 sock_release(sock1);
1313 out:
1314 return err;
1316 out_fd2:
1317 put_filp(newfile1);
1318 sock_release(sock1);
1319 out_fd1:
1320 put_filp(newfile2);
1321 sock_release(sock2);
1322 out_fd:
1323 put_unused_fd(fd1);
1324 put_unused_fd(fd2);
1325 goto out;
1329 * Bind a name to a socket. Nothing much to do here since it's
1330 * the protocol's responsibility to handle the local address.
1332 * We move the socket address to kernel space before we call
1333 * the protocol layer (having also checked the address is ok).
1336 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1338 struct socket *sock;
1339 char address[MAX_SOCK_ADDR];
1340 int err, fput_needed;
1342 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1343 if (sock) {
1344 err = move_addr_to_kernel(umyaddr, addrlen, address);
1345 if (err >= 0) {
1346 err = security_socket_bind(sock,
1347 (struct sockaddr *)address,
1348 addrlen);
1349 if (!err)
1350 err = sock->ops->bind(sock,
1351 (struct sockaddr *)
1352 address, addrlen);
1354 fput_light(sock->file, fput_needed);
1356 return err;
1360 * Perform a listen. Basically, we allow the protocol to do anything
1361 * necessary for a listen, and if that works, we mark the socket as
1362 * ready for listening.
1365 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1367 asmlinkage long sys_listen(int fd, int backlog)
1369 struct socket *sock;
1370 int err, fput_needed;
1372 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1373 if (sock) {
1374 if ((unsigned)backlog > sysctl_somaxconn)
1375 backlog = sysctl_somaxconn;
1377 err = security_socket_listen(sock, backlog);
1378 if (!err)
1379 err = sock->ops->listen(sock, backlog);
1381 fput_light(sock->file, fput_needed);
1383 return err;
1387 * For accept, we attempt to create a new socket, set up the link
1388 * with the client, wake up the client, then return the new
1389 * connected fd. We collect the address of the connector in kernel
1390 * space and move it to user at the very end. This is unclean because
1391 * we open the socket then return an error.
1393 * 1003.1g adds the ability to recvmsg() to query connection pending
1394 * status to recvmsg. We need to add that support in a way thats
1395 * clean when we restucture accept also.
1398 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1399 int __user *upeer_addrlen)
1401 struct socket *sock, *newsock;
1402 struct file *newfile;
1403 int err, len, newfd, fput_needed;
1404 char address[MAX_SOCK_ADDR];
1406 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1407 if (!sock)
1408 goto out;
1410 err = -ENFILE;
1411 if (!(newsock = sock_alloc()))
1412 goto out_put;
1414 newsock->type = sock->type;
1415 newsock->ops = sock->ops;
1418 * We don't need try_module_get here, as the listening socket (sock)
1419 * has the protocol module (sock->ops->owner) held.
1421 __module_get(newsock->ops->owner);
1423 newfd = sock_alloc_fd(&newfile);
1424 if (unlikely(newfd < 0)) {
1425 err = newfd;
1426 sock_release(newsock);
1427 goto out_put;
1430 err = sock_attach_fd(newsock, newfile);
1431 if (err < 0)
1432 goto out_fd_simple;
1434 err = security_socket_accept(sock, newsock);
1435 if (err)
1436 goto out_fd;
1438 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1439 if (err < 0)
1440 goto out_fd;
1442 if (upeer_sockaddr) {
1443 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1444 &len, 2) < 0) {
1445 err = -ECONNABORTED;
1446 goto out_fd;
1448 err = move_addr_to_user(address, len, upeer_sockaddr,
1449 upeer_addrlen);
1450 if (err < 0)
1451 goto out_fd;
1454 /* File flags are not inherited via accept() unlike another OSes. */
1456 fd_install(newfd, newfile);
1457 err = newfd;
1459 security_socket_post_accept(sock, newsock);
1461 out_put:
1462 fput_light(sock->file, fput_needed);
1463 out:
1464 return err;
1465 out_fd_simple:
1466 sock_release(newsock);
1467 put_filp(newfile);
1468 put_unused_fd(newfd);
1469 goto out_put;
1470 out_fd:
1471 fput(newfile);
1472 put_unused_fd(newfd);
1473 goto out_put;
1477 * Attempt to connect to a socket with the server address. The address
1478 * is in user space so we verify it is OK and move it to kernel space.
1480 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1481 * break bindings
1483 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1484 * other SEQPACKET protocols that take time to connect() as it doesn't
1485 * include the -EINPROGRESS status for such sockets.
1488 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1489 int addrlen)
1491 struct socket *sock;
1492 char address[MAX_SOCK_ADDR];
1493 int err, fput_needed;
1495 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1496 if (!sock)
1497 goto out;
1498 err = move_addr_to_kernel(uservaddr, addrlen, address);
1499 if (err < 0)
1500 goto out_put;
1502 err =
1503 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1504 if (err)
1505 goto out_put;
1507 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1508 sock->file->f_flags);
1509 out_put:
1510 fput_light(sock->file, fput_needed);
1511 out:
1512 return err;
1516 * Get the local address ('name') of a socket object. Move the obtained
1517 * name to user space.
1520 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1521 int __user *usockaddr_len)
1523 struct socket *sock;
1524 char address[MAX_SOCK_ADDR];
1525 int len, err, fput_needed;
1527 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1528 if (!sock)
1529 goto out;
1531 err = security_socket_getsockname(sock);
1532 if (err)
1533 goto out_put;
1535 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1536 if (err)
1537 goto out_put;
1538 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1540 out_put:
1541 fput_light(sock->file, fput_needed);
1542 out:
1543 return err;
1547 * Get the remote address ('name') of a socket object. Move the obtained
1548 * name to user space.
1551 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1552 int __user *usockaddr_len)
1554 struct socket *sock;
1555 char address[MAX_SOCK_ADDR];
1556 int len, err, fput_needed;
1558 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1559 if (sock != NULL) {
1560 err = security_socket_getpeername(sock);
1561 if (err) {
1562 fput_light(sock->file, fput_needed);
1563 return err;
1566 err =
1567 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1569 if (!err)
1570 err = move_addr_to_user(address, len, usockaddr,
1571 usockaddr_len);
1572 fput_light(sock->file, fput_needed);
1574 return err;
1578 * Send a datagram to a given address. We move the address into kernel
1579 * space and check the user space data area is readable before invoking
1580 * the protocol.
1583 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1584 unsigned flags, struct sockaddr __user *addr,
1585 int addr_len)
1587 struct socket *sock;
1588 char address[MAX_SOCK_ADDR];
1589 int err;
1590 struct msghdr msg;
1591 struct iovec iov;
1592 int fput_needed;
1593 struct file *sock_file;
1595 sock_file = fget_light(fd, &fput_needed);
1596 err = -EBADF;
1597 if (!sock_file)
1598 goto out;
1600 sock = sock_from_file(sock_file, &err);
1601 if (!sock)
1602 goto out_put;
1603 iov.iov_base = buff;
1604 iov.iov_len = len;
1605 msg.msg_name = NULL;
1606 msg.msg_iov = &iov;
1607 msg.msg_iovlen = 1;
1608 msg.msg_control = NULL;
1609 msg.msg_controllen = 0;
1610 msg.msg_namelen = 0;
1611 if (addr) {
1612 err = move_addr_to_kernel(addr, addr_len, address);
1613 if (err < 0)
1614 goto out_put;
1615 msg.msg_name = address;
1616 msg.msg_namelen = addr_len;
1618 if (sock->file->f_flags & O_NONBLOCK)
1619 flags |= MSG_DONTWAIT;
1620 msg.msg_flags = flags;
1621 err = sock_sendmsg(sock, &msg, len);
1623 out_put:
1624 fput_light(sock_file, fput_needed);
1625 out:
1626 return err;
1630 * Send a datagram down a socket.
1633 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1635 return sys_sendto(fd, buff, len, flags, NULL, 0);
1639 * Receive a frame from the socket and optionally record the address of the
1640 * sender. We verify the buffers are writable and if needed move the
1641 * sender address from kernel to user space.
1644 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1645 unsigned flags, struct sockaddr __user *addr,
1646 int __user *addr_len)
1648 struct socket *sock;
1649 struct iovec iov;
1650 struct msghdr msg;
1651 char address[MAX_SOCK_ADDR];
1652 int err, err2;
1653 struct file *sock_file;
1654 int fput_needed;
1656 sock_file = fget_light(fd, &fput_needed);
1657 err = -EBADF;
1658 if (!sock_file)
1659 goto out;
1661 sock = sock_from_file(sock_file, &err);
1662 if (!sock)
1663 goto out_put;
1665 msg.msg_control = NULL;
1666 msg.msg_controllen = 0;
1667 msg.msg_iovlen = 1;
1668 msg.msg_iov = &iov;
1669 iov.iov_len = size;
1670 iov.iov_base = ubuf;
1671 msg.msg_name = address;
1672 msg.msg_namelen = MAX_SOCK_ADDR;
1673 if (sock->file->f_flags & O_NONBLOCK)
1674 flags |= MSG_DONTWAIT;
1675 err = sock_recvmsg(sock, &msg, size, flags);
1677 if (err >= 0 && addr != NULL) {
1678 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1679 if (err2 < 0)
1680 err = err2;
1682 out_put:
1683 fput_light(sock_file, fput_needed);
1684 out:
1685 return err;
1689 * Receive a datagram from a socket.
1692 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1693 unsigned flags)
1695 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1699 * Set a socket option. Because we don't know the option lengths we have
1700 * to pass the user mode parameter for the protocols to sort out.
1703 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1704 char __user *optval, int optlen)
1706 int err, fput_needed;
1707 struct socket *sock;
1709 if (optlen < 0)
1710 return -EINVAL;
1712 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1713 if (sock != NULL) {
1714 err = security_socket_setsockopt(sock, level, optname);
1715 if (err)
1716 goto out_put;
1718 if (level == SOL_SOCKET)
1719 err =
1720 sock_setsockopt(sock, level, optname, optval,
1721 optlen);
1722 else
1723 err =
1724 sock->ops->setsockopt(sock, level, optname, optval,
1725 optlen);
1726 out_put:
1727 fput_light(sock->file, fput_needed);
1729 return err;
1733 * Get a socket option. Because we don't know the option lengths we have
1734 * to pass a user mode parameter for the protocols to sort out.
1737 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1738 char __user *optval, int __user *optlen)
1740 int err, fput_needed;
1741 struct socket *sock;
1743 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1744 if (sock != NULL) {
1745 err = security_socket_getsockopt(sock, level, optname);
1746 if (err)
1747 goto out_put;
1749 if (level == SOL_SOCKET)
1750 err =
1751 sock_getsockopt(sock, level, optname, optval,
1752 optlen);
1753 else
1754 err =
1755 sock->ops->getsockopt(sock, level, optname, optval,
1756 optlen);
1757 out_put:
1758 fput_light(sock->file, fput_needed);
1760 return err;
1764 * Shutdown a socket.
1767 asmlinkage long sys_shutdown(int fd, int how)
1769 int err, fput_needed;
1770 struct socket *sock;
1772 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1773 if (sock != NULL) {
1774 err = security_socket_shutdown(sock, how);
1775 if (!err)
1776 err = sock->ops->shutdown(sock, how);
1777 fput_light(sock->file, fput_needed);
1779 return err;
1782 /* A couple of helpful macros for getting the address of the 32/64 bit
1783 * fields which are the same type (int / unsigned) on our platforms.
1785 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1786 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1787 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1790 * BSD sendmsg interface
1793 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1795 struct compat_msghdr __user *msg_compat =
1796 (struct compat_msghdr __user *)msg;
1797 struct socket *sock;
1798 char address[MAX_SOCK_ADDR];
1799 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1800 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1801 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1802 /* 20 is size of ipv6_pktinfo */
1803 unsigned char *ctl_buf = ctl;
1804 struct msghdr msg_sys;
1805 int err, ctl_len, iov_size, total_len;
1806 int fput_needed;
1808 err = -EFAULT;
1809 if (MSG_CMSG_COMPAT & flags) {
1810 if (get_compat_msghdr(&msg_sys, msg_compat))
1811 return -EFAULT;
1813 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1814 return -EFAULT;
1816 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1817 if (!sock)
1818 goto out;
1820 /* do not move before msg_sys is valid */
1821 err = -EMSGSIZE;
1822 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1823 goto out_put;
1825 /* Check whether to allocate the iovec area */
1826 err = -ENOMEM;
1827 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1828 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1829 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1830 if (!iov)
1831 goto out_put;
1834 /* This will also move the address data into kernel space */
1835 if (MSG_CMSG_COMPAT & flags) {
1836 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1837 } else
1838 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1839 if (err < 0)
1840 goto out_freeiov;
1841 total_len = err;
1843 err = -ENOBUFS;
1845 if (msg_sys.msg_controllen > INT_MAX)
1846 goto out_freeiov;
1847 ctl_len = msg_sys.msg_controllen;
1848 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1849 err =
1850 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1851 sizeof(ctl));
1852 if (err)
1853 goto out_freeiov;
1854 ctl_buf = msg_sys.msg_control;
1855 ctl_len = msg_sys.msg_controllen;
1856 } else if (ctl_len) {
1857 if (ctl_len > sizeof(ctl)) {
1858 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1859 if (ctl_buf == NULL)
1860 goto out_freeiov;
1862 err = -EFAULT;
1864 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1865 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1866 * checking falls down on this.
1868 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1869 ctl_len))
1870 goto out_freectl;
1871 msg_sys.msg_control = ctl_buf;
1873 msg_sys.msg_flags = flags;
1875 if (sock->file->f_flags & O_NONBLOCK)
1876 msg_sys.msg_flags |= MSG_DONTWAIT;
1877 err = sock_sendmsg(sock, &msg_sys, total_len);
1879 out_freectl:
1880 if (ctl_buf != ctl)
1881 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1882 out_freeiov:
1883 if (iov != iovstack)
1884 sock_kfree_s(sock->sk, iov, iov_size);
1885 out_put:
1886 fput_light(sock->file, fput_needed);
1887 out:
1888 return err;
1892 * BSD recvmsg interface
1895 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1896 unsigned int flags)
1898 struct compat_msghdr __user *msg_compat =
1899 (struct compat_msghdr __user *)msg;
1900 struct socket *sock;
1901 struct iovec iovstack[UIO_FASTIOV];
1902 struct iovec *iov = iovstack;
1903 struct msghdr msg_sys;
1904 unsigned long cmsg_ptr;
1905 int err, iov_size, total_len, len;
1906 int fput_needed;
1908 /* kernel mode address */
1909 char addr[MAX_SOCK_ADDR];
1911 /* user mode address pointers */
1912 struct sockaddr __user *uaddr;
1913 int __user *uaddr_len;
1915 if (MSG_CMSG_COMPAT & flags) {
1916 if (get_compat_msghdr(&msg_sys, msg_compat))
1917 return -EFAULT;
1919 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1920 return -EFAULT;
1922 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1923 if (!sock)
1924 goto out;
1926 err = -EMSGSIZE;
1927 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1928 goto out_put;
1930 /* Check whether to allocate the iovec area */
1931 err = -ENOMEM;
1932 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1933 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1934 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1935 if (!iov)
1936 goto out_put;
1940 * Save the user-mode address (verify_iovec will change the
1941 * kernel msghdr to use the kernel address space)
1944 uaddr = (void __user *)msg_sys.msg_name;
1945 uaddr_len = COMPAT_NAMELEN(msg);
1946 if (MSG_CMSG_COMPAT & flags) {
1947 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1948 } else
1949 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1950 if (err < 0)
1951 goto out_freeiov;
1952 total_len = err;
1954 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1955 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1957 if (sock->file->f_flags & O_NONBLOCK)
1958 flags |= MSG_DONTWAIT;
1959 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1960 if (err < 0)
1961 goto out_freeiov;
1962 len = err;
1964 if (uaddr != NULL) {
1965 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1966 uaddr_len);
1967 if (err < 0)
1968 goto out_freeiov;
1970 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1971 COMPAT_FLAGS(msg));
1972 if (err)
1973 goto out_freeiov;
1974 if (MSG_CMSG_COMPAT & flags)
1975 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1976 &msg_compat->msg_controllen);
1977 else
1978 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1979 &msg->msg_controllen);
1980 if (err)
1981 goto out_freeiov;
1982 err = len;
1984 out_freeiov:
1985 if (iov != iovstack)
1986 sock_kfree_s(sock->sk, iov, iov_size);
1987 out_put:
1988 fput_light(sock->file, fput_needed);
1989 out:
1990 return err;
1993 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1995 /* Argument list sizes for sys_socketcall */
1996 #define AL(x) ((x) * sizeof(unsigned long))
1997 static const unsigned char nargs[18]={
1998 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1999 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2000 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
2003 #undef AL
2006 * System call vectors.
2008 * Argument checking cleaned up. Saved 20% in size.
2009 * This function doesn't need to set the kernel lock because
2010 * it is set by the callees.
2013 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2015 unsigned long a[6];
2016 unsigned long a0, a1;
2017 int err;
2019 if (call < 1 || call > SYS_RECVMSG)
2020 return -EINVAL;
2022 /* copy_from_user should be SMP safe. */
2023 if (copy_from_user(a, args, nargs[call]))
2024 return -EFAULT;
2026 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2027 if (err)
2028 return err;
2030 a0 = a[0];
2031 a1 = a[1];
2033 switch (call) {
2034 case SYS_SOCKET:
2035 err = sys_socket(a0, a1, a[2]);
2036 break;
2037 case SYS_BIND:
2038 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2039 break;
2040 case SYS_CONNECT:
2041 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2042 break;
2043 case SYS_LISTEN:
2044 err = sys_listen(a0, a1);
2045 break;
2046 case SYS_ACCEPT:
2047 err =
2048 sys_accept(a0, (struct sockaddr __user *)a1,
2049 (int __user *)a[2]);
2050 break;
2051 case SYS_GETSOCKNAME:
2052 err =
2053 sys_getsockname(a0, (struct sockaddr __user *)a1,
2054 (int __user *)a[2]);
2055 break;
2056 case SYS_GETPEERNAME:
2057 err =
2058 sys_getpeername(a0, (struct sockaddr __user *)a1,
2059 (int __user *)a[2]);
2060 break;
2061 case SYS_SOCKETPAIR:
2062 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2063 break;
2064 case SYS_SEND:
2065 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2066 break;
2067 case SYS_SENDTO:
2068 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2069 (struct sockaddr __user *)a[4], a[5]);
2070 break;
2071 case SYS_RECV:
2072 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2073 break;
2074 case SYS_RECVFROM:
2075 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2076 (struct sockaddr __user *)a[4],
2077 (int __user *)a[5]);
2078 break;
2079 case SYS_SHUTDOWN:
2080 err = sys_shutdown(a0, a1);
2081 break;
2082 case SYS_SETSOCKOPT:
2083 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2084 break;
2085 case SYS_GETSOCKOPT:
2086 err =
2087 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2088 (int __user *)a[4]);
2089 break;
2090 case SYS_SENDMSG:
2091 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2092 break;
2093 case SYS_RECVMSG:
2094 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2095 break;
2096 default:
2097 err = -EINVAL;
2098 break;
2100 return err;
2103 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2106 * sock_register - add a socket protocol handler
2107 * @ops: description of protocol
2109 * This function is called by a protocol handler that wants to
2110 * advertise its address family, and have it linked into the
2111 * socket interface. The value ops->family coresponds to the
2112 * socket system call protocol family.
2114 int sock_register(const struct net_proto_family *ops)
2116 int err;
2118 if (ops->family >= NPROTO) {
2119 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2120 NPROTO);
2121 return -ENOBUFS;
2124 spin_lock(&net_family_lock);
2125 if (net_families[ops->family])
2126 err = -EEXIST;
2127 else {
2128 net_families[ops->family] = ops;
2129 err = 0;
2131 spin_unlock(&net_family_lock);
2133 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2134 return err;
2138 * sock_unregister - remove a protocol handler
2139 * @family: protocol family to remove
2141 * This function is called by a protocol handler that wants to
2142 * remove its address family, and have it unlinked from the
2143 * new socket creation.
2145 * If protocol handler is a module, then it can use module reference
2146 * counts to protect against new references. If protocol handler is not
2147 * a module then it needs to provide its own protection in
2148 * the ops->create routine.
2150 void sock_unregister(int family)
2152 BUG_ON(family < 0 || family >= NPROTO);
2154 spin_lock(&net_family_lock);
2155 net_families[family] = NULL;
2156 spin_unlock(&net_family_lock);
2158 synchronize_rcu();
2160 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2163 static int __init sock_init(void)
2166 * Initialize sock SLAB cache.
2169 sk_init();
2172 * Initialize skbuff SLAB cache
2174 skb_init();
2177 * Initialize the protocols module.
2180 init_inodecache();
2181 register_filesystem(&sock_fs_type);
2182 sock_mnt = kern_mount(&sock_fs_type);
2184 /* The real protocol initialization is performed in later initcalls.
2187 #ifdef CONFIG_NETFILTER
2188 netfilter_init();
2189 #endif
2191 return 0;
2194 core_initcall(sock_init); /* early initcall */
2196 #ifdef CONFIG_PROC_FS
2197 void socket_seq_show(struct seq_file *seq)
2199 int cpu;
2200 int counter = 0;
2202 for_each_possible_cpu(cpu)
2203 counter += per_cpu(sockets_in_use, cpu);
2205 /* It can be negative, by the way. 8) */
2206 if (counter < 0)
2207 counter = 0;
2209 seq_printf(seq, "sockets: used %d\n", counter);
2211 #endif /* CONFIG_PROC_FS */
2213 #ifdef CONFIG_COMPAT
2214 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2215 unsigned long arg)
2217 struct socket *sock = file->private_data;
2218 int ret = -ENOIOCTLCMD;
2220 if (sock->ops->compat_ioctl)
2221 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2223 return ret;
2225 #endif
2227 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2229 return sock->ops->bind(sock, addr, addrlen);
2232 int kernel_listen(struct socket *sock, int backlog)
2234 return sock->ops->listen(sock, backlog);
2237 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2239 struct sock *sk = sock->sk;
2240 int err;
2242 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2243 newsock);
2244 if (err < 0)
2245 goto done;
2247 err = sock->ops->accept(sock, *newsock, flags);
2248 if (err < 0) {
2249 sock_release(*newsock);
2250 *newsock = NULL;
2251 goto done;
2254 (*newsock)->ops = sock->ops;
2256 done:
2257 return err;
2260 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2261 int flags)
2263 return sock->ops->connect(sock, addr, addrlen, flags);
2266 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2267 int *addrlen)
2269 return sock->ops->getname(sock, addr, addrlen, 0);
2272 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2273 int *addrlen)
2275 return sock->ops->getname(sock, addr, addrlen, 1);
2278 int kernel_getsockopt(struct socket *sock, int level, int optname,
2279 char *optval, int *optlen)
2281 mm_segment_t oldfs = get_fs();
2282 int err;
2284 set_fs(KERNEL_DS);
2285 if (level == SOL_SOCKET)
2286 err = sock_getsockopt(sock, level, optname, optval, optlen);
2287 else
2288 err = sock->ops->getsockopt(sock, level, optname, optval,
2289 optlen);
2290 set_fs(oldfs);
2291 return err;
2294 int kernel_setsockopt(struct socket *sock, int level, int optname,
2295 char *optval, int optlen)
2297 mm_segment_t oldfs = get_fs();
2298 int err;
2300 set_fs(KERNEL_DS);
2301 if (level == SOL_SOCKET)
2302 err = sock_setsockopt(sock, level, optname, optval, optlen);
2303 else
2304 err = sock->ops->setsockopt(sock, level, optname, optval,
2305 optlen);
2306 set_fs(oldfs);
2307 return err;
2310 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2311 size_t size, int flags)
2313 if (sock->ops->sendpage)
2314 return sock->ops->sendpage(sock, page, offset, size, flags);
2316 return sock_no_sendpage(sock, page, offset, size, flags);
2319 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2321 mm_segment_t oldfs = get_fs();
2322 int err;
2324 set_fs(KERNEL_DS);
2325 err = sock->ops->ioctl(sock, cmd, arg);
2326 set_fs(oldfs);
2328 return err;
2331 /* ABI emulation layers need these two */
2332 EXPORT_SYMBOL(move_addr_to_kernel);
2333 EXPORT_SYMBOL(move_addr_to_user);
2334 EXPORT_SYMBOL(sock_create);
2335 EXPORT_SYMBOL(sock_create_kern);
2336 EXPORT_SYMBOL(sock_create_lite);
2337 EXPORT_SYMBOL(sock_map_fd);
2338 EXPORT_SYMBOL(sock_recvmsg);
2339 EXPORT_SYMBOL(sock_register);
2340 EXPORT_SYMBOL(sock_release);
2341 EXPORT_SYMBOL(sock_sendmsg);
2342 EXPORT_SYMBOL(sock_unregister);
2343 EXPORT_SYMBOL(sock_wake_async);
2344 EXPORT_SYMBOL(sockfd_lookup);
2345 EXPORT_SYMBOL(kernel_sendmsg);
2346 EXPORT_SYMBOL(kernel_recvmsg);
2347 EXPORT_SYMBOL(kernel_bind);
2348 EXPORT_SYMBOL(kernel_listen);
2349 EXPORT_SYMBOL(kernel_accept);
2350 EXPORT_SYMBOL(kernel_connect);
2351 EXPORT_SYMBOL(kernel_getsockname);
2352 EXPORT_SYMBOL(kernel_getpeername);
2353 EXPORT_SYMBOL(kernel_getsockopt);
2354 EXPORT_SYMBOL(kernel_setsockopt);
2355 EXPORT_SYMBOL(kernel_sendpage);
2356 EXPORT_SYMBOL(kernel_sock_ioctl);