RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / mm / migrate.c
blobdb18d553984de669d6f3ab0a47ad4bdc8d712bba
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/pagevec.h>
23 #include <linux/rmap.h>
24 #include <linux/topology.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/writeback.h>
28 #include <linux/mempolicy.h>
29 #include <linux/vmalloc.h>
30 #include <linux/security.h>
32 #include "internal.h"
34 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
37 * Isolate one page from the LRU lists. If successful put it onto
38 * the indicated list with elevated page count.
40 * Result:
41 * -EBUSY: page not on LRU list
42 * 0: page removed from LRU list and added to the specified list.
44 int isolate_lru_page(struct page *page, struct list_head *pagelist)
46 int ret = -EBUSY;
48 if (PageLRU(page)) {
49 struct zone *zone = page_zone(page);
51 spin_lock_irq(&zone->lru_lock);
52 if (PageLRU(page)) {
53 ret = 0;
54 get_page(page);
55 ClearPageLRU(page);
56 if (PageActive(page))
57 del_page_from_active_list(zone, page);
58 else
59 del_page_from_inactive_list(zone, page);
60 list_add_tail(&page->lru, pagelist);
62 spin_unlock_irq(&zone->lru_lock);
64 return ret;
68 * migrate_prep() needs to be called before we start compiling a list of pages
69 * to be migrated using isolate_lru_page().
71 int migrate_prep(void)
74 * Clear the LRU lists so pages can be isolated.
75 * Note that pages may be moved off the LRU after we have
76 * drained them. Those pages will fail to migrate like other
77 * pages that may be busy.
79 lru_add_drain_all();
81 return 0;
84 static inline void move_to_lru(struct page *page)
86 if (PageActive(page)) {
88 * lru_cache_add_active checks that
89 * the PG_active bit is off.
91 ClearPageActive(page);
92 lru_cache_add_active(page);
93 } else {
94 lru_cache_add(page);
96 put_page(page);
100 * Add isolated pages on the list back to the LRU.
102 * returns the number of pages put back.
104 int putback_lru_pages(struct list_head *l)
106 struct page *page;
107 struct page *page2;
108 int count = 0;
110 list_for_each_entry_safe(page, page2, l, lru) {
111 list_del(&page->lru);
112 move_to_lru(page);
113 count++;
115 return count;
118 static inline int is_swap_pte(pte_t pte)
120 return !pte_none(pte) && !pte_present(pte) && !pte_file(pte);
124 * Restore a potential migration pte to a working pte entry
126 static void remove_migration_pte(struct vm_area_struct *vma,
127 struct page *old, struct page *new)
129 struct mm_struct *mm = vma->vm_mm;
130 swp_entry_t entry;
131 pgd_t *pgd;
132 pud_t *pud;
133 pmd_t *pmd;
134 pte_t *ptep, pte;
135 spinlock_t *ptl;
136 unsigned long addr = page_address_in_vma(new, vma);
138 if (addr == -EFAULT)
139 return;
141 pgd = pgd_offset(mm, addr);
142 if (!pgd_present(*pgd))
143 return;
145 pud = pud_offset(pgd, addr);
146 if (!pud_present(*pud))
147 return;
149 pmd = pmd_offset(pud, addr);
150 if (!pmd_present(*pmd))
151 return;
153 ptep = pte_offset_map(pmd, addr);
155 if (!is_swap_pte(*ptep)) {
156 pte_unmap(ptep);
157 return;
160 ptl = pte_lockptr(mm, pmd);
161 spin_lock(ptl);
162 pte = *ptep;
163 if (!is_swap_pte(pte))
164 goto out;
166 entry = pte_to_swp_entry(pte);
168 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
169 goto out;
171 get_page(new);
172 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
173 if (is_write_migration_entry(entry))
174 pte = pte_mkwrite(pte);
175 set_pte_at(mm, addr, ptep, pte);
177 if (PageAnon(new))
178 page_add_anon_rmap(new, vma, addr);
179 else
180 page_add_file_rmap(new);
182 /* No need to invalidate - it was non-present before */
183 update_mmu_cache(vma, addr, pte);
184 lazy_mmu_prot_update(pte);
186 out:
187 pte_unmap_unlock(ptep, ptl);
191 * Note that remove_file_migration_ptes will only work on regular mappings,
192 * Nonlinear mappings do not use migration entries.
194 static void remove_file_migration_ptes(struct page *old, struct page *new)
196 struct vm_area_struct *vma;
197 struct address_space *mapping = page_mapping(new);
198 struct prio_tree_iter iter;
199 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
201 if (!mapping)
202 return;
204 spin_lock(&mapping->i_mmap_lock);
206 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
207 remove_migration_pte(vma, old, new);
209 spin_unlock(&mapping->i_mmap_lock);
213 * Must hold mmap_sem lock on at least one of the vmas containing
214 * the page so that the anon_vma cannot vanish.
216 static void remove_anon_migration_ptes(struct page *old, struct page *new)
218 struct anon_vma *anon_vma;
219 struct vm_area_struct *vma;
220 unsigned long mapping;
222 mapping = (unsigned long)new->mapping;
224 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
225 return;
228 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
230 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
231 spin_lock(&anon_vma->lock);
233 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
234 remove_migration_pte(vma, old, new);
236 spin_unlock(&anon_vma->lock);
240 * Get rid of all migration entries and replace them by
241 * references to the indicated page.
243 static void remove_migration_ptes(struct page *old, struct page *new)
245 if (PageAnon(new))
246 remove_anon_migration_ptes(old, new);
247 else
248 remove_file_migration_ptes(old, new);
252 * Something used the pte of a page under migration. We need to
253 * get to the page and wait until migration is finished.
254 * When we return from this function the fault will be retried.
256 * This function is called from do_swap_page().
258 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
259 unsigned long address)
261 pte_t *ptep, pte;
262 spinlock_t *ptl;
263 swp_entry_t entry;
264 struct page *page;
266 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
267 pte = *ptep;
268 if (!is_swap_pte(pte))
269 goto out;
271 entry = pte_to_swp_entry(pte);
272 if (!is_migration_entry(entry))
273 goto out;
275 page = migration_entry_to_page(entry);
277 get_page(page);
278 pte_unmap_unlock(ptep, ptl);
279 wait_on_page_locked(page);
280 put_page(page);
281 return;
282 out:
283 pte_unmap_unlock(ptep, ptl);
287 * Replace the page in the mapping.
289 * The number of remaining references must be:
290 * 1 for anonymous pages without a mapping
291 * 2 for pages with a mapping
292 * 3 for pages with a mapping and PagePrivate set.
294 static int migrate_page_move_mapping(struct address_space *mapping,
295 struct page *newpage, struct page *page)
297 void **pslot;
299 if (!mapping) {
300 /* Anonymous page without mapping */
301 if (page_count(page) != 1)
302 return -EAGAIN;
303 return 0;
306 write_lock_irq(&mapping->tree_lock);
308 pslot = radix_tree_lookup_slot(&mapping->page_tree,
309 page_index(page));
311 if (page_count(page) != 2 + !!PagePrivate(page) ||
312 (struct page *)radix_tree_deref_slot(pslot) != page) {
313 write_unlock_irq(&mapping->tree_lock);
314 return -EAGAIN;
318 * Now we know that no one else is looking at the page.
320 get_page(newpage); /* add cache reference */
321 #ifdef CONFIG_SWAP
322 if (PageSwapCache(page)) {
323 SetPageSwapCache(newpage);
324 set_page_private(newpage, page_private(page));
326 #endif
328 radix_tree_replace_slot(pslot, newpage);
331 * Drop cache reference from old page.
332 * We know this isn't the last reference.
334 __put_page(page);
337 * If moved to a different zone then also account
338 * the page for that zone. Other VM counters will be
339 * taken care of when we establish references to the
340 * new page and drop references to the old page.
342 * Note that anonymous pages are accounted for
343 * via NR_FILE_PAGES and NR_ANON_PAGES if they
344 * are mapped to swap space.
346 __dec_zone_page_state(page, NR_FILE_PAGES);
347 __inc_zone_page_state(newpage, NR_FILE_PAGES);
349 write_unlock_irq(&mapping->tree_lock);
351 return 0;
355 * Copy the page to its new location
357 static void migrate_page_copy(struct page *newpage, struct page *page)
359 copy_highpage(newpage, page);
361 if (PageError(page))
362 SetPageError(newpage);
363 if (PageReferenced(page))
364 SetPageReferenced(newpage);
365 if (PageUptodate(page))
366 SetPageUptodate(newpage);
367 if (PageActive(page))
368 SetPageActive(newpage);
369 if (PageChecked(page))
370 SetPageChecked(newpage);
371 if (PageMappedToDisk(page))
372 SetPageMappedToDisk(newpage);
374 if (PageDirty(page)) {
375 clear_page_dirty_for_io(page);
376 set_page_dirty(newpage);
379 #ifdef CONFIG_SWAP
380 ClearPageSwapCache(page);
381 #endif
382 ClearPageActive(page);
383 ClearPagePrivate(page);
384 set_page_private(page, 0);
385 page->mapping = NULL;
388 * If any waiters have accumulated on the new page then
389 * wake them up.
391 if (PageWriteback(newpage))
392 end_page_writeback(newpage);
395 /************************************************************
396 * Migration functions
397 ***********************************************************/
399 /* Always fail migration. Used for mappings that are not movable */
400 int fail_migrate_page(struct address_space *mapping,
401 struct page *newpage, struct page *page)
403 return -EIO;
405 EXPORT_SYMBOL(fail_migrate_page);
408 * Common logic to directly migrate a single page suitable for
409 * pages that do not use PagePrivate.
411 * Pages are locked upon entry and exit.
413 int migrate_page(struct address_space *mapping,
414 struct page *newpage, struct page *page)
416 int rc;
418 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
420 rc = migrate_page_move_mapping(mapping, newpage, page);
422 if (rc)
423 return rc;
425 migrate_page_copy(newpage, page);
426 return 0;
428 EXPORT_SYMBOL(migrate_page);
430 #ifdef CONFIG_BLOCK
432 * Migration function for pages with buffers. This function can only be used
433 * if the underlying filesystem guarantees that no other references to "page"
434 * exist.
436 int buffer_migrate_page(struct address_space *mapping,
437 struct page *newpage, struct page *page)
439 struct buffer_head *bh, *head;
440 int rc;
442 if (!page_has_buffers(page))
443 return migrate_page(mapping, newpage, page);
445 head = page_buffers(page);
447 rc = migrate_page_move_mapping(mapping, newpage, page);
449 if (rc)
450 return rc;
452 bh = head;
453 do {
454 get_bh(bh);
455 lock_buffer(bh);
456 bh = bh->b_this_page;
458 } while (bh != head);
460 ClearPagePrivate(page);
461 set_page_private(newpage, page_private(page));
462 set_page_private(page, 0);
463 put_page(page);
464 get_page(newpage);
466 bh = head;
467 do {
468 set_bh_page(bh, newpage, bh_offset(bh));
469 bh = bh->b_this_page;
471 } while (bh != head);
473 SetPagePrivate(newpage);
475 migrate_page_copy(newpage, page);
477 bh = head;
478 do {
479 unlock_buffer(bh);
480 put_bh(bh);
481 bh = bh->b_this_page;
483 } while (bh != head);
485 return 0;
487 EXPORT_SYMBOL(buffer_migrate_page);
488 #endif
491 * Writeback a page to clean the dirty state
493 static int writeout(struct address_space *mapping, struct page *page)
495 struct writeback_control wbc = {
496 .sync_mode = WB_SYNC_NONE,
497 .nr_to_write = 1,
498 .range_start = 0,
499 .range_end = LLONG_MAX,
500 .nonblocking = 1,
501 .for_reclaim = 1
503 int rc;
505 if (!mapping->a_ops->writepage)
506 /* No write method for the address space */
507 return -EINVAL;
509 if (!clear_page_dirty_for_io(page))
510 /* Someone else already triggered a write */
511 return -EAGAIN;
514 * A dirty page may imply that the underlying filesystem has
515 * the page on some queue. So the page must be clean for
516 * migration. Writeout may mean we loose the lock and the
517 * page state is no longer what we checked for earlier.
518 * At this point we know that the migration attempt cannot
519 * be successful.
521 remove_migration_ptes(page, page);
523 rc = mapping->a_ops->writepage(page, &wbc);
525 if (rc != AOP_WRITEPAGE_ACTIVATE)
526 /* unlocked. Relock */
527 lock_page(page);
529 return (rc < 0) ? -EIO : -EAGAIN;
533 * Default handling if a filesystem does not provide a migration function.
535 static int fallback_migrate_page(struct address_space *mapping,
536 struct page *newpage, struct page *page)
538 if (PageDirty(page))
539 return writeout(mapping, page);
542 * Buffers may be managed in a filesystem specific way.
543 * We must have no buffers or drop them.
545 if (PagePrivate(page) &&
546 !try_to_release_page(page, GFP_KERNEL))
547 return -EAGAIN;
549 return migrate_page(mapping, newpage, page);
553 * Move a page to a newly allocated page
554 * The page is locked and all ptes have been successfully removed.
556 * The new page will have replaced the old page if this function
557 * is successful.
559 static int move_to_new_page(struct page *newpage, struct page *page)
561 struct address_space *mapping;
562 int rc;
565 * Block others from accessing the page when we get around to
566 * establishing additional references. We are the only one
567 * holding a reference to the new page at this point.
569 if (TestSetPageLocked(newpage))
570 BUG();
572 /* Prepare mapping for the new page.*/
573 newpage->index = page->index;
574 newpage->mapping = page->mapping;
576 mapping = page_mapping(page);
577 if (!mapping)
578 rc = migrate_page(mapping, newpage, page);
579 else if (mapping->a_ops->migratepage)
581 * Most pages have a mapping and most filesystems
582 * should provide a migration function. Anonymous
583 * pages are part of swap space which also has its
584 * own migration function. This is the most common
585 * path for page migration.
587 rc = mapping->a_ops->migratepage(mapping,
588 newpage, page);
589 else
590 rc = fallback_migrate_page(mapping, newpage, page);
592 if (!rc)
593 remove_migration_ptes(page, newpage);
594 else
595 newpage->mapping = NULL;
597 unlock_page(newpage);
599 return rc;
603 * Obtain the lock on page, remove all ptes and migrate the page
604 * to the newly allocated page in newpage.
606 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
607 struct page *page, int force)
609 int rc = 0;
610 int *result = NULL;
611 struct page *newpage = get_new_page(page, private, &result);
613 if (!newpage)
614 return -ENOMEM;
616 if (page_count(page) == 1)
617 /* page was freed from under us. So we are done. */
618 goto move_newpage;
620 rc = -EAGAIN;
621 if (TestSetPageLocked(page)) {
622 if (!force)
623 goto move_newpage;
624 lock_page(page);
627 if (PageWriteback(page)) {
628 if (!force)
629 goto unlock;
630 wait_on_page_writeback(page);
634 * Establish migration ptes or remove ptes
636 try_to_unmap(page, 1);
637 if (!page_mapped(page))
638 rc = move_to_new_page(newpage, page);
640 if (rc)
641 remove_migration_ptes(page, page);
643 unlock:
644 unlock_page(page);
646 if (rc != -EAGAIN) {
648 * A page that has been migrated has all references
649 * removed and will be freed. A page that has not been
650 * migrated will have kepts its references and be
651 * restored.
653 list_del(&page->lru);
654 move_to_lru(page);
657 move_newpage:
659 * Move the new page to the LRU. If migration was not successful
660 * then this will free the page.
662 move_to_lru(newpage);
663 if (result) {
664 if (rc)
665 *result = rc;
666 else
667 *result = page_to_nid(newpage);
669 return rc;
673 * migrate_pages
675 * The function takes one list of pages to migrate and a function
676 * that determines from the page to be migrated and the private data
677 * the target of the move and allocates the page.
679 * The function returns after 10 attempts or if no pages
680 * are movable anymore because to has become empty
681 * or no retryable pages exist anymore. All pages will be
682 * retruned to the LRU or freed.
684 * Return: Number of pages not migrated or error code.
686 int migrate_pages(struct list_head *from,
687 new_page_t get_new_page, unsigned long private)
689 int retry = 1;
690 int nr_failed = 0;
691 int pass = 0;
692 struct page *page;
693 struct page *page2;
694 int swapwrite = current->flags & PF_SWAPWRITE;
695 int rc;
697 if (!swapwrite)
698 current->flags |= PF_SWAPWRITE;
700 for(pass = 0; pass < 10 && retry; pass++) {
701 retry = 0;
703 list_for_each_entry_safe(page, page2, from, lru) {
704 cond_resched();
706 rc = unmap_and_move(get_new_page, private,
707 page, pass > 2);
709 switch(rc) {
710 case -ENOMEM:
711 goto out;
712 case -EAGAIN:
713 retry++;
714 break;
715 case 0:
716 break;
717 default:
718 /* Permanent failure */
719 nr_failed++;
720 break;
724 rc = 0;
725 out:
726 if (!swapwrite)
727 current->flags &= ~PF_SWAPWRITE;
729 putback_lru_pages(from);
731 if (rc)
732 return rc;
734 return nr_failed + retry;
737 #ifdef CONFIG_NUMA
739 * Move a list of individual pages
741 struct page_to_node {
742 unsigned long addr;
743 struct page *page;
744 int node;
745 int status;
748 static struct page *new_page_node(struct page *p, unsigned long private,
749 int **result)
751 struct page_to_node *pm = (struct page_to_node *)private;
753 while (pm->node != MAX_NUMNODES && pm->page != p)
754 pm++;
756 if (pm->node == MAX_NUMNODES)
757 return NULL;
759 *result = &pm->status;
761 return alloc_pages_node(pm->node,
762 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
766 * Move a set of pages as indicated in the pm array. The addr
767 * field must be set to the virtual address of the page to be moved
768 * and the node number must contain a valid target node.
770 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
771 int migrate_all)
773 int err;
774 struct page_to_node *pp;
775 LIST_HEAD(pagelist);
777 down_read(&mm->mmap_sem);
780 * Build a list of pages to migrate
782 migrate_prep();
783 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
784 struct vm_area_struct *vma;
785 struct page *page;
788 * A valid page pointer that will not match any of the
789 * pages that will be moved.
791 pp->page = ZERO_PAGE(0);
793 err = -EFAULT;
794 vma = find_vma(mm, pp->addr);
795 if (!vma || !vma_migratable(vma))
796 goto set_status;
798 page = follow_page(vma, pp->addr, FOLL_GET);
799 err = -ENOENT;
800 if (!page)
801 goto set_status;
803 if (PageReserved(page)) /* Check for zero page */
804 goto put_and_set;
806 pp->page = page;
807 err = page_to_nid(page);
809 if (err == pp->node)
811 * Node already in the right place
813 goto put_and_set;
815 err = -EACCES;
816 if (page_mapcount(page) > 1 &&
817 !migrate_all)
818 goto put_and_set;
820 err = isolate_lru_page(page, &pagelist);
821 put_and_set:
823 * Either remove the duplicate refcount from
824 * isolate_lru_page() or drop the page ref if it was
825 * not isolated.
827 put_page(page);
828 set_status:
829 pp->status = err;
832 if (!list_empty(&pagelist))
833 err = migrate_pages(&pagelist, new_page_node,
834 (unsigned long)pm);
835 else
836 err = -ENOENT;
838 up_read(&mm->mmap_sem);
839 return err;
843 * Determine the nodes of a list of pages. The addr in the pm array
844 * must have been set to the virtual address of which we want to determine
845 * the node number.
847 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
849 down_read(&mm->mmap_sem);
851 for ( ; pm->node != MAX_NUMNODES; pm++) {
852 struct vm_area_struct *vma;
853 struct page *page;
854 int err;
856 err = -EFAULT;
857 vma = find_vma(mm, pm->addr);
858 if (!vma)
859 goto set_status;
861 page = follow_page(vma, pm->addr, 0);
862 err = -ENOENT;
863 /* Use PageReserved to check for zero page */
864 if (!page || PageReserved(page))
865 goto set_status;
867 err = page_to_nid(page);
868 set_status:
869 pm->status = err;
872 up_read(&mm->mmap_sem);
873 return 0;
877 * Move a list of pages in the address space of the currently executing
878 * process.
880 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
881 const void __user * __user *pages,
882 const int __user *nodes,
883 int __user *status, int flags)
885 int err = 0;
886 int i;
887 struct task_struct *task;
888 nodemask_t task_nodes;
889 struct mm_struct *mm;
890 struct page_to_node *pm = NULL;
892 /* Check flags */
893 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
894 return -EINVAL;
896 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
897 return -EPERM;
899 /* Find the mm_struct */
900 read_lock(&tasklist_lock);
901 task = pid ? find_task_by_pid(pid) : current;
902 if (!task) {
903 read_unlock(&tasklist_lock);
904 return -ESRCH;
906 mm = get_task_mm(task);
907 read_unlock(&tasklist_lock);
909 if (!mm)
910 return -EINVAL;
913 * Check if this process has the right to modify the specified
914 * process. The right exists if the process has administrative
915 * capabilities, superuser privileges or the same
916 * userid as the target process.
918 if ((current->euid != task->suid) && (current->euid != task->uid) &&
919 (current->uid != task->suid) && (current->uid != task->uid) &&
920 !capable(CAP_SYS_NICE)) {
921 err = -EPERM;
922 goto out2;
925 err = security_task_movememory(task);
926 if (err)
927 goto out2;
930 task_nodes = cpuset_mems_allowed(task);
932 /* Limit nr_pages so that the multiplication may not overflow */
933 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
934 err = -E2BIG;
935 goto out2;
938 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
939 if (!pm) {
940 err = -ENOMEM;
941 goto out2;
945 * Get parameters from user space and initialize the pm
946 * array. Return various errors if the user did something wrong.
948 for (i = 0; i < nr_pages; i++) {
949 const void *p;
951 err = -EFAULT;
952 if (get_user(p, pages + i))
953 goto out;
955 pm[i].addr = (unsigned long)p;
956 if (nodes) {
957 int node;
959 if (get_user(node, nodes + i))
960 goto out;
962 err = -ENODEV;
963 if (!node_online(node))
964 goto out;
966 err = -EACCES;
967 if (!node_isset(node, task_nodes))
968 goto out;
970 pm[i].node = node;
971 } else
972 pm[i].node = 0; /* anything to not match MAX_NUMNODES */
974 /* End marker */
975 pm[nr_pages].node = MAX_NUMNODES;
977 if (nodes)
978 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
979 else
980 err = do_pages_stat(mm, pm);
982 if (err >= 0)
983 /* Return status information */
984 for (i = 0; i < nr_pages; i++)
985 if (put_user(pm[i].status, status + i))
986 err = -EFAULT;
988 out:
989 vfree(pm);
990 out2:
991 mmput(mm);
992 return err;
994 #endif
997 * Call migration functions in the vma_ops that may prepare
998 * memory in a vm for migration. migration functions may perform
999 * the migration for vmas that do not have an underlying page struct.
1001 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1002 const nodemask_t *from, unsigned long flags)
1004 struct vm_area_struct *vma;
1005 int err = 0;
1007 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1008 if (vma->vm_ops && vma->vm_ops->migrate) {
1009 err = vma->vm_ops->migrate(vma, to, from, flags);
1010 if (err)
1011 break;
1014 return err;