RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / kernel / exit.c
blob5b7e29ba3ba60b4cfe146fad807efdd4a305d4ab
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/cpuset.h>
34 #include <linux/syscalls.h>
35 #include <linux/signal.h>
36 #include <linux/posix-timers.h>
37 #include <linux/cn_proc.h>
38 #include <linux/mutex.h>
39 #include <linux/futex.h>
40 #include <linux/compat.h>
41 #include <linux/pipe_fs_i.h>
42 #include <linux/audit.h> /* for audit_free() */
43 #include <linux/resource.h>
44 #include <linux/blkdev.h>
45 #include <linux/task_io_accounting_ops.h>
47 #include <asm/uaccess.h>
48 #include <asm/unistd.h>
49 #include <asm/pgtable.h>
50 #include <asm/mmu_context.h>
52 extern void sem_exit (void);
54 static void exit_mm(struct task_struct * tsk);
56 static void __unhash_process(struct task_struct *p)
58 nr_threads--;
59 detach_pid(p, PIDTYPE_PID);
60 if (thread_group_leader(p)) {
61 detach_pid(p, PIDTYPE_PGID);
62 detach_pid(p, PIDTYPE_SID);
64 list_del_rcu(&p->tasks);
65 __get_cpu_var(process_counts)--;
67 list_del_rcu(&p->thread_group);
68 remove_parent(p);
72 * This function expects the tasklist_lock write-locked.
74 static void __exit_signal(struct task_struct *tsk)
76 struct signal_struct *sig = tsk->signal;
77 struct sighand_struct *sighand;
79 BUG_ON(!sig);
80 BUG_ON(!atomic_read(&sig->count));
82 rcu_read_lock();
83 sighand = rcu_dereference(tsk->sighand);
84 spin_lock(&sighand->siglock);
86 posix_cpu_timers_exit(tsk);
87 if (atomic_dec_and_test(&sig->count))
88 posix_cpu_timers_exit_group(tsk);
89 else {
91 * If there is any task waiting for the group exit
92 * then notify it:
94 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
95 wake_up_process(sig->group_exit_task);
96 sig->group_exit_task = NULL;
98 if (tsk == sig->curr_target)
99 sig->curr_target = next_thread(tsk);
101 * Accumulate here the counters for all threads but the
102 * group leader as they die, so they can be added into
103 * the process-wide totals when those are taken.
104 * The group leader stays around as a zombie as long
105 * as there are other threads. When it gets reaped,
106 * the exit.c code will add its counts into these totals.
107 * We won't ever get here for the group leader, since it
108 * will have been the last reference on the signal_struct.
110 sig->utime = cputime_add(sig->utime, tsk->utime);
111 sig->stime = cputime_add(sig->stime, tsk->stime);
112 sig->min_flt += tsk->min_flt;
113 sig->maj_flt += tsk->maj_flt;
114 sig->nvcsw += tsk->nvcsw;
115 sig->nivcsw += tsk->nivcsw;
116 sig->sched_time += tsk->sched_time;
117 sig->inblock += task_io_get_inblock(tsk);
118 sig->oublock += task_io_get_oublock(tsk);
119 sig = NULL; /* Marker for below. */
122 __unhash_process(tsk);
124 tsk->signal = NULL;
125 tsk->sighand = NULL;
126 spin_unlock(&sighand->siglock);
127 rcu_read_unlock();
129 __cleanup_sighand(sighand);
130 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
131 flush_sigqueue(&tsk->pending);
132 if (sig) {
133 flush_sigqueue(&sig->shared_pending);
134 taskstats_tgid_free(sig);
135 __cleanup_signal(sig);
139 static void delayed_put_task_struct(struct rcu_head *rhp)
141 put_task_struct(container_of(rhp, struct task_struct, rcu));
144 void release_task(struct task_struct * p)
146 struct task_struct *leader;
147 int zap_leader;
148 repeat:
149 atomic_dec(&p->user->processes);
150 write_lock_irq(&tasklist_lock);
151 ptrace_unlink(p);
152 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
153 __exit_signal(p);
156 * If we are the last non-leader member of the thread
157 * group, and the leader is zombie, then notify the
158 * group leader's parent process. (if it wants notification.)
160 zap_leader = 0;
161 leader = p->group_leader;
162 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
163 BUG_ON(leader->exit_signal == -1);
164 do_notify_parent(leader, leader->exit_signal);
166 * If we were the last child thread and the leader has
167 * exited already, and the leader's parent ignores SIGCHLD,
168 * then we are the one who should release the leader.
170 * do_notify_parent() will have marked it self-reaping in
171 * that case.
173 zap_leader = (leader->exit_signal == -1);
176 sched_exit(p);
177 write_unlock_irq(&tasklist_lock);
178 proc_flush_task(p);
179 release_thread(p);
180 call_rcu(&p->rcu, delayed_put_task_struct);
182 p = leader;
183 if (unlikely(zap_leader))
184 goto repeat;
188 * This checks not only the pgrp, but falls back on the pid if no
189 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
190 * without this...
192 * The caller must hold rcu lock or the tasklist lock.
194 struct pid *session_of_pgrp(struct pid *pgrp)
196 struct task_struct *p;
197 struct pid *sid = NULL;
199 p = pid_task(pgrp, PIDTYPE_PGID);
200 if (p == NULL)
201 p = pid_task(pgrp, PIDTYPE_PID);
202 if (p != NULL)
203 sid = task_session(p);
205 return sid;
209 * Determine if a process group is "orphaned", according to the POSIX
210 * definition in 2.2.2.52. Orphaned process groups are not to be affected
211 * by terminal-generated stop signals. Newly orphaned process groups are
212 * to receive a SIGHUP and a SIGCONT.
214 * "I ask you, have you ever known what it is to be an orphan?"
216 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
218 struct task_struct *p;
219 int ret = 1;
221 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
222 if (p == ignored_task
223 || p->exit_state
224 || is_init(p->real_parent))
225 continue;
226 if (task_pgrp(p->real_parent) != pgrp &&
227 task_session(p->real_parent) == task_session(p)) {
228 ret = 0;
229 break;
231 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
232 return ret; /* (sighing) "Often!" */
235 int is_current_pgrp_orphaned(void)
237 int retval;
239 read_lock(&tasklist_lock);
240 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
241 read_unlock(&tasklist_lock);
243 return retval;
246 static int has_stopped_jobs(struct pid *pgrp)
248 int retval = 0;
249 struct task_struct *p;
251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 if (p->state != TASK_STOPPED)
253 continue;
254 retval = 1;
255 break;
256 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
257 return retval;
261 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
263 * If a kernel thread is launched as a result of a system call, or if
264 * it ever exits, it should generally reparent itself to kthreadd so it
265 * isn't in the way of other processes and is correctly cleaned up on exit.
267 * The various task state such as scheduling policy and priority may have
268 * been inherited from a user process, so we reset them to sane values here.
270 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
272 static void reparent_to_kthreadd(void)
274 write_lock_irq(&tasklist_lock);
276 ptrace_unlink(current);
277 /* Reparent to init */
278 remove_parent(current);
279 current->real_parent = current->parent = kthreadd_task;
280 add_parent(current);
282 /* Set the exit signal to SIGCHLD so we signal init on exit */
283 current->exit_signal = SIGCHLD;
285 if (!has_rt_policy(current) && (task_nice(current) < 0))
286 set_user_nice(current, 0);
287 /* cpus_allowed? */
288 /* rt_priority? */
289 /* signals? */
290 security_task_reparent_to_init(current);
291 memcpy(current->signal->rlim, init_task.signal->rlim,
292 sizeof(current->signal->rlim));
293 atomic_inc(&(INIT_USER->__count));
294 write_unlock_irq(&tasklist_lock);
295 switch_uid(INIT_USER);
298 void __set_special_pids(pid_t session, pid_t pgrp)
300 struct task_struct *curr = current->group_leader;
302 if (process_session(curr) != session) {
303 detach_pid(curr, PIDTYPE_SID);
304 set_signal_session(curr->signal, session);
305 attach_pid(curr, PIDTYPE_SID, find_pid(session));
307 if (process_group(curr) != pgrp) {
308 detach_pid(curr, PIDTYPE_PGID);
309 curr->signal->pgrp = pgrp;
310 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
314 static void set_special_pids(pid_t session, pid_t pgrp)
316 write_lock_irq(&tasklist_lock);
317 __set_special_pids(session, pgrp);
318 write_unlock_irq(&tasklist_lock);
322 * Let kernel threads use this to say that they
323 * allow a certain signal (since daemonize() will
324 * have disabled all of them by default).
326 int allow_signal(int sig)
328 if (!valid_signal(sig) || sig < 1)
329 return -EINVAL;
331 spin_lock_irq(&current->sighand->siglock);
332 sigdelset(&current->blocked, sig);
333 if (!current->mm) {
334 /* Kernel threads handle their own signals.
335 Let the signal code know it'll be handled, so
336 that they don't get converted to SIGKILL or
337 just silently dropped */
338 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
340 recalc_sigpending();
341 spin_unlock_irq(&current->sighand->siglock);
342 return 0;
345 EXPORT_SYMBOL(allow_signal);
347 int disallow_signal(int sig)
349 if (!valid_signal(sig) || sig < 1)
350 return -EINVAL;
352 spin_lock_irq(&current->sighand->siglock);
353 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
354 recalc_sigpending();
355 spin_unlock_irq(&current->sighand->siglock);
356 return 0;
359 EXPORT_SYMBOL(disallow_signal);
362 * Put all the gunge required to become a kernel thread without
363 * attached user resources in one place where it belongs.
366 void daemonize(const char *name, ...)
368 va_list args;
369 struct fs_struct *fs;
370 sigset_t blocked;
372 va_start(args, name);
373 vsnprintf(current->comm, sizeof(current->comm), name, args);
374 va_end(args);
377 * If we were started as result of loading a module, close all of the
378 * user space pages. We don't need them, and if we didn't close them
379 * they would be locked into memory.
381 exit_mm(current);
383 set_special_pids(1, 1);
384 proc_clear_tty(current);
386 /* Block and flush all signals */
387 sigfillset(&blocked);
388 sigprocmask(SIG_BLOCK, &blocked, NULL);
389 flush_signals(current);
391 /* Become as one with the init task */
393 exit_fs(current); /* current->fs->count--; */
394 fs = init_task.fs;
395 current->fs = fs;
396 atomic_inc(&fs->count);
398 exit_task_namespaces(current);
399 current->nsproxy = init_task.nsproxy;
400 get_task_namespaces(current);
402 exit_files(current);
403 current->files = init_task.files;
404 atomic_inc(&current->files->count);
406 reparent_to_kthreadd();
409 EXPORT_SYMBOL(daemonize);
411 static void close_files(struct files_struct * files)
413 int i, j;
414 struct fdtable *fdt;
416 j = 0;
419 * It is safe to dereference the fd table without RCU or
420 * ->file_lock because this is the last reference to the
421 * files structure.
423 fdt = files_fdtable(files);
424 for (;;) {
425 unsigned long set;
426 i = j * __NFDBITS;
427 if (i >= fdt->max_fds)
428 break;
429 set = fdt->open_fds->fds_bits[j++];
430 while (set) {
431 if (set & 1) {
432 struct file * file = xchg(&fdt->fd[i], NULL);
433 if (file) {
434 filp_close(file, files);
435 cond_resched();
438 i++;
439 set >>= 1;
444 struct files_struct *get_files_struct(struct task_struct *task)
446 struct files_struct *files;
448 task_lock(task);
449 files = task->files;
450 if (files)
451 atomic_inc(&files->count);
452 task_unlock(task);
454 return files;
457 void fastcall put_files_struct(struct files_struct *files)
459 struct fdtable *fdt;
461 if (atomic_dec_and_test(&files->count)) {
462 close_files(files);
464 * Free the fd and fdset arrays if we expanded them.
465 * If the fdtable was embedded, pass files for freeing
466 * at the end of the RCU grace period. Otherwise,
467 * you can free files immediately.
469 fdt = files_fdtable(files);
470 if (fdt != &files->fdtab)
471 kmem_cache_free(files_cachep, files);
472 free_fdtable(fdt);
476 EXPORT_SYMBOL(put_files_struct);
478 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
480 struct files_struct *old;
482 old = tsk->files;
483 task_lock(tsk);
484 tsk->files = files;
485 task_unlock(tsk);
486 put_files_struct(old);
488 EXPORT_SYMBOL(reset_files_struct);
490 static inline void __exit_files(struct task_struct *tsk)
492 struct files_struct * files = tsk->files;
494 if (files) {
495 task_lock(tsk);
496 tsk->files = NULL;
497 task_unlock(tsk);
498 put_files_struct(files);
502 void exit_files(struct task_struct *tsk)
504 __exit_files(tsk);
507 static inline void __put_fs_struct(struct fs_struct *fs)
509 /* No need to hold fs->lock if we are killing it */
510 if (atomic_dec_and_test(&fs->count)) {
511 dput(fs->root);
512 mntput(fs->rootmnt);
513 dput(fs->pwd);
514 mntput(fs->pwdmnt);
515 if (fs->altroot) {
516 dput(fs->altroot);
517 mntput(fs->altrootmnt);
519 kmem_cache_free(fs_cachep, fs);
523 void put_fs_struct(struct fs_struct *fs)
525 __put_fs_struct(fs);
528 static inline void __exit_fs(struct task_struct *tsk)
530 struct fs_struct * fs = tsk->fs;
532 if (fs) {
533 task_lock(tsk);
534 tsk->fs = NULL;
535 task_unlock(tsk);
536 __put_fs_struct(fs);
540 void exit_fs(struct task_struct *tsk)
542 __exit_fs(tsk);
545 EXPORT_SYMBOL_GPL(exit_fs);
548 * Turn us into a lazy TLB process if we
549 * aren't already..
551 static void exit_mm(struct task_struct * tsk)
553 struct mm_struct *mm = tsk->mm;
555 mm_release(tsk, mm);
556 if (!mm)
557 return;
559 * Serialize with any possible pending coredump.
560 * We must hold mmap_sem around checking core_waiters
561 * and clearing tsk->mm. The core-inducing thread
562 * will increment core_waiters for each thread in the
563 * group with ->mm != NULL.
565 down_read(&mm->mmap_sem);
566 if (mm->core_waiters) {
567 up_read(&mm->mmap_sem);
568 down_write(&mm->mmap_sem);
569 if (!--mm->core_waiters)
570 complete(mm->core_startup_done);
571 up_write(&mm->mmap_sem);
573 wait_for_completion(&mm->core_done);
574 down_read(&mm->mmap_sem);
576 atomic_inc(&mm->mm_count);
577 BUG_ON(mm != tsk->active_mm);
578 /* more a memory barrier than a real lock */
579 task_lock(tsk);
580 tsk->mm = NULL;
581 up_read(&mm->mmap_sem);
582 enter_lazy_tlb(mm, current);
583 task_unlock(tsk);
584 mmput(mm);
587 static inline void
588 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
591 * Make sure we're not reparenting to ourselves and that
592 * the parent is not a zombie.
594 BUG_ON(p == reaper || reaper->exit_state);
595 p->real_parent = reaper;
598 static void
599 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
601 if (p->pdeath_signal)
602 /* We already hold the tasklist_lock here. */
603 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
605 /* Move the child from its dying parent to the new one. */
606 if (unlikely(traced)) {
607 /* Preserve ptrace links if someone else is tracing this child. */
608 list_del_init(&p->ptrace_list);
609 if (p->parent != p->real_parent)
610 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
611 } else {
612 /* If this child is being traced, then we're the one tracing it
613 * anyway, so let go of it.
615 p->ptrace = 0;
616 remove_parent(p);
617 p->parent = p->real_parent;
618 add_parent(p);
620 if (p->state == TASK_TRACED) {
622 * If it was at a trace stop, turn it into
623 * a normal stop since it's no longer being
624 * traced.
626 ptrace_untrace(p);
630 /* If this is a threaded reparent there is no need to
631 * notify anyone anything has happened.
633 if (p->real_parent->group_leader == father->group_leader)
634 return;
636 /* We don't want people slaying init. */
637 if (p->exit_signal != -1)
638 p->exit_signal = SIGCHLD;
640 /* If we'd notified the old parent about this child's death,
641 * also notify the new parent.
643 if (!traced && p->exit_state == EXIT_ZOMBIE &&
644 p->exit_signal != -1 && thread_group_empty(p))
645 do_notify_parent(p, p->exit_signal);
648 * process group orphan check
649 * Case ii: Our child is in a different pgrp
650 * than we are, and it was the only connection
651 * outside, so the child pgrp is now orphaned.
653 if ((task_pgrp(p) != task_pgrp(father)) &&
654 (task_session(p) == task_session(father))) {
655 struct pid *pgrp = task_pgrp(p);
657 if (will_become_orphaned_pgrp(pgrp, NULL) &&
658 has_stopped_jobs(pgrp)) {
659 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
660 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
666 * When we die, we re-parent all our children.
667 * Try to give them to another thread in our thread
668 * group, and if no such member exists, give it to
669 * the child reaper process (ie "init") in our pid
670 * space.
672 static void
673 forget_original_parent(struct task_struct *father, struct list_head *to_release)
675 struct task_struct *p, *reaper = father;
676 struct list_head *_p, *_n;
678 do {
679 reaper = next_thread(reaper);
680 if (reaper == father) {
681 reaper = child_reaper(father);
682 break;
684 } while (reaper->exit_state);
687 * There are only two places where our children can be:
689 * - in our child list
690 * - in our ptraced child list
692 * Search them and reparent children.
694 list_for_each_safe(_p, _n, &father->children) {
695 int ptrace;
696 p = list_entry(_p, struct task_struct, sibling);
698 ptrace = p->ptrace;
700 /* if father isn't the real parent, then ptrace must be enabled */
701 BUG_ON(father != p->real_parent && !ptrace);
703 if (father == p->real_parent) {
704 /* reparent with a reaper, real father it's us */
705 choose_new_parent(p, reaper);
706 reparent_thread(p, father, 0);
707 } else {
708 /* reparent ptraced task to its real parent */
709 __ptrace_unlink (p);
710 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
711 thread_group_empty(p))
712 do_notify_parent(p, p->exit_signal);
716 * if the ptraced child is a zombie with exit_signal == -1
717 * we must collect it before we exit, or it will remain
718 * zombie forever since we prevented it from self-reap itself
719 * while it was being traced by us, to be able to see it in wait4.
721 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
722 list_add(&p->ptrace_list, to_release);
724 list_for_each_safe(_p, _n, &father->ptrace_children) {
725 p = list_entry(_p, struct task_struct, ptrace_list);
726 choose_new_parent(p, reaper);
727 reparent_thread(p, father, 1);
732 * Send signals to all our closest relatives so that they know
733 * to properly mourn us..
735 static void exit_notify(struct task_struct *tsk)
737 int state;
738 struct task_struct *t;
739 struct list_head ptrace_dead, *_p, *_n;
740 struct pid *pgrp;
742 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
743 && !thread_group_empty(tsk)) {
745 * This occurs when there was a race between our exit
746 * syscall and a group signal choosing us as the one to
747 * wake up. It could be that we are the only thread
748 * alerted to check for pending signals, but another thread
749 * should be woken now to take the signal since we will not.
750 * Now we'll wake all the threads in the group just to make
751 * sure someone gets all the pending signals.
753 read_lock(&tasklist_lock);
754 spin_lock_irq(&tsk->sighand->siglock);
755 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
756 if (!signal_pending(t) && !(t->flags & PF_EXITING))
757 recalc_sigpending_and_wake(t);
758 spin_unlock_irq(&tsk->sighand->siglock);
759 read_unlock(&tasklist_lock);
762 write_lock_irq(&tasklist_lock);
765 * This does two things:
767 * A. Make init inherit all the child processes
768 * B. Check to see if any process groups have become orphaned
769 * as a result of our exiting, and if they have any stopped
770 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
773 INIT_LIST_HEAD(&ptrace_dead);
774 forget_original_parent(tsk, &ptrace_dead);
775 BUG_ON(!list_empty(&tsk->children));
776 BUG_ON(!list_empty(&tsk->ptrace_children));
779 * Check to see if any process groups have become orphaned
780 * as a result of our exiting, and if they have any stopped
781 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
783 * Case i: Our father is in a different pgrp than we are
784 * and we were the only connection outside, so our pgrp
785 * is about to become orphaned.
788 t = tsk->real_parent;
790 pgrp = task_pgrp(tsk);
791 if ((task_pgrp(t) != pgrp) &&
792 (task_session(t) == task_session(tsk)) &&
793 will_become_orphaned_pgrp(pgrp, tsk) &&
794 has_stopped_jobs(pgrp)) {
795 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
796 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
799 /* Let father know we died
801 * Thread signals are configurable, but you aren't going to use
802 * that to send signals to arbitary processes.
803 * That stops right now.
805 * If the parent exec id doesn't match the exec id we saved
806 * when we started then we know the parent has changed security
807 * domain.
809 * If our self_exec id doesn't match our parent_exec_id then
810 * we have changed execution domain as these two values started
811 * the same after a fork.
815 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
816 ( tsk->parent_exec_id != t->self_exec_id ||
817 tsk->self_exec_id != tsk->parent_exec_id)
818 && !capable(CAP_KILL))
819 tsk->exit_signal = SIGCHLD;
822 /* If something other than our normal parent is ptracing us, then
823 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
824 * only has special meaning to our real parent.
826 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
827 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
828 do_notify_parent(tsk, signal);
829 } else if (tsk->ptrace) {
830 do_notify_parent(tsk, SIGCHLD);
833 state = EXIT_ZOMBIE;
834 if (tsk->exit_signal == -1 &&
835 (likely(tsk->ptrace == 0) ||
836 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
837 state = EXIT_DEAD;
838 tsk->exit_state = state;
840 write_unlock_irq(&tasklist_lock);
842 list_for_each_safe(_p, _n, &ptrace_dead) {
843 list_del_init(_p);
844 t = list_entry(_p, struct task_struct, ptrace_list);
845 release_task(t);
848 /* If the process is dead, release it - nobody will wait for it */
849 if (state == EXIT_DEAD)
850 release_task(tsk);
853 fastcall NORET_TYPE void do_exit(long code)
855 struct task_struct *tsk = current;
856 int group_dead;
858 profile_task_exit(tsk);
860 WARN_ON(atomic_read(&tsk->fs_excl));
862 if (unlikely(in_interrupt()))
863 panic("Aiee, killing interrupt handler!");
864 if (unlikely(!tsk->pid))
865 panic("Attempted to kill the idle task!");
866 if (unlikely(tsk == child_reaper(tsk))) {
867 if (tsk->nsproxy->pid_ns != &init_pid_ns)
868 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
869 else
870 panic("Attempted to kill init!");
874 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
875 current->ptrace_message = code;
876 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
880 * We're taking recursive faults here in do_exit. Safest is to just
881 * leave this task alone and wait for reboot.
883 if (unlikely(tsk->flags & PF_EXITING)) {
884 printk(KERN_ALERT
885 "Fixing recursive fault but reboot is needed!\n");
887 * We can do this unlocked here. The futex code uses
888 * this flag just to verify whether the pi state
889 * cleanup has been done or not. In the worst case it
890 * loops once more. We pretend that the cleanup was
891 * done as there is no way to return. Either the
892 * OWNER_DIED bit is set by now or we push the blocked
893 * task into the wait for ever nirwana as well.
895 tsk->flags |= PF_EXITPIDONE;
896 if (tsk->io_context)
897 exit_io_context();
898 set_current_state(TASK_UNINTERRUPTIBLE);
899 schedule();
903 * tsk->flags are checked in the futex code to protect against
904 * an exiting task cleaning up the robust pi futexes.
906 spin_lock_irq(&tsk->pi_lock);
907 tsk->flags |= PF_EXITING;
908 spin_unlock_irq(&tsk->pi_lock);
910 if (unlikely(in_atomic()))
911 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
912 current->comm, current->pid,
913 preempt_count());
915 acct_update_integrals(tsk);
916 if (tsk->mm) {
917 update_hiwater_rss(tsk->mm);
918 update_hiwater_vm(tsk->mm);
920 group_dead = atomic_dec_and_test(&tsk->signal->live);
921 if (group_dead) {
922 hrtimer_cancel(&tsk->signal->real_timer);
923 exit_itimers(tsk->signal);
925 acct_collect(code, group_dead);
926 if (unlikely(tsk->robust_list))
927 exit_robust_list(tsk);
928 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
929 if (unlikely(tsk->compat_robust_list))
930 compat_exit_robust_list(tsk);
931 #endif
932 if (unlikely(tsk->audit_context))
933 audit_free(tsk);
935 taskstats_exit(tsk, group_dead);
937 exit_mm(tsk);
939 if (group_dead)
940 acct_process();
941 exit_sem(tsk);
942 __exit_files(tsk);
943 __exit_fs(tsk);
944 exit_thread();
945 cpuset_exit(tsk);
946 exit_keys(tsk);
948 if (group_dead && tsk->signal->leader)
949 disassociate_ctty(1);
951 module_put(task_thread_info(tsk)->exec_domain->module);
952 if (tsk->binfmt)
953 module_put(tsk->binfmt->module);
955 tsk->exit_code = code;
956 proc_exit_connector(tsk);
957 exit_task_namespaces(tsk);
958 exit_notify(tsk);
959 #ifdef CONFIG_NUMA
960 mpol_free(tsk->mempolicy);
961 tsk->mempolicy = NULL;
962 #endif
964 * This must happen late, after the PID is not
965 * hashed anymore:
967 if (unlikely(!list_empty(&tsk->pi_state_list)))
968 exit_pi_state_list(tsk);
969 if (unlikely(current->pi_state_cache))
970 kfree(current->pi_state_cache);
972 * Make sure we are holding no locks:
974 debug_check_no_locks_held(tsk);
976 * We can do this unlocked here. The futex code uses this flag
977 * just to verify whether the pi state cleanup has been done
978 * or not. In the worst case it loops once more.
980 tsk->flags |= PF_EXITPIDONE;
982 if (tsk->io_context)
983 exit_io_context();
985 if (tsk->splice_pipe)
986 __free_pipe_info(tsk->splice_pipe);
988 preempt_disable();
989 /* causes final put_task_struct in finish_task_switch(). */
990 tsk->state = TASK_DEAD;
992 schedule();
993 BUG();
994 /* Avoid "noreturn function does return". */
995 for (;;)
996 cpu_relax(); /* For when BUG is null */
999 EXPORT_SYMBOL_GPL(do_exit);
1001 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1003 if (comp)
1004 complete(comp);
1006 do_exit(code);
1009 EXPORT_SYMBOL(complete_and_exit);
1011 asmlinkage long sys_exit(int error_code)
1013 do_exit((error_code&0xff)<<8);
1017 * Take down every thread in the group. This is called by fatal signals
1018 * as well as by sys_exit_group (below).
1020 NORET_TYPE void
1021 do_group_exit(int exit_code)
1023 struct signal_struct *sig = current->signal;
1025 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1027 if (signal_group_exit(sig))
1028 exit_code = sig->group_exit_code;
1029 else if (!thread_group_empty(current)) {
1030 struct sighand_struct *const sighand = current->sighand;
1031 spin_lock_irq(&sighand->siglock);
1032 if (signal_group_exit(sig))
1033 /* Another thread got here before we took the lock. */
1034 exit_code = sig->group_exit_code;
1035 else {
1036 sig->group_exit_code = exit_code;
1037 sig->flags = SIGNAL_GROUP_EXIT;
1038 zap_other_threads(current);
1040 spin_unlock_irq(&sighand->siglock);
1043 do_exit(exit_code);
1044 /* NOTREACHED */
1048 * this kills every thread in the thread group. Note that any externally
1049 * wait4()-ing process will get the correct exit code - even if this
1050 * thread is not the thread group leader.
1052 asmlinkage void sys_exit_group(int error_code)
1054 do_group_exit((error_code & 0xff) << 8);
1057 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1059 int err;
1061 if (pid > 0) {
1062 if (p->pid != pid)
1063 return 0;
1064 } else if (!pid) {
1065 if (process_group(p) != process_group(current))
1066 return 0;
1067 } else if (pid != -1) {
1068 if (process_group(p) != -pid)
1069 return 0;
1073 * Do not consider detached threads that are
1074 * not ptraced:
1076 if (p->exit_signal == -1 && !p->ptrace)
1077 return 0;
1079 /* Wait for all children (clone and not) if __WALL is set;
1080 * otherwise, wait for clone children *only* if __WCLONE is
1081 * set; otherwise, wait for non-clone children *only*. (Note:
1082 * A "clone" child here is one that reports to its parent
1083 * using a signal other than SIGCHLD.) */
1084 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1085 && !(options & __WALL))
1086 return 0;
1088 * Do not consider thread group leaders that are
1089 * in a non-empty thread group:
1091 if (delay_group_leader(p))
1092 return 2;
1094 err = security_task_wait(p);
1095 if (err)
1096 return err;
1098 return 1;
1101 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1102 int why, int status,
1103 struct siginfo __user *infop,
1104 struct rusage __user *rusagep)
1106 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1108 put_task_struct(p);
1109 if (!retval)
1110 retval = put_user(SIGCHLD, &infop->si_signo);
1111 if (!retval)
1112 retval = put_user(0, &infop->si_errno);
1113 if (!retval)
1114 retval = put_user((short)why, &infop->si_code);
1115 if (!retval)
1116 retval = put_user(pid, &infop->si_pid);
1117 if (!retval)
1118 retval = put_user(uid, &infop->si_uid);
1119 if (!retval)
1120 retval = put_user(status, &infop->si_status);
1121 if (!retval)
1122 retval = pid;
1123 return retval;
1127 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1128 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1129 * the lock and this task is uninteresting. If we return nonzero, we have
1130 * released the lock and the system call should return.
1132 static int wait_task_zombie(struct task_struct *p, int noreap,
1133 struct siginfo __user *infop,
1134 int __user *stat_addr, struct rusage __user *ru)
1136 unsigned long state;
1137 int retval;
1138 int status;
1140 if (unlikely(noreap)) {
1141 pid_t pid = p->pid;
1142 uid_t uid = p->uid;
1143 int exit_code = p->exit_code;
1144 int why, status;
1146 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1147 return 0;
1148 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1149 return 0;
1150 get_task_struct(p);
1151 read_unlock(&tasklist_lock);
1152 if ((exit_code & 0x7f) == 0) {
1153 why = CLD_EXITED;
1154 status = exit_code >> 8;
1155 } else {
1156 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1157 status = exit_code & 0x7f;
1159 return wait_noreap_copyout(p, pid, uid, why,
1160 status, infop, ru);
1164 * Try to move the task's state to DEAD
1165 * only one thread is allowed to do this:
1167 state = xchg(&p->exit_state, EXIT_DEAD);
1168 if (state != EXIT_ZOMBIE) {
1169 BUG_ON(state != EXIT_DEAD);
1170 return 0;
1172 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1174 * This can only happen in a race with a ptraced thread
1175 * dying on another processor.
1177 return 0;
1180 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1181 struct signal_struct *psig;
1182 struct signal_struct *sig;
1185 * The resource counters for the group leader are in its
1186 * own task_struct. Those for dead threads in the group
1187 * are in its signal_struct, as are those for the child
1188 * processes it has previously reaped. All these
1189 * accumulate in the parent's signal_struct c* fields.
1191 * We don't bother to take a lock here to protect these
1192 * p->signal fields, because they are only touched by
1193 * __exit_signal, which runs with tasklist_lock
1194 * write-locked anyway, and so is excluded here. We do
1195 * need to protect the access to p->parent->signal fields,
1196 * as other threads in the parent group can be right
1197 * here reaping other children at the same time.
1199 spin_lock_irq(&p->parent->sighand->siglock);
1200 psig = p->parent->signal;
1201 sig = p->signal;
1202 psig->cutime =
1203 cputime_add(psig->cutime,
1204 cputime_add(p->utime,
1205 cputime_add(sig->utime,
1206 sig->cutime)));
1207 psig->cstime =
1208 cputime_add(psig->cstime,
1209 cputime_add(p->stime,
1210 cputime_add(sig->stime,
1211 sig->cstime)));
1212 psig->cmin_flt +=
1213 p->min_flt + sig->min_flt + sig->cmin_flt;
1214 psig->cmaj_flt +=
1215 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1216 psig->cnvcsw +=
1217 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1218 psig->cnivcsw +=
1219 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1220 psig->cinblock +=
1221 task_io_get_inblock(p) +
1222 sig->inblock + sig->cinblock;
1223 psig->coublock +=
1224 task_io_get_oublock(p) +
1225 sig->oublock + sig->coublock;
1226 spin_unlock_irq(&p->parent->sighand->siglock);
1230 * Now we are sure this task is interesting, and no other
1231 * thread can reap it because we set its state to EXIT_DEAD.
1233 read_unlock(&tasklist_lock);
1235 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1236 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1237 ? p->signal->group_exit_code : p->exit_code;
1238 if (!retval && stat_addr)
1239 retval = put_user(status, stat_addr);
1240 if (!retval && infop)
1241 retval = put_user(SIGCHLD, &infop->si_signo);
1242 if (!retval && infop)
1243 retval = put_user(0, &infop->si_errno);
1244 if (!retval && infop) {
1245 int why;
1247 if ((status & 0x7f) == 0) {
1248 why = CLD_EXITED;
1249 status >>= 8;
1250 } else {
1251 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1252 status &= 0x7f;
1254 retval = put_user((short)why, &infop->si_code);
1255 if (!retval)
1256 retval = put_user(status, &infop->si_status);
1258 if (!retval && infop)
1259 retval = put_user(p->pid, &infop->si_pid);
1260 if (!retval && infop)
1261 retval = put_user(p->uid, &infop->si_uid);
1262 if (retval) {
1263 // TODO: is this safe?
1264 p->exit_state = EXIT_ZOMBIE;
1265 return retval;
1267 retval = p->pid;
1268 if (p->real_parent != p->parent) {
1269 write_lock_irq(&tasklist_lock);
1270 /* Double-check with lock held. */
1271 if (p->real_parent != p->parent) {
1272 __ptrace_unlink(p);
1273 // TODO: is this safe?
1274 p->exit_state = EXIT_ZOMBIE;
1276 * If this is not a detached task, notify the parent.
1277 * If it's still not detached after that, don't release
1278 * it now.
1280 if (p->exit_signal != -1) {
1281 do_notify_parent(p, p->exit_signal);
1282 if (p->exit_signal != -1)
1283 p = NULL;
1286 write_unlock_irq(&tasklist_lock);
1288 if (p != NULL)
1289 release_task(p);
1290 BUG_ON(!retval);
1291 return retval;
1295 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1296 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1297 * the lock and this task is uninteresting. If we return nonzero, we have
1298 * released the lock and the system call should return.
1300 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1301 int noreap, struct siginfo __user *infop,
1302 int __user *stat_addr, struct rusage __user *ru)
1304 int retval, exit_code;
1306 if (!p->exit_code)
1307 return 0;
1308 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1309 p->signal && p->signal->group_stop_count > 0)
1311 * A group stop is in progress and this is the group leader.
1312 * We won't report until all threads have stopped.
1314 return 0;
1317 * Now we are pretty sure this task is interesting.
1318 * Make sure it doesn't get reaped out from under us while we
1319 * give up the lock and then examine it below. We don't want to
1320 * keep holding onto the tasklist_lock while we call getrusage and
1321 * possibly take page faults for user memory.
1323 get_task_struct(p);
1324 read_unlock(&tasklist_lock);
1326 if (unlikely(noreap)) {
1327 pid_t pid = p->pid;
1328 uid_t uid = p->uid;
1329 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1331 exit_code = p->exit_code;
1332 if (unlikely(!exit_code) || unlikely(p->exit_state))
1333 goto bail_ref;
1334 return wait_noreap_copyout(p, pid, uid,
1335 why, exit_code,
1336 infop, ru);
1339 write_lock_irq(&tasklist_lock);
1342 * This uses xchg to be atomic with the thread resuming and setting
1343 * it. It must also be done with the write lock held to prevent a
1344 * race with the EXIT_ZOMBIE case.
1346 exit_code = xchg(&p->exit_code, 0);
1347 if (unlikely(p->exit_state)) {
1349 * The task resumed and then died. Let the next iteration
1350 * catch it in EXIT_ZOMBIE. Note that exit_code might
1351 * already be zero here if it resumed and did _exit(0).
1352 * The task itself is dead and won't touch exit_code again;
1353 * other processors in this function are locked out.
1355 p->exit_code = exit_code;
1356 exit_code = 0;
1358 if (unlikely(exit_code == 0)) {
1360 * Another thread in this function got to it first, or it
1361 * resumed, or it resumed and then died.
1363 write_unlock_irq(&tasklist_lock);
1364 bail_ref:
1365 put_task_struct(p);
1367 * We are returning to the wait loop without having successfully
1368 * removed the process and having released the lock. We cannot
1369 * continue, since the "p" task pointer is potentially stale.
1371 * Return -EAGAIN, and do_wait() will restart the loop from the
1372 * beginning. Do _not_ re-acquire the lock.
1374 return -EAGAIN;
1377 /* move to end of parent's list to avoid starvation */
1378 remove_parent(p);
1379 add_parent(p);
1381 write_unlock_irq(&tasklist_lock);
1383 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1384 if (!retval && stat_addr)
1385 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1386 if (!retval && infop)
1387 retval = put_user(SIGCHLD, &infop->si_signo);
1388 if (!retval && infop)
1389 retval = put_user(0, &infop->si_errno);
1390 if (!retval && infop)
1391 retval = put_user((short)((p->ptrace & PT_PTRACED)
1392 ? CLD_TRAPPED : CLD_STOPPED),
1393 &infop->si_code);
1394 if (!retval && infop)
1395 retval = put_user(exit_code, &infop->si_status);
1396 if (!retval && infop)
1397 retval = put_user(p->pid, &infop->si_pid);
1398 if (!retval && infop)
1399 retval = put_user(p->uid, &infop->si_uid);
1400 if (!retval)
1401 retval = p->pid;
1402 put_task_struct(p);
1404 BUG_ON(!retval);
1405 return retval;
1409 * Handle do_wait work for one task in a live, non-stopped state.
1410 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1411 * the lock and this task is uninteresting. If we return nonzero, we have
1412 * released the lock and the system call should return.
1414 static int wait_task_continued(struct task_struct *p, int noreap,
1415 struct siginfo __user *infop,
1416 int __user *stat_addr, struct rusage __user *ru)
1418 int retval;
1419 pid_t pid;
1420 uid_t uid;
1422 if (unlikely(!p->signal))
1423 return 0;
1425 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1426 return 0;
1428 spin_lock_irq(&p->sighand->siglock);
1429 /* Re-check with the lock held. */
1430 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1431 spin_unlock_irq(&p->sighand->siglock);
1432 return 0;
1434 if (!noreap)
1435 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1436 spin_unlock_irq(&p->sighand->siglock);
1438 pid = p->pid;
1439 uid = p->uid;
1440 get_task_struct(p);
1441 read_unlock(&tasklist_lock);
1443 if (!infop) {
1444 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1445 put_task_struct(p);
1446 if (!retval && stat_addr)
1447 retval = put_user(0xffff, stat_addr);
1448 if (!retval)
1449 retval = p->pid;
1450 } else {
1451 retval = wait_noreap_copyout(p, pid, uid,
1452 CLD_CONTINUED, SIGCONT,
1453 infop, ru);
1454 BUG_ON(retval == 0);
1457 return retval;
1461 static inline int my_ptrace_child(struct task_struct *p)
1463 if (!(p->ptrace & PT_PTRACED))
1464 return 0;
1465 if (!(p->ptrace & PT_ATTACHED))
1466 return 1;
1468 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1469 * we are the attacher. If we are the real parent, this is a race
1470 * inside ptrace_attach. It is waiting for the tasklist_lock,
1471 * which we have to switch the parent links, but has already set
1472 * the flags in p->ptrace.
1474 return (p->parent != p->real_parent);
1477 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1478 int __user *stat_addr, struct rusage __user *ru)
1480 DECLARE_WAITQUEUE(wait, current);
1481 struct task_struct *tsk;
1482 int flag, retval;
1483 int allowed, denied;
1485 add_wait_queue(&current->signal->wait_chldexit,&wait);
1486 repeat:
1488 * We will set this flag if we see any child that might later
1489 * match our criteria, even if we are not able to reap it yet.
1491 flag = 0;
1492 allowed = denied = 0;
1493 current->state = TASK_INTERRUPTIBLE;
1494 read_lock(&tasklist_lock);
1495 tsk = current;
1496 do {
1497 struct task_struct *p;
1498 struct list_head *_p;
1499 int ret;
1501 list_for_each(_p,&tsk->children) {
1502 p = list_entry(_p, struct task_struct, sibling);
1504 ret = eligible_child(pid, options, p);
1505 if (!ret)
1506 continue;
1508 if (unlikely(ret < 0)) {
1509 denied = ret;
1510 continue;
1512 allowed = 1;
1514 switch (p->state) {
1515 case TASK_TRACED:
1517 * When we hit the race with PTRACE_ATTACH,
1518 * we will not report this child. But the
1519 * race means it has not yet been moved to
1520 * our ptrace_children list, so we need to
1521 * set the flag here to avoid a spurious ECHILD
1522 * when the race happens with the only child.
1524 flag = 1;
1525 if (!my_ptrace_child(p))
1526 continue;
1527 /*FALLTHROUGH*/
1528 case TASK_STOPPED:
1530 * It's stopped now, so it might later
1531 * continue, exit, or stop again.
1533 flag = 1;
1534 if (!(options & WUNTRACED) &&
1535 !my_ptrace_child(p))
1536 continue;
1537 retval = wait_task_stopped(p, ret == 2,
1538 (options & WNOWAIT),
1539 infop,
1540 stat_addr, ru);
1541 if (retval == -EAGAIN)
1542 goto repeat;
1543 if (retval != 0) /* He released the lock. */
1544 goto end;
1545 break;
1546 default:
1547 // case EXIT_DEAD:
1548 if (p->exit_state == EXIT_DEAD)
1549 continue;
1550 // case EXIT_ZOMBIE:
1551 if (p->exit_state == EXIT_ZOMBIE) {
1553 * Eligible but we cannot release
1554 * it yet:
1556 if (ret == 2)
1557 goto check_continued;
1558 if (!likely(options & WEXITED))
1559 continue;
1560 retval = wait_task_zombie(
1561 p, (options & WNOWAIT),
1562 infop, stat_addr, ru);
1563 /* He released the lock. */
1564 if (retval != 0)
1565 goto end;
1566 break;
1568 check_continued:
1570 * It's running now, so it might later
1571 * exit, stop, or stop and then continue.
1573 flag = 1;
1574 if (!unlikely(options & WCONTINUED))
1575 continue;
1576 retval = wait_task_continued(
1577 p, (options & WNOWAIT),
1578 infop, stat_addr, ru);
1579 if (retval != 0) /* He released the lock. */
1580 goto end;
1581 break;
1584 if (!flag) {
1585 list_for_each(_p, &tsk->ptrace_children) {
1586 p = list_entry(_p, struct task_struct,
1587 ptrace_list);
1588 if (!eligible_child(pid, options, p))
1589 continue;
1590 flag = 1;
1591 break;
1594 if (options & __WNOTHREAD)
1595 break;
1596 tsk = next_thread(tsk);
1597 BUG_ON(tsk->signal != current->signal);
1598 } while (tsk != current);
1600 read_unlock(&tasklist_lock);
1601 if (flag) {
1602 retval = 0;
1603 if (options & WNOHANG)
1604 goto end;
1605 retval = -ERESTARTSYS;
1606 if (signal_pending(current))
1607 goto end;
1608 schedule();
1609 goto repeat;
1611 retval = -ECHILD;
1612 if (unlikely(denied) && !allowed)
1613 retval = denied;
1614 end:
1615 current->state = TASK_RUNNING;
1616 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1617 if (infop) {
1618 if (retval > 0)
1619 retval = 0;
1620 else {
1622 * For a WNOHANG return, clear out all the fields
1623 * we would set so the user can easily tell the
1624 * difference.
1626 if (!retval)
1627 retval = put_user(0, &infop->si_signo);
1628 if (!retval)
1629 retval = put_user(0, &infop->si_errno);
1630 if (!retval)
1631 retval = put_user(0, &infop->si_code);
1632 if (!retval)
1633 retval = put_user(0, &infop->si_pid);
1634 if (!retval)
1635 retval = put_user(0, &infop->si_uid);
1636 if (!retval)
1637 retval = put_user(0, &infop->si_status);
1640 return retval;
1643 asmlinkage long sys_waitid(int which, pid_t pid,
1644 struct siginfo __user *infop, int options,
1645 struct rusage __user *ru)
1647 long ret;
1649 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1650 return -EINVAL;
1651 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1652 return -EINVAL;
1654 switch (which) {
1655 case P_ALL:
1656 pid = -1;
1657 break;
1658 case P_PID:
1659 if (pid <= 0)
1660 return -EINVAL;
1661 break;
1662 case P_PGID:
1663 if (pid <= 0)
1664 return -EINVAL;
1665 pid = -pid;
1666 break;
1667 default:
1668 return -EINVAL;
1671 ret = do_wait(pid, options, infop, NULL, ru);
1673 /* avoid REGPARM breakage on x86: */
1674 prevent_tail_call(ret);
1675 return ret;
1678 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1679 int options, struct rusage __user *ru)
1681 long ret;
1683 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1684 __WNOTHREAD|__WCLONE|__WALL))
1685 return -EINVAL;
1686 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1688 /* avoid REGPARM breakage on x86: */
1689 prevent_tail_call(ret);
1690 return ret;
1693 #ifdef __ARCH_WANT_SYS_WAITPID
1696 * sys_waitpid() remains for compatibility. waitpid() should be
1697 * implemented by calling sys_wait4() from libc.a.
1699 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1701 return sys_wait4(pid, stat_addr, options, NULL);
1704 #endif