RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / include / linux / mtd / cfi.h
blob123948b1454787401b63aefebb2dec1278f99a3f
2 /* Common Flash Interface structures
3 * See http://support.intel.com/design/flash/technote/index.htm
4 * $Id: cfi.h,v 1.57 2005/11/15 23:28:17 tpoynor Exp $
5 */
7 #ifndef __MTD_CFI_H__
8 #define __MTD_CFI_H__
10 #include <linux/delay.h>
11 #include <linux/types.h>
12 #include <linux/interrupt.h>
13 #include <linux/mtd/flashchip.h>
14 #include <linux/mtd/map.h>
15 #include <linux/mtd/cfi_endian.h>
17 #ifdef CONFIG_MTD_CFI_I1
18 #define cfi_interleave(cfi) 1
19 #define cfi_interleave_is_1(cfi) (cfi_interleave(cfi) == 1)
20 #else
21 #define cfi_interleave_is_1(cfi) (0)
22 #endif
24 #ifdef CONFIG_MTD_CFI_I2
25 # ifdef cfi_interleave
26 # undef cfi_interleave
27 # define cfi_interleave(cfi) ((cfi)->interleave)
28 # else
29 # define cfi_interleave(cfi) 2
30 # endif
31 #define cfi_interleave_is_2(cfi) (cfi_interleave(cfi) == 2)
32 #else
33 #define cfi_interleave_is_2(cfi) (0)
34 #endif
36 #ifdef CONFIG_MTD_CFI_I4
37 # ifdef cfi_interleave
38 # undef cfi_interleave
39 # define cfi_interleave(cfi) ((cfi)->interleave)
40 # else
41 # define cfi_interleave(cfi) 4
42 # endif
43 #define cfi_interleave_is_4(cfi) (cfi_interleave(cfi) == 4)
44 #else
45 #define cfi_interleave_is_4(cfi) (0)
46 #endif
48 #ifdef CONFIG_MTD_CFI_I8
49 # ifdef cfi_interleave
50 # undef cfi_interleave
51 # define cfi_interleave(cfi) ((cfi)->interleave)
52 # else
53 # define cfi_interleave(cfi) 8
54 # endif
55 #define cfi_interleave_is_8(cfi) (cfi_interleave(cfi) == 8)
56 #else
57 #define cfi_interleave_is_8(cfi) (0)
58 #endif
60 static inline int cfi_interleave_supported(int i)
62 switch (i) {
63 #ifdef CONFIG_MTD_CFI_I1
64 case 1:
65 #endif
66 #ifdef CONFIG_MTD_CFI_I2
67 case 2:
68 #endif
69 #ifdef CONFIG_MTD_CFI_I4
70 case 4:
71 #endif
72 #ifdef CONFIG_MTD_CFI_I8
73 case 8:
74 #endif
75 return 1;
77 default:
78 return 0;
83 /* NB: these values must represents the number of bytes needed to meet the
84 * device type (x8, x16, x32). Eg. a 32 bit device is 4 x 8 bytes.
85 * These numbers are used in calculations.
87 #define CFI_DEVICETYPE_X8 (8 / 8)
88 #define CFI_DEVICETYPE_X16 (16 / 8)
89 #define CFI_DEVICETYPE_X32 (32 / 8)
90 #define CFI_DEVICETYPE_X64 (64 / 8)
92 /* NB: We keep these structures in memory in HOST byteorder, except
93 * where individually noted.
96 /* Basic Query Structure */
97 struct cfi_ident {
98 uint8_t qry[3];
99 uint16_t P_ID;
100 uint16_t P_ADR;
101 uint16_t A_ID;
102 uint16_t A_ADR;
103 uint8_t VccMin;
104 uint8_t VccMax;
105 uint8_t VppMin;
106 uint8_t VppMax;
107 uint8_t WordWriteTimeoutTyp;
108 uint8_t BufWriteTimeoutTyp;
109 uint8_t BlockEraseTimeoutTyp;
110 uint8_t ChipEraseTimeoutTyp;
111 uint8_t WordWriteTimeoutMax;
112 uint8_t BufWriteTimeoutMax;
113 uint8_t BlockEraseTimeoutMax;
114 uint8_t ChipEraseTimeoutMax;
115 uint8_t DevSize;
116 uint16_t InterfaceDesc;
117 uint16_t MaxBufWriteSize;
118 uint8_t NumEraseRegions;
119 uint32_t EraseRegionInfo[0]; /* Not host ordered */
120 } __attribute__((packed));
122 /* Extended Query Structure for both PRI and ALT */
124 struct cfi_extquery {
125 uint8_t pri[3];
126 uint8_t MajorVersion;
127 uint8_t MinorVersion;
128 } __attribute__((packed));
130 /* Vendor-Specific PRI for Intel/Sharp Extended Command Set (0x0001) */
132 struct cfi_pri_intelext {
133 uint8_t pri[3];
134 uint8_t MajorVersion;
135 uint8_t MinorVersion;
136 uint32_t FeatureSupport; /* if bit 31 is set then an additional uint32_t feature
137 block follows - FIXME - not currently supported */
138 uint8_t SuspendCmdSupport;
139 uint16_t BlkStatusRegMask;
140 uint8_t VccOptimal;
141 uint8_t VppOptimal;
142 uint8_t NumProtectionFields;
143 uint16_t ProtRegAddr;
144 uint8_t FactProtRegSize;
145 uint8_t UserProtRegSize;
146 uint8_t extra[0];
147 } __attribute__((packed));
149 struct cfi_intelext_otpinfo {
150 uint32_t ProtRegAddr;
151 uint16_t FactGroups;
152 uint8_t FactProtRegSize;
153 uint16_t UserGroups;
154 uint8_t UserProtRegSize;
155 } __attribute__((packed));
157 struct cfi_intelext_blockinfo {
158 uint16_t NumIdentBlocks;
159 uint16_t BlockSize;
160 uint16_t MinBlockEraseCycles;
161 uint8_t BitsPerCell;
162 uint8_t BlockCap;
163 } __attribute__((packed));
165 struct cfi_intelext_regioninfo {
166 uint16_t NumIdentPartitions;
167 uint8_t NumOpAllowed;
168 uint8_t NumOpAllowedSimProgMode;
169 uint8_t NumOpAllowedSimEraMode;
170 uint8_t NumBlockTypes;
171 struct cfi_intelext_blockinfo BlockTypes[1];
172 } __attribute__((packed));
174 struct cfi_intelext_programming_regioninfo {
175 uint8_t ProgRegShift;
176 uint8_t Reserved1;
177 uint8_t ControlValid;
178 uint8_t Reserved2;
179 uint8_t ControlInvalid;
180 uint8_t Reserved3;
181 } __attribute__((packed));
183 /* Vendor-Specific PRI for AMD/Fujitsu Extended Command Set (0x0002) */
185 struct cfi_pri_amdstd {
186 uint8_t pri[3];
187 uint8_t MajorVersion;
188 uint8_t MinorVersion;
189 uint8_t SiliconRevision; /* bits 1-0: Address Sensitive Unlock */
190 uint8_t EraseSuspend;
191 uint8_t BlkProt;
192 uint8_t TmpBlkUnprotect;
193 uint8_t BlkProtUnprot;
194 uint8_t SimultaneousOps;
195 uint8_t BurstMode;
196 uint8_t PageMode;
197 uint8_t VppMin;
198 uint8_t VppMax;
199 uint8_t TopBottom;
200 } __attribute__((packed));
202 /* Vendor-Specific PRI for Atmel chips (command set 0x0002) */
204 struct cfi_pri_atmel {
205 uint8_t pri[3];
206 uint8_t MajorVersion;
207 uint8_t MinorVersion;
208 uint8_t Features;
209 uint8_t BottomBoot;
210 uint8_t BurstMode;
211 uint8_t PageMode;
212 } __attribute__((packed));
214 struct cfi_pri_query {
215 uint8_t NumFields;
216 uint32_t ProtField[1]; /* Not host ordered */
217 } __attribute__((packed));
219 struct cfi_bri_query {
220 uint8_t PageModeReadCap;
221 uint8_t NumFields;
222 uint32_t ConfField[1]; /* Not host ordered */
223 } __attribute__((packed));
225 #define P_ID_NONE 0x0000
226 #define P_ID_INTEL_EXT 0x0001
227 #define P_ID_AMD_STD 0x0002
228 #define P_ID_INTEL_STD 0x0003
229 #define P_ID_AMD_EXT 0x0004
230 #define P_ID_WINBOND 0x0006
231 #define P_ID_ST_ADV 0x0020
232 #define P_ID_MITSUBISHI_STD 0x0100
233 #define P_ID_MITSUBISHI_EXT 0x0101
234 #define P_ID_SST_PAGE 0x0102
235 #define P_ID_INTEL_PERFORMANCE 0x0200
236 #define P_ID_INTEL_DATA 0x0210
237 #define P_ID_RESERVED 0xffff
240 #define CFI_MODE_CFI 1
241 #define CFI_MODE_JEDEC 0
243 struct cfi_private {
244 uint16_t cmdset;
245 void *cmdset_priv;
246 int interleave;
247 int device_type;
248 int cfi_mode; /* Are we a JEDEC device pretending to be CFI? */
249 int addr_unlock1;
250 int addr_unlock2;
251 struct mtd_info *(*cmdset_setup)(struct map_info *);
252 struct cfi_ident *cfiq; /* For now only one. We insist that all devs
253 must be of the same type. */
254 int mfr, id;
255 int numchips;
256 unsigned long chipshift; /* Because they're of the same type */
257 const char *im_name; /* inter_module name for cmdset_setup */
258 struct flchip chips[0]; /* per-chip data structure for each chip */
262 * Returns the command address according to the given geometry.
264 static inline uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs, int interleave, int type)
266 return (cmd_ofs * type) * interleave;
270 * Transforms the CFI command for the given geometry (bus width & interleave).
271 * It looks too long to be inline, but in the common case it should almost all
272 * get optimised away.
274 static inline map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi)
276 map_word val = { {0} };
277 int wordwidth, words_per_bus, chip_mode, chips_per_word;
278 unsigned long onecmd;
279 int i;
281 /* We do it this way to give the compiler a fighting chance
282 of optimising away all the crap for 'bankwidth' larger than
283 an unsigned long, in the common case where that support is
284 disabled */
285 if (map_bankwidth_is_large(map)) {
286 wordwidth = sizeof(unsigned long);
287 words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
288 } else {
289 wordwidth = map_bankwidth(map);
290 words_per_bus = 1;
293 chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
294 chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
296 /* First, determine what the bit-pattern should be for a single
297 device, according to chip mode and endianness... */
298 switch (chip_mode) {
299 default: BUG();
300 case 1:
301 onecmd = cmd;
302 break;
303 case 2:
304 onecmd = cpu_to_cfi16(cmd);
305 break;
306 case 4:
307 onecmd = cpu_to_cfi32(cmd);
308 break;
311 /* Now replicate it across the size of an unsigned long, or
312 just to the bus width as appropriate */
313 switch (chips_per_word) {
314 default: BUG();
315 #if BITS_PER_LONG >= 64
316 case 8:
317 onecmd |= (onecmd << (chip_mode * 32));
318 #endif
319 case 4:
320 onecmd |= (onecmd << (chip_mode * 16));
321 case 2:
322 onecmd |= (onecmd << (chip_mode * 8));
323 case 1:
327 /* And finally, for the multi-word case, replicate it
328 in all words in the structure */
329 for (i=0; i < words_per_bus; i++) {
330 val.x[i] = onecmd;
333 return val;
335 #define CMD(x) cfi_build_cmd((x), map, cfi)
338 static inline unsigned long cfi_merge_status(map_word val, struct map_info *map,
339 struct cfi_private *cfi)
341 int wordwidth, words_per_bus, chip_mode, chips_per_word;
342 unsigned long onestat, res = 0;
343 int i;
345 /* We do it this way to give the compiler a fighting chance
346 of optimising away all the crap for 'bankwidth' larger than
347 an unsigned long, in the common case where that support is
348 disabled */
349 if (map_bankwidth_is_large(map)) {
350 wordwidth = sizeof(unsigned long);
351 words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
352 } else {
353 wordwidth = map_bankwidth(map);
354 words_per_bus = 1;
357 chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
358 chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
360 onestat = val.x[0];
361 /* Or all status words together */
362 for (i=1; i < words_per_bus; i++) {
363 onestat |= val.x[i];
366 res = onestat;
367 switch(chips_per_word) {
368 default: BUG();
369 #if BITS_PER_LONG >= 64
370 case 8:
371 res |= (onestat >> (chip_mode * 32));
372 #endif
373 case 4:
374 res |= (onestat >> (chip_mode * 16));
375 case 2:
376 res |= (onestat >> (chip_mode * 8));
377 case 1:
381 /* Last, determine what the bit-pattern should be for a single
382 device, according to chip mode and endianness... */
383 switch (chip_mode) {
384 case 1:
385 break;
386 case 2:
387 res = cfi16_to_cpu(res);
388 break;
389 case 4:
390 res = cfi32_to_cpu(res);
391 break;
392 default: BUG();
394 return res;
397 #define MERGESTATUS(x) cfi_merge_status((x), map, cfi)
401 * Sends a CFI command to a bank of flash for the given geometry.
403 * Returns the offset in flash where the command was written.
404 * If prev_val is non-null, it will be set to the value at the command address,
405 * before the command was written.
407 static inline uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base,
408 struct map_info *map, struct cfi_private *cfi,
409 int type, map_word *prev_val)
411 map_word val;
412 uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, cfi_interleave(cfi), type);
414 val = cfi_build_cmd(cmd, map, cfi);
416 if (prev_val)
417 *prev_val = map_read(map, addr);
419 map_write(map, val, addr);
421 return addr - base;
424 static inline uint8_t cfi_read_query(struct map_info *map, uint32_t addr)
426 map_word val = map_read(map, addr);
428 if (map_bankwidth_is_1(map)) {
429 return val.x[0];
430 } else if (map_bankwidth_is_2(map)) {
431 return cfi16_to_cpu(val.x[0]);
432 } else {
433 /* No point in a 64-bit byteswap since that would just be
434 swapping the responses from different chips, and we are
435 only interested in one chip (a representative sample) */
436 return cfi32_to_cpu(val.x[0]);
440 static inline uint16_t cfi_read_query16(struct map_info *map, uint32_t addr)
442 map_word val = map_read(map, addr);
444 if (map_bankwidth_is_1(map)) {
445 return val.x[0] & 0xff;
446 } else if (map_bankwidth_is_2(map)) {
447 return cfi16_to_cpu(val.x[0]);
448 } else {
449 /* No point in a 64-bit byteswap since that would just be
450 swapping the responses from different chips, and we are
451 only interested in one chip (a representative sample) */
452 return cfi32_to_cpu(val.x[0]);
456 static inline void cfi_udelay(int us)
458 if (us >= 1000) {
459 msleep((us+999)/1000);
460 } else {
461 udelay(us);
462 cond_resched();
466 struct cfi_extquery *cfi_read_pri(struct map_info *map, uint16_t adr, uint16_t size,
467 const char* name);
468 struct cfi_fixup {
469 uint16_t mfr;
470 uint16_t id;
471 void (*fixup)(struct mtd_info *mtd, void* param);
472 void* param;
475 #define CFI_MFR_ANY 0xffff
476 #define CFI_ID_ANY 0xffff
478 #define CFI_MFR_AMD 0x0001
479 #define CFI_MFR_ATMEL 0x001F
480 #define CFI_MFR_ST 0x0020 /* STMicroelectronics */
482 void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup* fixups);
484 typedef int (*varsize_frob_t)(struct map_info *map, struct flchip *chip,
485 unsigned long adr, int len, void *thunk);
487 int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
488 loff_t ofs, size_t len, void *thunk);
491 #endif /* __MTD_CFI_H__ */