RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / fs / ocfs2 / cluster / heartbeat.c
blob979113479c664a2a8ea01bab4fa20ff3e8e0dadb
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2004, 2005 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
37 #include "heartbeat.h"
38 #include "tcp.h"
39 #include "nodemanager.h"
40 #include "quorum.h"
42 #include "masklog.h"
46 * The first heartbeat pass had one global thread that would serialize all hb
47 * callback calls. This global serializing sem should only be removed once
48 * we've made sure that all callees can deal with being called concurrently
49 * from multiple hb region threads.
51 static DECLARE_RWSEM(o2hb_callback_sem);
54 * multiple hb threads are watching multiple regions. A node is live
55 * whenever any of the threads sees activity from the node in its region.
57 static DEFINE_SPINLOCK(o2hb_live_lock);
58 static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
59 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
60 static LIST_HEAD(o2hb_node_events);
61 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
63 static LIST_HEAD(o2hb_all_regions);
65 static struct o2hb_callback {
66 struct list_head list;
67 } o2hb_callbacks[O2HB_NUM_CB];
69 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
71 #define O2HB_DEFAULT_BLOCK_BITS 9
73 unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
75 /* Only sets a new threshold if there are no active regions.
77 * No locking or otherwise interesting code is required for reading
78 * o2hb_dead_threshold as it can't change once regions are active and
79 * it's not interesting to anyone until then anyway. */
80 static void o2hb_dead_threshold_set(unsigned int threshold)
82 if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
83 spin_lock(&o2hb_live_lock);
84 if (list_empty(&o2hb_all_regions))
85 o2hb_dead_threshold = threshold;
86 spin_unlock(&o2hb_live_lock);
90 struct o2hb_node_event {
91 struct list_head hn_item;
92 enum o2hb_callback_type hn_event_type;
93 struct o2nm_node *hn_node;
94 int hn_node_num;
97 struct o2hb_disk_slot {
98 struct o2hb_disk_heartbeat_block *ds_raw_block;
99 u8 ds_node_num;
100 u64 ds_last_time;
101 u64 ds_last_generation;
102 u16 ds_equal_samples;
103 u16 ds_changed_samples;
104 struct list_head ds_live_item;
107 /* each thread owns a region.. when we're asked to tear down the region
108 * we ask the thread to stop, who cleans up the region */
109 struct o2hb_region {
110 struct config_item hr_item;
112 struct list_head hr_all_item;
113 unsigned hr_unclean_stop:1;
115 /* protected by the hr_callback_sem */
116 struct task_struct *hr_task;
118 unsigned int hr_blocks;
119 unsigned long long hr_start_block;
121 unsigned int hr_block_bits;
122 unsigned int hr_block_bytes;
124 unsigned int hr_slots_per_page;
125 unsigned int hr_num_pages;
127 struct page **hr_slot_data;
128 struct block_device *hr_bdev;
129 struct o2hb_disk_slot *hr_slots;
131 /* let the person setting up hb wait for it to return until it
132 * has reached a 'steady' state. This will be fixed when we have
133 * a more complete api that doesn't lead to this sort of fragility. */
134 atomic_t hr_steady_iterations;
136 char hr_dev_name[BDEVNAME_SIZE];
138 unsigned int hr_timeout_ms;
140 /* randomized as the region goes up and down so that a node
141 * recognizes a node going up and down in one iteration */
142 u64 hr_generation;
144 struct delayed_work hr_write_timeout_work;
145 unsigned long hr_last_timeout_start;
147 /* Used during o2hb_check_slot to hold a copy of the block
148 * being checked because we temporarily have to zero out the
149 * crc field. */
150 struct o2hb_disk_heartbeat_block *hr_tmp_block;
153 struct o2hb_bio_wait_ctxt {
154 atomic_t wc_num_reqs;
155 struct completion wc_io_complete;
156 int wc_error;
159 static void o2hb_write_timeout(struct work_struct *work)
161 struct o2hb_region *reg =
162 container_of(work, struct o2hb_region,
163 hr_write_timeout_work.work);
165 mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
166 "milliseconds\n", reg->hr_dev_name,
167 jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
168 o2quo_disk_timeout();
171 static void o2hb_arm_write_timeout(struct o2hb_region *reg)
173 mlog(0, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS);
175 cancel_delayed_work(&reg->hr_write_timeout_work);
176 reg->hr_last_timeout_start = jiffies;
177 schedule_delayed_work(&reg->hr_write_timeout_work,
178 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
181 static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
183 cancel_delayed_work(&reg->hr_write_timeout_work);
184 flush_scheduled_work();
187 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc)
189 atomic_set(&wc->wc_num_reqs, 1);
190 init_completion(&wc->wc_io_complete);
191 wc->wc_error = 0;
194 /* Used in error paths too */
195 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
196 unsigned int num)
198 /* sadly atomic_sub_and_test() isn't available on all platforms. The
199 * good news is that the fast path only completes one at a time */
200 while(num--) {
201 if (atomic_dec_and_test(&wc->wc_num_reqs)) {
202 BUG_ON(num > 0);
203 complete(&wc->wc_io_complete);
208 static void o2hb_wait_on_io(struct o2hb_region *reg,
209 struct o2hb_bio_wait_ctxt *wc)
211 struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping;
213 blk_run_address_space(mapping);
214 o2hb_bio_wait_dec(wc, 1);
216 wait_for_completion(&wc->wc_io_complete);
219 static int o2hb_bio_end_io(struct bio *bio,
220 unsigned int bytes_done,
221 int error)
223 struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
225 if (error) {
226 mlog(ML_ERROR, "IO Error %d\n", error);
227 wc->wc_error = error;
230 if (bio->bi_size)
231 return 1;
233 o2hb_bio_wait_dec(wc, 1);
234 bio_put(bio);
235 return 0;
238 /* Setup a Bio to cover I/O against num_slots slots starting at
239 * start_slot. */
240 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
241 struct o2hb_bio_wait_ctxt *wc,
242 unsigned int *current_slot,
243 unsigned int max_slots)
245 int len, current_page;
246 unsigned int vec_len, vec_start;
247 unsigned int bits = reg->hr_block_bits;
248 unsigned int spp = reg->hr_slots_per_page;
249 unsigned int cs = *current_slot;
250 struct bio *bio;
251 struct page *page;
253 /* Testing has shown this allocation to take long enough under
254 * GFP_KERNEL that the local node can get fenced. It would be
255 * nicest if we could pre-allocate these bios and avoid this
256 * all together. */
257 bio = bio_alloc(GFP_ATOMIC, 16);
258 if (!bio) {
259 mlog(ML_ERROR, "Could not alloc slots BIO!\n");
260 bio = ERR_PTR(-ENOMEM);
261 goto bail;
264 /* Must put everything in 512 byte sectors for the bio... */
265 bio->bi_sector = (reg->hr_start_block + cs) << (bits - 9);
266 bio->bi_bdev = reg->hr_bdev;
267 bio->bi_private = wc;
268 bio->bi_end_io = o2hb_bio_end_io;
270 vec_start = (cs << bits) % PAGE_CACHE_SIZE;
271 while(cs < max_slots) {
272 current_page = cs / spp;
273 page = reg->hr_slot_data[current_page];
275 vec_len = min(PAGE_CACHE_SIZE,
276 (max_slots-cs) * (PAGE_CACHE_SIZE/spp) );
278 mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
279 current_page, vec_len, vec_start);
281 len = bio_add_page(bio, page, vec_len, vec_start);
282 if (len != vec_len) break;
284 cs += vec_len / (PAGE_CACHE_SIZE/spp);
285 vec_start = 0;
288 bail:
289 *current_slot = cs;
290 return bio;
293 static int o2hb_read_slots(struct o2hb_region *reg,
294 unsigned int max_slots)
296 unsigned int current_slot=0;
297 int status;
298 struct o2hb_bio_wait_ctxt wc;
299 struct bio *bio;
301 o2hb_bio_wait_init(&wc);
303 while(current_slot < max_slots) {
304 bio = o2hb_setup_one_bio(reg, &wc, &current_slot, max_slots);
305 if (IS_ERR(bio)) {
306 status = PTR_ERR(bio);
307 mlog_errno(status);
308 goto bail_and_wait;
311 atomic_inc(&wc.wc_num_reqs);
312 submit_bio(READ, bio);
315 status = 0;
317 bail_and_wait:
318 o2hb_wait_on_io(reg, &wc);
319 if (wc.wc_error && !status)
320 status = wc.wc_error;
322 return status;
325 static int o2hb_issue_node_write(struct o2hb_region *reg,
326 struct o2hb_bio_wait_ctxt *write_wc)
328 int status;
329 unsigned int slot;
330 struct bio *bio;
332 o2hb_bio_wait_init(write_wc);
334 slot = o2nm_this_node();
336 bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1);
337 if (IS_ERR(bio)) {
338 status = PTR_ERR(bio);
339 mlog_errno(status);
340 goto bail;
343 atomic_inc(&write_wc->wc_num_reqs);
344 submit_bio(WRITE, bio);
346 status = 0;
347 bail:
348 return status;
351 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
352 struct o2hb_disk_heartbeat_block *hb_block)
354 __le32 old_cksum;
355 u32 ret;
357 /* We want to compute the block crc with a 0 value in the
358 * hb_cksum field. Save it off here and replace after the
359 * crc. */
360 old_cksum = hb_block->hb_cksum;
361 hb_block->hb_cksum = 0;
363 ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
365 hb_block->hb_cksum = old_cksum;
367 return ret;
370 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
372 mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
373 "cksum = 0x%x, generation 0x%llx\n",
374 (long long)le64_to_cpu(hb_block->hb_seq),
375 hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
376 (long long)le64_to_cpu(hb_block->hb_generation));
379 static int o2hb_verify_crc(struct o2hb_region *reg,
380 struct o2hb_disk_heartbeat_block *hb_block)
382 u32 read, computed;
384 read = le32_to_cpu(hb_block->hb_cksum);
385 computed = o2hb_compute_block_crc_le(reg, hb_block);
387 return read == computed;
390 /* We want to make sure that nobody is heartbeating on top of us --
391 * this will help detect an invalid configuration. */
392 static int o2hb_check_last_timestamp(struct o2hb_region *reg)
394 int node_num, ret;
395 struct o2hb_disk_slot *slot;
396 struct o2hb_disk_heartbeat_block *hb_block;
398 node_num = o2nm_this_node();
400 ret = 1;
401 slot = &reg->hr_slots[node_num];
402 /* Don't check on our 1st timestamp */
403 if (slot->ds_last_time) {
404 hb_block = slot->ds_raw_block;
406 if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time)
407 ret = 0;
410 return ret;
413 static inline void o2hb_prepare_block(struct o2hb_region *reg,
414 u64 generation)
416 int node_num;
417 u64 cputime;
418 struct o2hb_disk_slot *slot;
419 struct o2hb_disk_heartbeat_block *hb_block;
421 node_num = o2nm_this_node();
422 slot = &reg->hr_slots[node_num];
424 hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
425 memset(hb_block, 0, reg->hr_block_bytes);
426 /* TODO: time stuff */
427 cputime = CURRENT_TIME.tv_sec;
428 if (!cputime)
429 cputime = 1;
431 hb_block->hb_seq = cpu_to_le64(cputime);
432 hb_block->hb_node = node_num;
433 hb_block->hb_generation = cpu_to_le64(generation);
434 hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS);
436 /* This step must always happen last! */
437 hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
438 hb_block));
440 mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
441 (long long)generation,
442 le32_to_cpu(hb_block->hb_cksum));
445 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
446 struct o2nm_node *node,
447 int idx)
449 struct list_head *iter;
450 struct o2hb_callback_func *f;
452 list_for_each(iter, &hbcall->list) {
453 f = list_entry(iter, struct o2hb_callback_func, hc_item);
454 mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
455 (f->hc_func)(node, idx, f->hc_data);
459 /* Will run the list in order until we process the passed event */
460 static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
462 int empty;
463 struct o2hb_callback *hbcall;
464 struct o2hb_node_event *event;
466 spin_lock(&o2hb_live_lock);
467 empty = list_empty(&queued_event->hn_item);
468 spin_unlock(&o2hb_live_lock);
469 if (empty)
470 return;
472 /* Holding callback sem assures we don't alter the callback
473 * lists when doing this, and serializes ourselves with other
474 * processes wanting callbacks. */
475 down_write(&o2hb_callback_sem);
477 spin_lock(&o2hb_live_lock);
478 while (!list_empty(&o2hb_node_events)
479 && !list_empty(&queued_event->hn_item)) {
480 event = list_entry(o2hb_node_events.next,
481 struct o2hb_node_event,
482 hn_item);
483 list_del_init(&event->hn_item);
484 spin_unlock(&o2hb_live_lock);
486 mlog(ML_HEARTBEAT, "Node %s event for %d\n",
487 event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
488 event->hn_node_num);
490 hbcall = hbcall_from_type(event->hn_event_type);
492 /* We should *never* have gotten on to the list with a
493 * bad type... This isn't something that we should try
494 * to recover from. */
495 BUG_ON(IS_ERR(hbcall));
497 o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
499 spin_lock(&o2hb_live_lock);
501 spin_unlock(&o2hb_live_lock);
503 up_write(&o2hb_callback_sem);
506 static void o2hb_queue_node_event(struct o2hb_node_event *event,
507 enum o2hb_callback_type type,
508 struct o2nm_node *node,
509 int node_num)
511 assert_spin_locked(&o2hb_live_lock);
513 event->hn_event_type = type;
514 event->hn_node = node;
515 event->hn_node_num = node_num;
517 mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
518 type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
520 list_add_tail(&event->hn_item, &o2hb_node_events);
523 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
525 struct o2hb_node_event event =
526 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
527 struct o2nm_node *node;
529 node = o2nm_get_node_by_num(slot->ds_node_num);
530 if (!node)
531 return;
533 spin_lock(&o2hb_live_lock);
534 if (!list_empty(&slot->ds_live_item)) {
535 mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
536 slot->ds_node_num);
538 list_del_init(&slot->ds_live_item);
540 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
541 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
543 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
544 slot->ds_node_num);
547 spin_unlock(&o2hb_live_lock);
549 o2hb_run_event_list(&event);
551 o2nm_node_put(node);
554 static int o2hb_check_slot(struct o2hb_region *reg,
555 struct o2hb_disk_slot *slot)
557 int changed = 0, gen_changed = 0;
558 struct o2hb_node_event event =
559 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
560 struct o2nm_node *node;
561 struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
562 u64 cputime;
563 unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
564 unsigned int slot_dead_ms;
566 memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
568 /* Is this correct? Do we assume that the node doesn't exist
569 * if we're not configured for him? */
570 node = o2nm_get_node_by_num(slot->ds_node_num);
571 if (!node)
572 return 0;
574 if (!o2hb_verify_crc(reg, hb_block)) {
575 /* all paths from here will drop o2hb_live_lock for
576 * us. */
577 spin_lock(&o2hb_live_lock);
579 /* Don't print an error on the console in this case -
580 * a freshly formatted heartbeat area will not have a
581 * crc set on it. */
582 if (list_empty(&slot->ds_live_item))
583 goto out;
585 /* The node is live but pushed out a bad crc. We
586 * consider it a transient miss but don't populate any
587 * other values as they may be junk. */
588 mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
589 slot->ds_node_num, reg->hr_dev_name);
590 o2hb_dump_slot(hb_block);
592 slot->ds_equal_samples++;
593 goto fire_callbacks;
596 /* we don't care if these wrap.. the state transitions below
597 * clear at the right places */
598 cputime = le64_to_cpu(hb_block->hb_seq);
599 if (slot->ds_last_time != cputime)
600 slot->ds_changed_samples++;
601 else
602 slot->ds_equal_samples++;
603 slot->ds_last_time = cputime;
605 /* The node changed heartbeat generations. We assume this to
606 * mean it dropped off but came back before we timed out. We
607 * want to consider it down for the time being but don't want
608 * to lose any changed_samples state we might build up to
609 * considering it live again. */
610 if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
611 gen_changed = 1;
612 slot->ds_equal_samples = 0;
613 mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
614 "to 0x%llx)\n", slot->ds_node_num,
615 (long long)slot->ds_last_generation,
616 (long long)le64_to_cpu(hb_block->hb_generation));
619 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
621 mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
622 "seq %llu last %llu changed %u equal %u\n",
623 slot->ds_node_num, (long long)slot->ds_last_generation,
624 le32_to_cpu(hb_block->hb_cksum),
625 (unsigned long long)le64_to_cpu(hb_block->hb_seq),
626 (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
627 slot->ds_equal_samples);
629 spin_lock(&o2hb_live_lock);
631 fire_callbacks:
632 /* dead nodes only come to life after some number of
633 * changes at any time during their dead time */
634 if (list_empty(&slot->ds_live_item) &&
635 slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
636 mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
637 slot->ds_node_num, (long long)slot->ds_last_generation);
639 /* first on the list generates a callback */
640 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
641 set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
643 o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
644 slot->ds_node_num);
646 changed = 1;
649 list_add_tail(&slot->ds_live_item,
650 &o2hb_live_slots[slot->ds_node_num]);
652 slot->ds_equal_samples = 0;
654 /* We want to be sure that all nodes agree on the
655 * number of milliseconds before a node will be
656 * considered dead. The self-fencing timeout is
657 * computed from this value, and a discrepancy might
658 * result in heartbeat calling a node dead when it
659 * hasn't self-fenced yet. */
660 slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
661 if (slot_dead_ms && slot_dead_ms != dead_ms) {
662 /* TODO: Perhaps we can fail the region here. */
663 mlog(ML_ERROR, "Node %d on device %s has a dead count "
664 "of %u ms, but our count is %u ms.\n"
665 "Please double check your configuration values "
666 "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
667 slot->ds_node_num, reg->hr_dev_name, slot_dead_ms,
668 dead_ms);
670 goto out;
673 /* if the list is dead, we're done.. */
674 if (list_empty(&slot->ds_live_item))
675 goto out;
677 /* live nodes only go dead after enough consequtive missed
678 * samples.. reset the missed counter whenever we see
679 * activity */
680 if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
681 mlog(ML_HEARTBEAT, "Node %d left my region\n",
682 slot->ds_node_num);
684 /* last off the live_slot generates a callback */
685 list_del_init(&slot->ds_live_item);
686 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
687 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
689 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
690 slot->ds_node_num);
692 changed = 1;
695 /* We don't clear this because the node is still
696 * actually writing new blocks. */
697 if (!gen_changed)
698 slot->ds_changed_samples = 0;
699 goto out;
701 if (slot->ds_changed_samples) {
702 slot->ds_changed_samples = 0;
703 slot->ds_equal_samples = 0;
705 out:
706 spin_unlock(&o2hb_live_lock);
708 o2hb_run_event_list(&event);
710 o2nm_node_put(node);
711 return changed;
714 /* This could be faster if we just implmented a find_last_bit, but I
715 * don't think the circumstances warrant it. */
716 static int o2hb_highest_node(unsigned long *nodes,
717 int numbits)
719 int highest, node;
721 highest = numbits;
722 node = -1;
723 while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
724 if (node >= numbits)
725 break;
727 highest = node;
730 return highest;
733 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
735 int i, ret, highest_node, change = 0;
736 unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
737 struct o2hb_bio_wait_ctxt write_wc;
739 ret = o2nm_configured_node_map(configured_nodes,
740 sizeof(configured_nodes));
741 if (ret) {
742 mlog_errno(ret);
743 return ret;
746 highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
747 if (highest_node >= O2NM_MAX_NODES) {
748 mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n");
749 return -EINVAL;
752 /* No sense in reading the slots of nodes that don't exist
753 * yet. Of course, if the node definitions have holes in them
754 * then we're reading an empty slot anyway... Consider this
755 * best-effort. */
756 ret = o2hb_read_slots(reg, highest_node + 1);
757 if (ret < 0) {
758 mlog_errno(ret);
759 return ret;
762 /* With an up to date view of the slots, we can check that no
763 * other node has been improperly configured to heartbeat in
764 * our slot. */
765 if (!o2hb_check_last_timestamp(reg))
766 mlog(ML_ERROR, "Device \"%s\": another node is heartbeating "
767 "in our slot!\n", reg->hr_dev_name);
769 /* fill in the proper info for our next heartbeat */
770 o2hb_prepare_block(reg, reg->hr_generation);
772 /* And fire off the write. Note that we don't wait on this I/O
773 * until later. */
774 ret = o2hb_issue_node_write(reg, &write_wc);
775 if (ret < 0) {
776 mlog_errno(ret);
777 return ret;
780 i = -1;
781 while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
783 change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
787 * We have to be sure we've advertised ourselves on disk
788 * before we can go to steady state. This ensures that
789 * people we find in our steady state have seen us.
791 o2hb_wait_on_io(reg, &write_wc);
792 if (write_wc.wc_error) {
793 /* Do not re-arm the write timeout on I/O error - we
794 * can't be sure that the new block ever made it to
795 * disk */
796 mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
797 write_wc.wc_error, reg->hr_dev_name);
798 return write_wc.wc_error;
801 o2hb_arm_write_timeout(reg);
803 /* let the person who launched us know when things are steady */
804 if (!change && (atomic_read(&reg->hr_steady_iterations) != 0)) {
805 if (atomic_dec_and_test(&reg->hr_steady_iterations))
806 wake_up(&o2hb_steady_queue);
809 return 0;
812 /* Subtract b from a, storing the result in a. a *must* have a larger
813 * value than b. */
814 static void o2hb_tv_subtract(struct timeval *a,
815 struct timeval *b)
817 /* just return 0 when a is after b */
818 if (a->tv_sec < b->tv_sec ||
819 (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
820 a->tv_sec = 0;
821 a->tv_usec = 0;
822 return;
825 a->tv_sec -= b->tv_sec;
826 a->tv_usec -= b->tv_usec;
827 while ( a->tv_usec < 0 ) {
828 a->tv_sec--;
829 a->tv_usec += 1000000;
833 static unsigned int o2hb_elapsed_msecs(struct timeval *start,
834 struct timeval *end)
836 struct timeval res = *end;
838 o2hb_tv_subtract(&res, start);
840 return res.tv_sec * 1000 + res.tv_usec / 1000;
844 * we ride the region ref that the region dir holds. before the region
845 * dir is removed and drops it ref it will wait to tear down this
846 * thread.
848 static int o2hb_thread(void *data)
850 int i, ret;
851 struct o2hb_region *reg = data;
852 struct o2hb_bio_wait_ctxt write_wc;
853 struct timeval before_hb, after_hb;
854 unsigned int elapsed_msec;
856 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
858 set_user_nice(current, -20);
860 while (!kthread_should_stop() && !reg->hr_unclean_stop) {
861 /* We track the time spent inside
862 * o2hb_do_disk_heartbeat so that we avoid more then
863 * hr_timeout_ms between disk writes. On busy systems
864 * this should result in a heartbeat which is less
865 * likely to time itself out. */
866 do_gettimeofday(&before_hb);
868 i = 0;
869 do {
870 ret = o2hb_do_disk_heartbeat(reg);
871 } while (ret && ++i < 2);
873 do_gettimeofday(&after_hb);
874 elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
876 mlog(0, "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
877 before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
878 after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
879 elapsed_msec);
881 if (elapsed_msec < reg->hr_timeout_ms) {
882 /* the kthread api has blocked signals for us so no
883 * need to record the return value. */
884 msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
888 o2hb_disarm_write_timeout(reg);
890 /* unclean stop is only used in very bad situation */
891 for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
892 o2hb_shutdown_slot(&reg->hr_slots[i]);
894 /* Explicit down notification - avoid forcing the other nodes
895 * to timeout on this region when we could just as easily
896 * write a clear generation - thus indicating to them that
897 * this node has left this region.
899 * XXX: Should we skip this on unclean_stop? */
900 o2hb_prepare_block(reg, 0);
901 ret = o2hb_issue_node_write(reg, &write_wc);
902 if (ret == 0) {
903 o2hb_wait_on_io(reg, &write_wc);
904 } else {
905 mlog_errno(ret);
908 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n");
910 return 0;
913 void o2hb_init(void)
915 int i;
917 for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
918 INIT_LIST_HEAD(&o2hb_callbacks[i].list);
920 for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
921 INIT_LIST_HEAD(&o2hb_live_slots[i]);
923 INIT_LIST_HEAD(&o2hb_node_events);
925 memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
928 /* if we're already in a callback then we're already serialized by the sem */
929 static void o2hb_fill_node_map_from_callback(unsigned long *map,
930 unsigned bytes)
932 BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
934 memcpy(map, &o2hb_live_node_bitmap, bytes);
938 * get a map of all nodes that are heartbeating in any regions
940 void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
942 /* callers want to serialize this map and callbacks so that they
943 * can trust that they don't miss nodes coming to the party */
944 down_read(&o2hb_callback_sem);
945 spin_lock(&o2hb_live_lock);
946 o2hb_fill_node_map_from_callback(map, bytes);
947 spin_unlock(&o2hb_live_lock);
948 up_read(&o2hb_callback_sem);
950 EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
953 * heartbeat configfs bits. The heartbeat set is a default set under
954 * the cluster set in nodemanager.c.
957 static struct o2hb_region *to_o2hb_region(struct config_item *item)
959 return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
962 /* drop_item only drops its ref after killing the thread, nothing should
963 * be using the region anymore. this has to clean up any state that
964 * attributes might have built up. */
965 static void o2hb_region_release(struct config_item *item)
967 int i;
968 struct page *page;
969 struct o2hb_region *reg = to_o2hb_region(item);
971 if (reg->hr_tmp_block)
972 kfree(reg->hr_tmp_block);
974 if (reg->hr_slot_data) {
975 for (i = 0; i < reg->hr_num_pages; i++) {
976 page = reg->hr_slot_data[i];
977 if (page)
978 __free_page(page);
980 kfree(reg->hr_slot_data);
983 if (reg->hr_bdev)
984 blkdev_put(reg->hr_bdev);
986 if (reg->hr_slots)
987 kfree(reg->hr_slots);
989 spin_lock(&o2hb_live_lock);
990 list_del(&reg->hr_all_item);
991 spin_unlock(&o2hb_live_lock);
993 kfree(reg);
996 static int o2hb_read_block_input(struct o2hb_region *reg,
997 const char *page,
998 size_t count,
999 unsigned long *ret_bytes,
1000 unsigned int *ret_bits)
1002 unsigned long bytes;
1003 char *p = (char *)page;
1005 bytes = simple_strtoul(p, &p, 0);
1006 if (!p || (*p && (*p != '\n')))
1007 return -EINVAL;
1009 /* Heartbeat and fs min / max block sizes are the same. */
1010 if (bytes > 4096 || bytes < 512)
1011 return -ERANGE;
1012 if (hweight16(bytes) != 1)
1013 return -EINVAL;
1015 if (ret_bytes)
1016 *ret_bytes = bytes;
1017 if (ret_bits)
1018 *ret_bits = ffs(bytes) - 1;
1020 return 0;
1023 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1024 char *page)
1026 return sprintf(page, "%u\n", reg->hr_block_bytes);
1029 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1030 const char *page,
1031 size_t count)
1033 int status;
1034 unsigned long block_bytes;
1035 unsigned int block_bits;
1037 if (reg->hr_bdev)
1038 return -EINVAL;
1040 status = o2hb_read_block_input(reg, page, count,
1041 &block_bytes, &block_bits);
1042 if (status)
1043 return status;
1045 reg->hr_block_bytes = (unsigned int)block_bytes;
1046 reg->hr_block_bits = block_bits;
1048 return count;
1051 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1052 char *page)
1054 return sprintf(page, "%llu\n", reg->hr_start_block);
1057 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1058 const char *page,
1059 size_t count)
1061 unsigned long long tmp;
1062 char *p = (char *)page;
1064 if (reg->hr_bdev)
1065 return -EINVAL;
1067 tmp = simple_strtoull(p, &p, 0);
1068 if (!p || (*p && (*p != '\n')))
1069 return -EINVAL;
1071 reg->hr_start_block = tmp;
1073 return count;
1076 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1077 char *page)
1079 return sprintf(page, "%d\n", reg->hr_blocks);
1082 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1083 const char *page,
1084 size_t count)
1086 unsigned long tmp;
1087 char *p = (char *)page;
1089 if (reg->hr_bdev)
1090 return -EINVAL;
1092 tmp = simple_strtoul(p, &p, 0);
1093 if (!p || (*p && (*p != '\n')))
1094 return -EINVAL;
1096 if (tmp > O2NM_MAX_NODES || tmp == 0)
1097 return -ERANGE;
1099 reg->hr_blocks = (unsigned int)tmp;
1101 return count;
1104 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1105 char *page)
1107 unsigned int ret = 0;
1109 if (reg->hr_bdev)
1110 ret = sprintf(page, "%s\n", reg->hr_dev_name);
1112 return ret;
1115 static void o2hb_init_region_params(struct o2hb_region *reg)
1117 reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
1118 reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
1120 mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1121 reg->hr_start_block, reg->hr_blocks);
1122 mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1123 reg->hr_block_bytes, reg->hr_block_bits);
1124 mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1125 mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1128 static int o2hb_map_slot_data(struct o2hb_region *reg)
1130 int i, j;
1131 unsigned int last_slot;
1132 unsigned int spp = reg->hr_slots_per_page;
1133 struct page *page;
1134 char *raw;
1135 struct o2hb_disk_slot *slot;
1137 reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
1138 if (reg->hr_tmp_block == NULL) {
1139 mlog_errno(-ENOMEM);
1140 return -ENOMEM;
1143 reg->hr_slots = kcalloc(reg->hr_blocks,
1144 sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1145 if (reg->hr_slots == NULL) {
1146 mlog_errno(-ENOMEM);
1147 return -ENOMEM;
1150 for(i = 0; i < reg->hr_blocks; i++) {
1151 slot = &reg->hr_slots[i];
1152 slot->ds_node_num = i;
1153 INIT_LIST_HEAD(&slot->ds_live_item);
1154 slot->ds_raw_block = NULL;
1157 reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1158 mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1159 "at %u blocks per page\n",
1160 reg->hr_num_pages, reg->hr_blocks, spp);
1162 reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1163 GFP_KERNEL);
1164 if (!reg->hr_slot_data) {
1165 mlog_errno(-ENOMEM);
1166 return -ENOMEM;
1169 for(i = 0; i < reg->hr_num_pages; i++) {
1170 page = alloc_page(GFP_KERNEL);
1171 if (!page) {
1172 mlog_errno(-ENOMEM);
1173 return -ENOMEM;
1176 reg->hr_slot_data[i] = page;
1178 last_slot = i * spp;
1179 raw = page_address(page);
1180 for (j = 0;
1181 (j < spp) && ((j + last_slot) < reg->hr_blocks);
1182 j++) {
1183 BUG_ON((j + last_slot) >= reg->hr_blocks);
1185 slot = &reg->hr_slots[j + last_slot];
1186 slot->ds_raw_block =
1187 (struct o2hb_disk_heartbeat_block *) raw;
1189 raw += reg->hr_block_bytes;
1193 return 0;
1196 /* Read in all the slots available and populate the tracking
1197 * structures so that we can start with a baseline idea of what's
1198 * there. */
1199 static int o2hb_populate_slot_data(struct o2hb_region *reg)
1201 int ret, i;
1202 struct o2hb_disk_slot *slot;
1203 struct o2hb_disk_heartbeat_block *hb_block;
1205 mlog_entry_void();
1207 ret = o2hb_read_slots(reg, reg->hr_blocks);
1208 if (ret) {
1209 mlog_errno(ret);
1210 goto out;
1213 /* We only want to get an idea of the values initially in each
1214 * slot, so we do no verification - o2hb_check_slot will
1215 * actually determine if each configured slot is valid and
1216 * whether any values have changed. */
1217 for(i = 0; i < reg->hr_blocks; i++) {
1218 slot = &reg->hr_slots[i];
1219 hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1221 /* Only fill the values that o2hb_check_slot uses to
1222 * determine changing slots */
1223 slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1224 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1227 out:
1228 mlog_exit(ret);
1229 return ret;
1232 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1233 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1234 const char *page,
1235 size_t count)
1237 struct task_struct *hb_task;
1238 long fd;
1239 int sectsize;
1240 char *p = (char *)page;
1241 struct file *filp = NULL;
1242 struct inode *inode = NULL;
1243 ssize_t ret = -EINVAL;
1245 if (reg->hr_bdev)
1246 goto out;
1248 /* We can't heartbeat without having had our node number
1249 * configured yet. */
1250 if (o2nm_this_node() == O2NM_MAX_NODES)
1251 goto out;
1253 fd = simple_strtol(p, &p, 0);
1254 if (!p || (*p && (*p != '\n')))
1255 goto out;
1257 if (fd < 0 || fd >= INT_MAX)
1258 goto out;
1260 filp = fget(fd);
1261 if (filp == NULL)
1262 goto out;
1264 if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1265 reg->hr_block_bytes == 0)
1266 goto out;
1268 inode = igrab(filp->f_mapping->host);
1269 if (inode == NULL)
1270 goto out;
1272 if (!S_ISBLK(inode->i_mode))
1273 goto out;
1275 reg->hr_bdev = I_BDEV(filp->f_mapping->host);
1276 ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, 0);
1277 if (ret) {
1278 reg->hr_bdev = NULL;
1279 goto out;
1281 inode = NULL;
1283 bdevname(reg->hr_bdev, reg->hr_dev_name);
1285 sectsize = bdev_hardsect_size(reg->hr_bdev);
1286 if (sectsize != reg->hr_block_bytes) {
1287 mlog(ML_ERROR,
1288 "blocksize %u incorrect for device, expected %d",
1289 reg->hr_block_bytes, sectsize);
1290 ret = -EINVAL;
1291 goto out;
1294 o2hb_init_region_params(reg);
1296 /* Generation of zero is invalid */
1297 do {
1298 get_random_bytes(&reg->hr_generation,
1299 sizeof(reg->hr_generation));
1300 } while (reg->hr_generation == 0);
1302 ret = o2hb_map_slot_data(reg);
1303 if (ret) {
1304 mlog_errno(ret);
1305 goto out;
1308 ret = o2hb_populate_slot_data(reg);
1309 if (ret) {
1310 mlog_errno(ret);
1311 goto out;
1314 INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout);
1317 * A node is considered live after it has beat LIVE_THRESHOLD
1318 * times. We're not steady until we've given them a chance
1319 * _after_ our first read.
1321 atomic_set(&reg->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1);
1323 hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1324 reg->hr_item.ci_name);
1325 if (IS_ERR(hb_task)) {
1326 ret = PTR_ERR(hb_task);
1327 mlog_errno(ret);
1328 goto out;
1331 spin_lock(&o2hb_live_lock);
1332 reg->hr_task = hb_task;
1333 spin_unlock(&o2hb_live_lock);
1335 ret = wait_event_interruptible(o2hb_steady_queue,
1336 atomic_read(&reg->hr_steady_iterations) == 0);
1337 if (ret) {
1338 spin_lock(&o2hb_live_lock);
1339 hb_task = reg->hr_task;
1340 reg->hr_task = NULL;
1341 spin_unlock(&o2hb_live_lock);
1343 if (hb_task)
1344 kthread_stop(hb_task);
1345 goto out;
1348 ret = count;
1349 out:
1350 if (filp)
1351 fput(filp);
1352 if (inode)
1353 iput(inode);
1354 if (ret < 0) {
1355 if (reg->hr_bdev) {
1356 blkdev_put(reg->hr_bdev);
1357 reg->hr_bdev = NULL;
1360 return ret;
1363 static ssize_t o2hb_region_pid_read(struct o2hb_region *reg,
1364 char *page)
1366 pid_t pid = 0;
1368 spin_lock(&o2hb_live_lock);
1369 if (reg->hr_task)
1370 pid = reg->hr_task->pid;
1371 spin_unlock(&o2hb_live_lock);
1373 if (!pid)
1374 return 0;
1376 return sprintf(page, "%u\n", pid);
1379 struct o2hb_region_attribute {
1380 struct configfs_attribute attr;
1381 ssize_t (*show)(struct o2hb_region *, char *);
1382 ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1385 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1386 .attr = { .ca_owner = THIS_MODULE,
1387 .ca_name = "block_bytes",
1388 .ca_mode = S_IRUGO | S_IWUSR },
1389 .show = o2hb_region_block_bytes_read,
1390 .store = o2hb_region_block_bytes_write,
1393 static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1394 .attr = { .ca_owner = THIS_MODULE,
1395 .ca_name = "start_block",
1396 .ca_mode = S_IRUGO | S_IWUSR },
1397 .show = o2hb_region_start_block_read,
1398 .store = o2hb_region_start_block_write,
1401 static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1402 .attr = { .ca_owner = THIS_MODULE,
1403 .ca_name = "blocks",
1404 .ca_mode = S_IRUGO | S_IWUSR },
1405 .show = o2hb_region_blocks_read,
1406 .store = o2hb_region_blocks_write,
1409 static struct o2hb_region_attribute o2hb_region_attr_dev = {
1410 .attr = { .ca_owner = THIS_MODULE,
1411 .ca_name = "dev",
1412 .ca_mode = S_IRUGO | S_IWUSR },
1413 .show = o2hb_region_dev_read,
1414 .store = o2hb_region_dev_write,
1417 static struct o2hb_region_attribute o2hb_region_attr_pid = {
1418 .attr = { .ca_owner = THIS_MODULE,
1419 .ca_name = "pid",
1420 .ca_mode = S_IRUGO | S_IRUSR },
1421 .show = o2hb_region_pid_read,
1424 static struct configfs_attribute *o2hb_region_attrs[] = {
1425 &o2hb_region_attr_block_bytes.attr,
1426 &o2hb_region_attr_start_block.attr,
1427 &o2hb_region_attr_blocks.attr,
1428 &o2hb_region_attr_dev.attr,
1429 &o2hb_region_attr_pid.attr,
1430 NULL,
1433 static ssize_t o2hb_region_show(struct config_item *item,
1434 struct configfs_attribute *attr,
1435 char *page)
1437 struct o2hb_region *reg = to_o2hb_region(item);
1438 struct o2hb_region_attribute *o2hb_region_attr =
1439 container_of(attr, struct o2hb_region_attribute, attr);
1440 ssize_t ret = 0;
1442 if (o2hb_region_attr->show)
1443 ret = o2hb_region_attr->show(reg, page);
1444 return ret;
1447 static ssize_t o2hb_region_store(struct config_item *item,
1448 struct configfs_attribute *attr,
1449 const char *page, size_t count)
1451 struct o2hb_region *reg = to_o2hb_region(item);
1452 struct o2hb_region_attribute *o2hb_region_attr =
1453 container_of(attr, struct o2hb_region_attribute, attr);
1454 ssize_t ret = -EINVAL;
1456 if (o2hb_region_attr->store)
1457 ret = o2hb_region_attr->store(reg, page, count);
1458 return ret;
1461 static struct configfs_item_operations o2hb_region_item_ops = {
1462 .release = o2hb_region_release,
1463 .show_attribute = o2hb_region_show,
1464 .store_attribute = o2hb_region_store,
1467 static struct config_item_type o2hb_region_type = {
1468 .ct_item_ops = &o2hb_region_item_ops,
1469 .ct_attrs = o2hb_region_attrs,
1470 .ct_owner = THIS_MODULE,
1473 /* heartbeat set */
1475 struct o2hb_heartbeat_group {
1476 struct config_group hs_group;
1477 /* some stuff? */
1480 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
1482 return group ?
1483 container_of(group, struct o2hb_heartbeat_group, hs_group)
1484 : NULL;
1487 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
1488 const char *name)
1490 struct o2hb_region *reg = NULL;
1491 struct config_item *ret = NULL;
1493 reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL);
1494 if (reg == NULL)
1495 goto out; /* ENOMEM */
1497 config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
1499 ret = &reg->hr_item;
1501 spin_lock(&o2hb_live_lock);
1502 list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
1503 spin_unlock(&o2hb_live_lock);
1504 out:
1505 if (ret == NULL)
1506 kfree(reg);
1508 return ret;
1511 static void o2hb_heartbeat_group_drop_item(struct config_group *group,
1512 struct config_item *item)
1514 struct task_struct *hb_task;
1515 struct o2hb_region *reg = to_o2hb_region(item);
1517 /* stop the thread when the user removes the region dir */
1518 spin_lock(&o2hb_live_lock);
1519 hb_task = reg->hr_task;
1520 reg->hr_task = NULL;
1521 spin_unlock(&o2hb_live_lock);
1523 if (hb_task)
1524 kthread_stop(hb_task);
1526 config_item_put(item);
1529 struct o2hb_heartbeat_group_attribute {
1530 struct configfs_attribute attr;
1531 ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
1532 ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
1535 static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
1536 struct configfs_attribute *attr,
1537 char *page)
1539 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1540 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1541 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1542 ssize_t ret = 0;
1544 if (o2hb_heartbeat_group_attr->show)
1545 ret = o2hb_heartbeat_group_attr->show(reg, page);
1546 return ret;
1549 static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
1550 struct configfs_attribute *attr,
1551 const char *page, size_t count)
1553 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1554 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1555 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1556 ssize_t ret = -EINVAL;
1558 if (o2hb_heartbeat_group_attr->store)
1559 ret = o2hb_heartbeat_group_attr->store(reg, page, count);
1560 return ret;
1563 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
1564 char *page)
1566 return sprintf(page, "%u\n", o2hb_dead_threshold);
1569 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
1570 const char *page,
1571 size_t count)
1573 unsigned long tmp;
1574 char *p = (char *)page;
1576 tmp = simple_strtoul(p, &p, 10);
1577 if (!p || (*p && (*p != '\n')))
1578 return -EINVAL;
1580 /* this will validate ranges for us. */
1581 o2hb_dead_threshold_set((unsigned int) tmp);
1583 return count;
1586 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
1587 .attr = { .ca_owner = THIS_MODULE,
1588 .ca_name = "dead_threshold",
1589 .ca_mode = S_IRUGO | S_IWUSR },
1590 .show = o2hb_heartbeat_group_threshold_show,
1591 .store = o2hb_heartbeat_group_threshold_store,
1594 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
1595 &o2hb_heartbeat_group_attr_threshold.attr,
1596 NULL,
1599 static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
1600 .show_attribute = o2hb_heartbeat_group_show,
1601 .store_attribute = o2hb_heartbeat_group_store,
1604 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
1605 .make_item = o2hb_heartbeat_group_make_item,
1606 .drop_item = o2hb_heartbeat_group_drop_item,
1609 static struct config_item_type o2hb_heartbeat_group_type = {
1610 .ct_group_ops = &o2hb_heartbeat_group_group_ops,
1611 .ct_item_ops = &o2hb_hearbeat_group_item_ops,
1612 .ct_attrs = o2hb_heartbeat_group_attrs,
1613 .ct_owner = THIS_MODULE,
1616 /* this is just here to avoid touching group in heartbeat.h which the
1617 * entire damn world #includes */
1618 struct config_group *o2hb_alloc_hb_set(void)
1620 struct o2hb_heartbeat_group *hs = NULL;
1621 struct config_group *ret = NULL;
1623 hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
1624 if (hs == NULL)
1625 goto out;
1627 config_group_init_type_name(&hs->hs_group, "heartbeat",
1628 &o2hb_heartbeat_group_type);
1630 ret = &hs->hs_group;
1631 out:
1632 if (ret == NULL)
1633 kfree(hs);
1634 return ret;
1637 void o2hb_free_hb_set(struct config_group *group)
1639 struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
1640 kfree(hs);
1643 /* hb callback registration and issueing */
1645 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
1647 if (type == O2HB_NUM_CB)
1648 return ERR_PTR(-EINVAL);
1650 return &o2hb_callbacks[type];
1653 void o2hb_setup_callback(struct o2hb_callback_func *hc,
1654 enum o2hb_callback_type type,
1655 o2hb_cb_func *func,
1656 void *data,
1657 int priority)
1659 INIT_LIST_HEAD(&hc->hc_item);
1660 hc->hc_func = func;
1661 hc->hc_data = data;
1662 hc->hc_priority = priority;
1663 hc->hc_type = type;
1664 hc->hc_magic = O2HB_CB_MAGIC;
1666 EXPORT_SYMBOL_GPL(o2hb_setup_callback);
1668 int o2hb_register_callback(struct o2hb_callback_func *hc)
1670 struct o2hb_callback_func *tmp;
1671 struct list_head *iter;
1672 struct o2hb_callback *hbcall;
1673 int ret;
1675 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1676 BUG_ON(!list_empty(&hc->hc_item));
1678 hbcall = hbcall_from_type(hc->hc_type);
1679 if (IS_ERR(hbcall)) {
1680 ret = PTR_ERR(hbcall);
1681 goto out;
1684 down_write(&o2hb_callback_sem);
1686 list_for_each(iter, &hbcall->list) {
1687 tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
1688 if (hc->hc_priority < tmp->hc_priority) {
1689 list_add_tail(&hc->hc_item, iter);
1690 break;
1693 if (list_empty(&hc->hc_item))
1694 list_add_tail(&hc->hc_item, &hbcall->list);
1696 up_write(&o2hb_callback_sem);
1697 ret = 0;
1698 out:
1699 mlog(ML_HEARTBEAT, "returning %d on behalf of %p for funcs %p\n",
1700 ret, __builtin_return_address(0), hc);
1701 return ret;
1703 EXPORT_SYMBOL_GPL(o2hb_register_callback);
1705 void o2hb_unregister_callback(struct o2hb_callback_func *hc)
1707 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1709 mlog(ML_HEARTBEAT, "on behalf of %p for funcs %p\n",
1710 __builtin_return_address(0), hc);
1712 if (list_empty(&hc->hc_item))
1713 return;
1715 down_write(&o2hb_callback_sem);
1717 list_del_init(&hc->hc_item);
1719 up_write(&o2hb_callback_sem);
1721 EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
1723 int o2hb_check_node_heartbeating(u8 node_num)
1725 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1727 o2hb_fill_node_map(testing_map, sizeof(testing_map));
1728 if (!test_bit(node_num, testing_map)) {
1729 mlog(ML_HEARTBEAT,
1730 "node (%u) does not have heartbeating enabled.\n",
1731 node_num);
1732 return 0;
1735 return 1;
1737 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
1739 int o2hb_check_node_heartbeating_from_callback(u8 node_num)
1741 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1743 o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
1744 if (!test_bit(node_num, testing_map)) {
1745 mlog(ML_HEARTBEAT,
1746 "node (%u) does not have heartbeating enabled.\n",
1747 node_num);
1748 return 0;
1751 return 1;
1753 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
1755 /* Makes sure our local node is configured with a node number, and is
1756 * heartbeating. */
1757 int o2hb_check_local_node_heartbeating(void)
1759 u8 node_num;
1761 /* if this node was set then we have networking */
1762 node_num = o2nm_this_node();
1763 if (node_num == O2NM_MAX_NODES) {
1764 mlog(ML_HEARTBEAT, "this node has not been configured.\n");
1765 return 0;
1768 return o2hb_check_node_heartbeating(node_num);
1770 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
1773 * this is just a hack until we get the plumbing which flips file systems
1774 * read only and drops the hb ref instead of killing the node dead.
1776 void o2hb_stop_all_regions(void)
1778 struct o2hb_region *reg;
1780 mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
1782 spin_lock(&o2hb_live_lock);
1784 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
1785 reg->hr_unclean_stop = 1;
1787 spin_unlock(&o2hb_live_lock);
1789 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);