RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / drivers / spi / spi.c
blob4831edbae2d589a0442021df9ee78aeaec10430f
1 /*
2 * spi.c - SPI init/core code
4 * Copyright (C) 2005 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/autoconf.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/cache.h>
26 #include <linux/spi/spi.h>
29 /* SPI bustype and spi_master class are registered after board init code
30 * provides the SPI device tables, ensuring that both are present by the
31 * time controller driver registration causes spi_devices to "enumerate".
33 static void spidev_release(struct device *dev)
35 struct spi_device *spi = to_spi_device(dev);
37 /* spi masters may cleanup for released devices */
38 if (spi->master->cleanup)
39 spi->master->cleanup(spi);
41 spi_master_put(spi->master);
42 kfree(dev);
45 static ssize_t
46 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
48 const struct spi_device *spi = to_spi_device(dev);
50 return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
53 static struct device_attribute spi_dev_attrs[] = {
54 __ATTR_RO(modalias),
55 __ATTR_NULL,
58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
59 * and the sysfs version makes coldplug work too.
62 static int spi_match_device(struct device *dev, struct device_driver *drv)
64 const struct spi_device *spi = to_spi_device(dev);
66 return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
69 static int spi_uevent(struct device *dev, char **envp, int num_envp,
70 char *buffer, int buffer_size)
72 const struct spi_device *spi = to_spi_device(dev);
74 envp[0] = buffer;
75 snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias);
76 envp[1] = NULL;
77 return 0;
80 #ifdef CONFIG_PM
83 * NOTE: the suspend() method for an spi_master controller driver
84 * should verify that all its child devices are marked as suspended;
85 * suspend requests delivered through sysfs power/state files don't
86 * enforce such constraints.
88 static int spi_suspend(struct device *dev, pm_message_t message)
90 int value;
91 struct spi_driver *drv = to_spi_driver(dev->driver);
93 if (!drv || !drv->suspend)
94 return 0;
96 /* suspend will stop irqs and dma; no more i/o */
97 value = drv->suspend(to_spi_device(dev), message);
98 if (value == 0)
99 dev->power.power_state = message;
100 return value;
103 static int spi_resume(struct device *dev)
105 int value;
106 struct spi_driver *drv = to_spi_driver(dev->driver);
108 if (!drv || !drv->resume)
109 return 0;
111 /* resume may restart the i/o queue */
112 value = drv->resume(to_spi_device(dev));
113 if (value == 0)
114 dev->power.power_state = PMSG_ON;
115 return value;
118 #else
119 #define spi_suspend NULL
120 #define spi_resume NULL
121 #endif
123 struct bus_type spi_bus_type = {
124 .name = "spi",
125 .dev_attrs = spi_dev_attrs,
126 .match = spi_match_device,
127 .uevent = spi_uevent,
128 .suspend = spi_suspend,
129 .resume = spi_resume,
131 EXPORT_SYMBOL_GPL(spi_bus_type);
134 static int spi_drv_probe(struct device *dev)
136 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
138 return sdrv->probe(to_spi_device(dev));
141 static int spi_drv_remove(struct device *dev)
143 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
145 return sdrv->remove(to_spi_device(dev));
148 static void spi_drv_shutdown(struct device *dev)
150 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
152 sdrv->shutdown(to_spi_device(dev));
156 * spi_register_driver - register a SPI driver
157 * @sdrv: the driver to register
158 * Context: can sleep
160 int spi_register_driver(struct spi_driver *sdrv)
162 sdrv->driver.bus = &spi_bus_type;
163 if (sdrv->probe)
164 sdrv->driver.probe = spi_drv_probe;
165 if (sdrv->remove)
166 sdrv->driver.remove = spi_drv_remove;
167 if (sdrv->shutdown)
168 sdrv->driver.shutdown = spi_drv_shutdown;
169 return driver_register(&sdrv->driver);
171 EXPORT_SYMBOL_GPL(spi_register_driver);
173 /*-------------------------------------------------------------------------*/
175 /* SPI devices should normally not be created by SPI device drivers; that
176 * would make them board-specific. Similarly with SPI master drivers.
177 * Device registration normally goes into like arch/.../mach.../board-YYY.c
178 * with other readonly (flashable) information about mainboard devices.
181 struct boardinfo {
182 struct list_head list;
183 unsigned n_board_info;
184 struct spi_board_info board_info[0];
187 static LIST_HEAD(board_list);
188 static DECLARE_MUTEX(board_lock);
192 * spi_new_device - instantiate one new SPI device
193 * @master: Controller to which device is connected
194 * @chip: Describes the SPI device
195 * Context: can sleep
197 * On typical mainboards, this is purely internal; and it's not needed
198 * after board init creates the hard-wired devices. Some development
199 * platforms may not be able to use spi_register_board_info though, and
200 * this is exported so that for example a USB or parport based adapter
201 * driver could add devices (which it would learn about out-of-band).
203 struct spi_device *spi_new_device(struct spi_master *master,
204 struct spi_board_info *chip)
206 struct spi_device *proxy;
207 struct device *dev = master->cdev.dev;
208 int status;
210 /* NOTE: caller did any chip->bus_num checks necessary */
212 if (!spi_master_get(master))
213 return NULL;
215 proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
216 if (!proxy) {
217 dev_err(dev, "can't alloc dev for cs%d\n",
218 chip->chip_select);
219 goto fail;
221 proxy->master = master;
222 proxy->chip_select = chip->chip_select;
223 proxy->max_speed_hz = chip->max_speed_hz;
224 proxy->mode = chip->mode;
225 proxy->irq = chip->irq;
226 proxy->modalias = chip->modalias;
228 snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
229 "%s.%u", master->cdev.class_id,
230 chip->chip_select);
231 proxy->dev.parent = dev;
232 proxy->dev.bus = &spi_bus_type;
233 proxy->dev.platform_data = (void *) chip->platform_data;
234 proxy->controller_data = chip->controller_data;
235 proxy->controller_state = NULL;
236 proxy->dev.release = spidev_release;
238 /* drivers may modify this default i/o setup */
239 status = master->setup(proxy);
240 if (status < 0) {
241 dev_dbg(dev, "can't %s %s, status %d\n",
242 "setup", proxy->dev.bus_id, status);
243 goto fail;
246 /* driver core catches callers that misbehave by defining
247 * devices that already exist.
249 status = device_register(&proxy->dev);
250 if (status < 0) {
251 dev_dbg(dev, "can't %s %s, status %d\n",
252 "add", proxy->dev.bus_id, status);
253 goto fail;
255 dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
256 return proxy;
258 fail:
259 spi_master_put(master);
260 kfree(proxy);
261 return NULL;
263 EXPORT_SYMBOL_GPL(spi_new_device);
266 * spi_register_board_info - register SPI devices for a given board
267 * @info: array of chip descriptors
268 * @n: how many descriptors are provided
269 * Context: can sleep
271 * Board-specific early init code calls this (probably during arch_initcall)
272 * with segments of the SPI device table. Any device nodes are created later,
273 * after the relevant parent SPI controller (bus_num) is defined. We keep
274 * this table of devices forever, so that reloading a controller driver will
275 * not make Linux forget about these hard-wired devices.
277 * Other code can also call this, e.g. a particular add-on board might provide
278 * SPI devices through its expansion connector, so code initializing that board
279 * would naturally declare its SPI devices.
281 * The board info passed can safely be __initdata ... but be careful of
282 * any embedded pointers (platform_data, etc), they're copied as-is.
284 int __init
285 spi_register_board_info(struct spi_board_info const *info, unsigned n)
287 struct boardinfo *bi;
289 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
290 if (!bi)
291 return -ENOMEM;
292 bi->n_board_info = n;
293 memcpy(bi->board_info, info, n * sizeof *info);
295 down(&board_lock);
296 list_add_tail(&bi->list, &board_list);
297 up(&board_lock);
298 return 0;
301 /* FIXME someone should add support for a __setup("spi", ...) that
302 * creates board info from kernel command lines
305 static void __init_or_module
306 scan_boardinfo(struct spi_master *master)
308 struct boardinfo *bi;
309 struct device *dev = master->cdev.dev;
311 down(&board_lock);
312 list_for_each_entry(bi, &board_list, list) {
313 struct spi_board_info *chip = bi->board_info;
314 unsigned n;
316 for (n = bi->n_board_info; n > 0; n--, chip++) {
317 if (chip->bus_num != master->bus_num)
318 continue;
319 /* some controllers only have one chip, so they
320 * might not use chipselects. otherwise, the
321 * chipselects are numbered 0..max.
323 if (chip->chip_select >= master->num_chipselect
324 && master->num_chipselect) {
325 dev_dbg(dev, "cs%d > max %d\n",
326 chip->chip_select,
327 master->num_chipselect);
328 continue;
330 (void) spi_new_device(master, chip);
333 up(&board_lock);
336 /*-------------------------------------------------------------------------*/
338 static void spi_master_release(struct class_device *cdev)
340 struct spi_master *master;
342 master = container_of(cdev, struct spi_master, cdev);
343 kfree(master);
346 static struct class spi_master_class = {
347 .name = "spi_master",
348 .owner = THIS_MODULE,
349 .release = spi_master_release,
354 * spi_alloc_master - allocate SPI master controller
355 * @dev: the controller, possibly using the platform_bus
356 * @size: how much zeroed driver-private data to allocate; the pointer to this
357 * memory is in the class_data field of the returned class_device,
358 * accessible with spi_master_get_devdata().
359 * Context: can sleep
361 * This call is used only by SPI master controller drivers, which are the
362 * only ones directly touching chip registers. It's how they allocate
363 * an spi_master structure, prior to calling spi_register_master().
365 * This must be called from context that can sleep. It returns the SPI
366 * master structure on success, else NULL.
368 * The caller is responsible for assigning the bus number and initializing
369 * the master's methods before calling spi_register_master(); and (after errors
370 * adding the device) calling spi_master_put() to prevent a memory leak.
372 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
374 struct spi_master *master;
376 if (!dev)
377 return NULL;
379 master = kzalloc(size + sizeof *master, GFP_KERNEL);
380 if (!master)
381 return NULL;
383 class_device_initialize(&master->cdev);
384 master->cdev.class = &spi_master_class;
385 master->cdev.dev = get_device(dev);
386 spi_master_set_devdata(master, &master[1]);
388 return master;
390 EXPORT_SYMBOL_GPL(spi_alloc_master);
393 * spi_register_master - register SPI master controller
394 * @master: initialized master, originally from spi_alloc_master()
395 * Context: can sleep
397 * SPI master controllers connect to their drivers using some non-SPI bus,
398 * such as the platform bus. The final stage of probe() in that code
399 * includes calling spi_register_master() to hook up to this SPI bus glue.
401 * SPI controllers use board specific (often SOC specific) bus numbers,
402 * and board-specific addressing for SPI devices combines those numbers
403 * with chip select numbers. Since SPI does not directly support dynamic
404 * device identification, boards need configuration tables telling which
405 * chip is at which address.
407 * This must be called from context that can sleep. It returns zero on
408 * success, else a negative error code (dropping the master's refcount).
409 * After a successful return, the caller is responsible for calling
410 * spi_unregister_master().
412 int spi_register_master(struct spi_master *master)
414 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
415 struct device *dev = master->cdev.dev;
416 int status = -ENODEV;
417 int dynamic = 0;
419 if (!dev)
420 return -ENODEV;
422 /* convention: dynamically assigned bus IDs count down from the max */
423 if (master->bus_num < 0) {
424 master->bus_num = atomic_dec_return(&dyn_bus_id);
425 dynamic = 1;
428 /* register the device, then userspace will see it.
429 * registration fails if the bus ID is in use.
431 snprintf(master->cdev.class_id, sizeof master->cdev.class_id,
432 "spi%u", master->bus_num);
433 status = class_device_add(&master->cdev);
434 if (status < 0)
435 goto done;
436 dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id,
437 dynamic ? " (dynamic)" : "");
439 /* populate children from any spi device tables */
440 scan_boardinfo(master);
441 status = 0;
442 done:
443 return status;
445 EXPORT_SYMBOL_GPL(spi_register_master);
448 static int __unregister(struct device *dev, void *unused)
450 /* note: before about 2.6.14-rc1 this would corrupt memory: */
451 spi_unregister_device(to_spi_device(dev));
452 return 0;
456 * spi_unregister_master - unregister SPI master controller
457 * @master: the master being unregistered
458 * Context: can sleep
460 * This call is used only by SPI master controller drivers, which are the
461 * only ones directly touching chip registers.
463 * This must be called from context that can sleep.
465 void spi_unregister_master(struct spi_master *master)
467 int dummy;
469 dummy = device_for_each_child(master->cdev.dev, NULL, __unregister);
470 class_device_unregister(&master->cdev);
472 EXPORT_SYMBOL_GPL(spi_unregister_master);
475 * spi_busnum_to_master - look up master associated with bus_num
476 * @bus_num: the master's bus number
477 * Context: can sleep
479 * This call may be used with devices that are registered after
480 * arch init time. It returns a refcounted pointer to the relevant
481 * spi_master (which the caller must release), or NULL if there is
482 * no such master registered.
484 struct spi_master *spi_busnum_to_master(u16 bus_num)
486 struct class_device *cdev;
487 struct spi_master *master = NULL;
488 struct spi_master *m;
490 down(&spi_master_class.sem);
491 list_for_each_entry(cdev, &spi_master_class.children, node) {
492 m = container_of(cdev, struct spi_master, cdev);
493 if (m->bus_num == bus_num) {
494 master = spi_master_get(m);
495 break;
498 up(&spi_master_class.sem);
499 return master;
501 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
504 /*-------------------------------------------------------------------------*/
506 static void spi_complete(void *arg)
508 complete(arg);
512 * spi_sync - blocking/synchronous SPI data transfers
513 * @spi: device with which data will be exchanged
514 * @message: describes the data transfers
515 * Context: can sleep
517 * This call may only be used from a context that may sleep. The sleep
518 * is non-interruptible, and has no timeout. Low-overhead controller
519 * drivers may DMA directly into and out of the message buffers.
521 * Note that the SPI device's chip select is active during the message,
522 * and then is normally disabled between messages. Drivers for some
523 * frequently-used devices may want to minimize costs of selecting a chip,
524 * by leaving it selected in anticipation that the next message will go
525 * to the same chip. (That may increase power usage.)
527 * Also, the caller is guaranteeing that the memory associated with the
528 * message will not be freed before this call returns.
530 * The return value is a negative error code if the message could not be
531 * submitted, else zero. When the value is zero, then message->status is
532 * also defined; it's the completion code for the transfer, either zero
533 * or a negative error code from the controller driver.
535 int spi_sync(struct spi_device *spi, struct spi_message *message)
537 DECLARE_COMPLETION_ONSTACK(done);
538 int status;
540 message->complete = spi_complete;
541 message->context = &done;
542 status = spi_async(spi, message);
543 if (status == 0)
544 wait_for_completion(&done);
545 message->context = NULL;
546 return status;
548 EXPORT_SYMBOL_GPL(spi_sync);
550 /* portable code must never pass more than 32 bytes */
551 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
553 static u8 *buf;
556 * spi_write_then_read - SPI synchronous write followed by read
557 * @spi: device with which data will be exchanged
558 * @txbuf: data to be written (need not be dma-safe)
559 * @n_tx: size of txbuf, in bytes
560 * @rxbuf: buffer into which data will be read
561 * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
562 * Context: can sleep
564 * This performs a half duplex MicroWire style transaction with the
565 * device, sending txbuf and then reading rxbuf. The return value
566 * is zero for success, else a negative errno status code.
567 * This call may only be used from a context that may sleep.
569 * Parameters to this routine are always copied using a small buffer;
570 * portable code should never use this for more than 32 bytes.
571 * Performance-sensitive or bulk transfer code should instead use
572 * spi_{async,sync}() calls with dma-safe buffers.
574 int spi_write_then_read(struct spi_device *spi,
575 const u8 *txbuf, unsigned n_tx,
576 u8 *rxbuf, unsigned n_rx)
578 static DECLARE_MUTEX(lock);
580 int status;
581 struct spi_message message;
582 struct spi_transfer x[2];
583 u8 *local_buf;
585 /* Use preallocated DMA-safe buffer. We can't avoid copying here,
586 * (as a pure convenience thing), but we can keep heap costs
587 * out of the hot path ...
589 if ((n_tx + n_rx) > SPI_BUFSIZ)
590 return -EINVAL;
592 spi_message_init(&message);
593 memset(x, 0, sizeof x);
594 if (n_tx) {
595 x[0].len = n_tx;
596 spi_message_add_tail(&x[0], &message);
598 if (n_rx) {
599 x[1].len = n_rx;
600 spi_message_add_tail(&x[1], &message);
603 /* ... unless someone else is using the pre-allocated buffer */
604 if (down_trylock(&lock)) {
605 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
606 if (!local_buf)
607 return -ENOMEM;
608 } else
609 local_buf = buf;
611 memcpy(local_buf, txbuf, n_tx);
612 x[0].tx_buf = local_buf;
613 x[1].rx_buf = local_buf + n_tx;
615 /* do the i/o */
616 status = spi_sync(spi, &message);
617 if (status == 0) {
618 memcpy(rxbuf, x[1].rx_buf, n_rx);
619 status = message.status;
622 if (x[0].tx_buf == buf)
623 up(&lock);
624 else
625 kfree(local_buf);
627 return status;
629 EXPORT_SYMBOL_GPL(spi_write_then_read);
631 /*-------------------------------------------------------------------------*/
633 static int __init spi_init(void)
635 int status;
637 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
638 if (!buf) {
639 status = -ENOMEM;
640 goto err0;
643 status = bus_register(&spi_bus_type);
644 if (status < 0)
645 goto err1;
647 status = class_register(&spi_master_class);
648 if (status < 0)
649 goto err2;
650 return 0;
652 err2:
653 bus_unregister(&spi_bus_type);
654 err1:
655 kfree(buf);
656 buf = NULL;
657 err0:
658 return status;
661 /* board_info is normally registered in arch_initcall(),
662 * but even essential drivers wait till later
664 * REVISIT only boardinfo really needs static linking. the rest (device and
665 * driver registration) _could_ be dynamically linked (modular) ... costs
666 * include needing to have boardinfo data structures be much more public.
668 subsys_initcall(spi_init);