RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / drivers / scsi / esp_scsi.c
blob150beaf3fe88f1da4e352eeaa61ee4e967cfe757
1 /* esp_scsi.c: ESP SCSI driver.
3 * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/kernel.h>
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/delay.h>
10 #include <linux/list.h>
11 #include <linux/completion.h>
12 #include <linux/kallsyms.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/init.h>
16 #include <linux/irqreturn.h>
18 #include <asm/irq.h>
19 #include <asm/io.h>
20 #include <asm/dma.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_host.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_tcq.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_transport_spi.h>
30 #include "esp_scsi.h"
32 #define DRV_MODULE_NAME "esp"
33 #define PFX DRV_MODULE_NAME ": "
34 #define DRV_VERSION "2.000"
35 #define DRV_MODULE_RELDATE "April 19, 2007"
37 /* SCSI bus reset settle time in seconds. */
38 static int esp_bus_reset_settle = 3;
40 static u32 esp_debug;
41 #define ESP_DEBUG_INTR 0x00000001
42 #define ESP_DEBUG_SCSICMD 0x00000002
43 #define ESP_DEBUG_RESET 0x00000004
44 #define ESP_DEBUG_MSGIN 0x00000008
45 #define ESP_DEBUG_MSGOUT 0x00000010
46 #define ESP_DEBUG_CMDDONE 0x00000020
47 #define ESP_DEBUG_DISCONNECT 0x00000040
48 #define ESP_DEBUG_DATASTART 0x00000080
49 #define ESP_DEBUG_DATADONE 0x00000100
50 #define ESP_DEBUG_RECONNECT 0x00000200
51 #define ESP_DEBUG_AUTOSENSE 0x00000400
53 #define esp_log_intr(f, a...) \
54 do { if (esp_debug & ESP_DEBUG_INTR) \
55 printk(f, ## a); \
56 } while (0)
58 #define esp_log_reset(f, a...) \
59 do { if (esp_debug & ESP_DEBUG_RESET) \
60 printk(f, ## a); \
61 } while (0)
63 #define esp_log_msgin(f, a...) \
64 do { if (esp_debug & ESP_DEBUG_MSGIN) \
65 printk(f, ## a); \
66 } while (0)
68 #define esp_log_msgout(f, a...) \
69 do { if (esp_debug & ESP_DEBUG_MSGOUT) \
70 printk(f, ## a); \
71 } while (0)
73 #define esp_log_cmddone(f, a...) \
74 do { if (esp_debug & ESP_DEBUG_CMDDONE) \
75 printk(f, ## a); \
76 } while (0)
78 #define esp_log_disconnect(f, a...) \
79 do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
80 printk(f, ## a); \
81 } while (0)
83 #define esp_log_datastart(f, a...) \
84 do { if (esp_debug & ESP_DEBUG_DATASTART) \
85 printk(f, ## a); \
86 } while (0)
88 #define esp_log_datadone(f, a...) \
89 do { if (esp_debug & ESP_DEBUG_DATADONE) \
90 printk(f, ## a); \
91 } while (0)
93 #define esp_log_reconnect(f, a...) \
94 do { if (esp_debug & ESP_DEBUG_RECONNECT) \
95 printk(f, ## a); \
96 } while (0)
98 #define esp_log_autosense(f, a...) \
99 do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
100 printk(f, ## a); \
101 } while (0)
103 #define esp_read8(REG) esp->ops->esp_read8(esp, REG)
104 #define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
106 static void esp_log_fill_regs(struct esp *esp,
107 struct esp_event_ent *p)
109 p->sreg = esp->sreg;
110 p->seqreg = esp->seqreg;
111 p->sreg2 = esp->sreg2;
112 p->ireg = esp->ireg;
113 p->select_state = esp->select_state;
114 p->event = esp->event;
117 void scsi_esp_cmd(struct esp *esp, u8 val)
119 struct esp_event_ent *p;
120 int idx = esp->esp_event_cur;
122 p = &esp->esp_event_log[idx];
123 p->type = ESP_EVENT_TYPE_CMD;
124 p->val = val;
125 esp_log_fill_regs(esp, p);
127 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
129 esp_write8(val, ESP_CMD);
131 EXPORT_SYMBOL(scsi_esp_cmd);
133 static void esp_event(struct esp *esp, u8 val)
135 struct esp_event_ent *p;
136 int idx = esp->esp_event_cur;
138 p = &esp->esp_event_log[idx];
139 p->type = ESP_EVENT_TYPE_EVENT;
140 p->val = val;
141 esp_log_fill_regs(esp, p);
143 esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
145 esp->event = val;
148 static void esp_dump_cmd_log(struct esp *esp)
150 int idx = esp->esp_event_cur;
151 int stop = idx;
153 printk(KERN_INFO PFX "esp%d: Dumping command log\n",
154 esp->host->unique_id);
155 do {
156 struct esp_event_ent *p = &esp->esp_event_log[idx];
158 printk(KERN_INFO PFX "esp%d: ent[%d] %s ",
159 esp->host->unique_id, idx,
160 p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT");
162 printk("val[%02x] sreg[%02x] seqreg[%02x] "
163 "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
164 p->val, p->sreg, p->seqreg,
165 p->sreg2, p->ireg, p->select_state, p->event);
167 idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
168 } while (idx != stop);
171 static void esp_flush_fifo(struct esp *esp)
173 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
174 if (esp->rev == ESP236) {
175 int lim = 1000;
177 while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
178 if (--lim == 0) {
179 printk(KERN_ALERT PFX "esp%d: ESP_FF_BYTES "
180 "will not clear!\n",
181 esp->host->unique_id);
182 break;
184 udelay(1);
189 static void hme_read_fifo(struct esp *esp)
191 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
192 int idx = 0;
194 while (fcnt--) {
195 esp->fifo[idx++] = esp_read8(ESP_FDATA);
196 esp->fifo[idx++] = esp_read8(ESP_FDATA);
198 if (esp->sreg2 & ESP_STAT2_F1BYTE) {
199 esp_write8(0, ESP_FDATA);
200 esp->fifo[idx++] = esp_read8(ESP_FDATA);
201 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
203 esp->fifo_cnt = idx;
206 static void esp_set_all_config3(struct esp *esp, u8 val)
208 int i;
210 for (i = 0; i < ESP_MAX_TARGET; i++)
211 esp->target[i].esp_config3 = val;
214 /* Reset the ESP chip, _not_ the SCSI bus. */
215 static void esp_reset_esp(struct esp *esp)
217 u8 family_code, version;
219 /* Now reset the ESP chip */
220 scsi_esp_cmd(esp, ESP_CMD_RC);
221 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
222 scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
224 /* Reload the configuration registers */
225 esp_write8(esp->cfact, ESP_CFACT);
227 esp->prev_stp = 0;
228 esp_write8(esp->prev_stp, ESP_STP);
230 esp->prev_soff = 0;
231 esp_write8(esp->prev_soff, ESP_SOFF);
233 esp_write8(esp->neg_defp, ESP_TIMEO);
235 /* This is the only point at which it is reliable to read
236 * the ID-code for a fast ESP chip variants.
238 esp->max_period = ((35 * esp->ccycle) / 1000);
239 if (esp->rev == FAST) {
240 version = esp_read8(ESP_UID);
241 family_code = (version & 0xf8) >> 3;
242 if (family_code == 0x02)
243 esp->rev = FAS236;
244 else if (family_code == 0x0a)
245 esp->rev = FASHME; /* Version is usually '5'. */
246 else
247 esp->rev = FAS100A;
248 esp->min_period = ((4 * esp->ccycle) / 1000);
249 } else {
250 esp->min_period = ((5 * esp->ccycle) / 1000);
252 esp->max_period = (esp->max_period + 3)>>2;
253 esp->min_period = (esp->min_period + 3)>>2;
255 esp_write8(esp->config1, ESP_CFG1);
256 switch (esp->rev) {
257 case ESP100:
258 /* nothing to do */
259 break;
261 case ESP100A:
262 esp_write8(esp->config2, ESP_CFG2);
263 break;
265 case ESP236:
266 /* Slow 236 */
267 esp_write8(esp->config2, ESP_CFG2);
268 esp->prev_cfg3 = esp->target[0].esp_config3;
269 esp_write8(esp->prev_cfg3, ESP_CFG3);
270 break;
272 case FASHME:
273 esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
274 /* fallthrough... */
276 case FAS236:
277 /* Fast 236 or HME */
278 esp_write8(esp->config2, ESP_CFG2);
279 if (esp->rev == FASHME) {
280 u8 cfg3 = esp->target[0].esp_config3;
282 cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
283 if (esp->scsi_id >= 8)
284 cfg3 |= ESP_CONFIG3_IDBIT3;
285 esp_set_all_config3(esp, cfg3);
286 } else {
287 u32 cfg3 = esp->target[0].esp_config3;
289 cfg3 |= ESP_CONFIG3_FCLK;
290 esp_set_all_config3(esp, cfg3);
292 esp->prev_cfg3 = esp->target[0].esp_config3;
293 esp_write8(esp->prev_cfg3, ESP_CFG3);
294 if (esp->rev == FASHME) {
295 esp->radelay = 80;
296 } else {
297 if (esp->flags & ESP_FLAG_DIFFERENTIAL)
298 esp->radelay = 0;
299 else
300 esp->radelay = 96;
302 break;
304 case FAS100A:
305 /* Fast 100a */
306 esp_write8(esp->config2, ESP_CFG2);
307 esp_set_all_config3(esp,
308 (esp->target[0].esp_config3 |
309 ESP_CONFIG3_FCLOCK));
310 esp->prev_cfg3 = esp->target[0].esp_config3;
311 esp_write8(esp->prev_cfg3, ESP_CFG3);
312 esp->radelay = 32;
313 break;
315 default:
316 break;
319 /* Eat any bitrot in the chip */
320 esp_read8(ESP_INTRPT);
321 udelay(100);
324 static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
326 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
327 struct scatterlist *sg = cmd->request_buffer;
328 int dir = cmd->sc_data_direction;
329 int total, i;
331 if (dir == DMA_NONE)
332 return;
334 BUG_ON(cmd->use_sg == 0);
336 spriv->u.num_sg = esp->ops->map_sg(esp, sg,
337 cmd->use_sg, dir);
338 spriv->cur_residue = sg_dma_len(sg);
339 spriv->cur_sg = sg;
341 total = 0;
342 for (i = 0; i < spriv->u.num_sg; i++)
343 total += sg_dma_len(&sg[i]);
344 spriv->tot_residue = total;
347 static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
348 struct scsi_cmnd *cmd)
350 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
352 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
353 return ent->sense_dma +
354 (ent->sense_ptr - cmd->sense_buffer);
357 return sg_dma_address(p->cur_sg) +
358 (sg_dma_len(p->cur_sg) -
359 p->cur_residue);
362 static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
363 struct scsi_cmnd *cmd)
365 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
367 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
368 return SCSI_SENSE_BUFFERSIZE -
369 (ent->sense_ptr - cmd->sense_buffer);
371 return p->cur_residue;
374 static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
375 struct scsi_cmnd *cmd, unsigned int len)
377 struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
379 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
380 ent->sense_ptr += len;
381 return;
384 p->cur_residue -= len;
385 p->tot_residue -= len;
386 if (p->cur_residue < 0 || p->tot_residue < 0) {
387 printk(KERN_ERR PFX "esp%d: Data transfer overflow.\n",
388 esp->host->unique_id);
389 printk(KERN_ERR PFX "esp%d: cur_residue[%d] tot_residue[%d] "
390 "len[%u]\n",
391 esp->host->unique_id,
392 p->cur_residue, p->tot_residue, len);
393 p->cur_residue = 0;
394 p->tot_residue = 0;
396 if (!p->cur_residue && p->tot_residue) {
397 p->cur_sg++;
398 p->cur_residue = sg_dma_len(p->cur_sg);
402 static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
404 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
405 int dir = cmd->sc_data_direction;
407 if (dir == DMA_NONE)
408 return;
410 esp->ops->unmap_sg(esp, cmd->request_buffer,
411 spriv->u.num_sg, dir);
414 static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
416 struct scsi_cmnd *cmd = ent->cmd;
417 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
419 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
420 ent->saved_sense_ptr = ent->sense_ptr;
421 return;
423 ent->saved_cur_residue = spriv->cur_residue;
424 ent->saved_cur_sg = spriv->cur_sg;
425 ent->saved_tot_residue = spriv->tot_residue;
428 static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
430 struct scsi_cmnd *cmd = ent->cmd;
431 struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
433 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
434 ent->sense_ptr = ent->saved_sense_ptr;
435 return;
437 spriv->cur_residue = ent->saved_cur_residue;
438 spriv->cur_sg = ent->saved_cur_sg;
439 spriv->tot_residue = ent->saved_tot_residue;
442 static void esp_check_command_len(struct esp *esp, struct scsi_cmnd *cmd)
444 if (cmd->cmd_len == 6 ||
445 cmd->cmd_len == 10 ||
446 cmd->cmd_len == 12) {
447 esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
448 } else {
449 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
453 static void esp_write_tgt_config3(struct esp *esp, int tgt)
455 if (esp->rev > ESP100A) {
456 u8 val = esp->target[tgt].esp_config3;
458 if (val != esp->prev_cfg3) {
459 esp->prev_cfg3 = val;
460 esp_write8(val, ESP_CFG3);
465 static void esp_write_tgt_sync(struct esp *esp, int tgt)
467 u8 off = esp->target[tgt].esp_offset;
468 u8 per = esp->target[tgt].esp_period;
470 if (off != esp->prev_soff) {
471 esp->prev_soff = off;
472 esp_write8(off, ESP_SOFF);
474 if (per != esp->prev_stp) {
475 esp->prev_stp = per;
476 esp_write8(per, ESP_STP);
480 static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
482 if (esp->rev == FASHME) {
483 /* Arbitrary segment boundaries, 24-bit counts. */
484 if (dma_len > (1U << 24))
485 dma_len = (1U << 24);
486 } else {
487 u32 base, end;
489 /* ESP chip limits other variants by 16-bits of transfer
490 * count. Actually on FAS100A and FAS236 we could get
491 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
492 * in the ESP_CFG2 register but that causes other unwanted
493 * changes so we don't use it currently.
495 if (dma_len > (1U << 16))
496 dma_len = (1U << 16);
498 /* All of the DMA variants hooked up to these chips
499 * cannot handle crossing a 24-bit address boundary.
501 base = dma_addr & ((1U << 24) - 1U);
502 end = base + dma_len;
503 if (end > (1U << 24))
504 end = (1U <<24);
505 dma_len = end - base;
507 return dma_len;
510 static int esp_need_to_nego_wide(struct esp_target_data *tp)
512 struct scsi_target *target = tp->starget;
514 return spi_width(target) != tp->nego_goal_width;
517 static int esp_need_to_nego_sync(struct esp_target_data *tp)
519 struct scsi_target *target = tp->starget;
521 /* When offset is zero, period is "don't care". */
522 if (!spi_offset(target) && !tp->nego_goal_offset)
523 return 0;
525 if (spi_offset(target) == tp->nego_goal_offset &&
526 spi_period(target) == tp->nego_goal_period)
527 return 0;
529 return 1;
532 static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
533 struct esp_lun_data *lp)
535 if (!ent->tag[0]) {
536 /* Non-tagged, slot already taken? */
537 if (lp->non_tagged_cmd)
538 return -EBUSY;
540 if (lp->hold) {
541 /* We are being held by active tagged
542 * commands.
544 if (lp->num_tagged)
545 return -EBUSY;
547 /* Tagged commands completed, we can unplug
548 * the queue and run this untagged command.
550 lp->hold = 0;
551 } else if (lp->num_tagged) {
552 /* Plug the queue until num_tagged decreases
553 * to zero in esp_free_lun_tag.
555 lp->hold = 1;
556 return -EBUSY;
559 lp->non_tagged_cmd = ent;
560 return 0;
561 } else {
562 /* Tagged command, see if blocked by a
563 * non-tagged one.
565 if (lp->non_tagged_cmd || lp->hold)
566 return -EBUSY;
569 BUG_ON(lp->tagged_cmds[ent->tag[1]]);
571 lp->tagged_cmds[ent->tag[1]] = ent;
572 lp->num_tagged++;
574 return 0;
577 static void esp_free_lun_tag(struct esp_cmd_entry *ent,
578 struct esp_lun_data *lp)
580 if (ent->tag[0]) {
581 BUG_ON(lp->tagged_cmds[ent->tag[1]] != ent);
582 lp->tagged_cmds[ent->tag[1]] = NULL;
583 lp->num_tagged--;
584 } else {
585 BUG_ON(lp->non_tagged_cmd != ent);
586 lp->non_tagged_cmd = NULL;
590 /* When a contingent allegiance conditon is created, we force feed a
591 * REQUEST_SENSE command to the device to fetch the sense data. I
592 * tried many other schemes, relying on the scsi error handling layer
593 * to send out the REQUEST_SENSE automatically, but this was difficult
594 * to get right especially in the presence of applications like smartd
595 * which use SG_IO to send out their own REQUEST_SENSE commands.
597 static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
599 struct scsi_cmnd *cmd = ent->cmd;
600 struct scsi_device *dev = cmd->device;
601 int tgt, lun;
602 u8 *p, val;
604 tgt = dev->id;
605 lun = dev->lun;
608 if (!ent->sense_ptr) {
609 esp_log_autosense("esp%d: Doing auto-sense for "
610 "tgt[%d] lun[%d]\n",
611 esp->host->unique_id, tgt, lun);
613 ent->sense_ptr = cmd->sense_buffer;
614 ent->sense_dma = esp->ops->map_single(esp,
615 ent->sense_ptr,
616 SCSI_SENSE_BUFFERSIZE,
617 DMA_FROM_DEVICE);
619 ent->saved_sense_ptr = ent->sense_ptr;
621 esp->active_cmd = ent;
623 p = esp->command_block;
624 esp->msg_out_len = 0;
626 *p++ = IDENTIFY(0, lun);
627 *p++ = REQUEST_SENSE;
628 *p++ = ((dev->scsi_level <= SCSI_2) ?
629 (lun << 5) : 0);
630 *p++ = 0;
631 *p++ = 0;
632 *p++ = SCSI_SENSE_BUFFERSIZE;
633 *p++ = 0;
635 esp->select_state = ESP_SELECT_BASIC;
637 val = tgt;
638 if (esp->rev == FASHME)
639 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
640 esp_write8(val, ESP_BUSID);
642 esp_write_tgt_sync(esp, tgt);
643 esp_write_tgt_config3(esp, tgt);
645 val = (p - esp->command_block);
647 if (esp->rev == FASHME)
648 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
649 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
650 val, 16, 0, ESP_CMD_DMA | ESP_CMD_SELA);
653 static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
655 struct esp_cmd_entry *ent;
657 list_for_each_entry(ent, &esp->queued_cmds, list) {
658 struct scsi_cmnd *cmd = ent->cmd;
659 struct scsi_device *dev = cmd->device;
660 struct esp_lun_data *lp = dev->hostdata;
662 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
663 ent->tag[0] = 0;
664 ent->tag[1] = 0;
665 return ent;
668 if (!scsi_populate_tag_msg(cmd, &ent->tag[0])) {
669 ent->tag[0] = 0;
670 ent->tag[1] = 0;
673 if (esp_alloc_lun_tag(ent, lp) < 0)
674 continue;
676 return ent;
679 return NULL;
682 static void esp_maybe_execute_command(struct esp *esp)
684 struct esp_target_data *tp;
685 struct esp_lun_data *lp;
686 struct scsi_device *dev;
687 struct scsi_cmnd *cmd;
688 struct esp_cmd_entry *ent;
689 int tgt, lun, i;
690 u32 val, start_cmd;
691 u8 *p;
693 if (esp->active_cmd ||
694 (esp->flags & ESP_FLAG_RESETTING))
695 return;
697 ent = find_and_prep_issuable_command(esp);
698 if (!ent)
699 return;
701 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
702 esp_autosense(esp, ent);
703 return;
706 cmd = ent->cmd;
707 dev = cmd->device;
708 tgt = dev->id;
709 lun = dev->lun;
710 tp = &esp->target[tgt];
711 lp = dev->hostdata;
713 list_del(&ent->list);
714 list_add(&ent->list, &esp->active_cmds);
716 esp->active_cmd = ent;
718 esp_map_dma(esp, cmd);
719 esp_save_pointers(esp, ent);
721 esp_check_command_len(esp, cmd);
723 p = esp->command_block;
725 esp->msg_out_len = 0;
726 if (tp->flags & ESP_TGT_CHECK_NEGO) {
727 /* Need to negotiate. If the target is broken
728 * go for synchronous transfers and non-wide.
730 if (tp->flags & ESP_TGT_BROKEN) {
731 tp->flags &= ~ESP_TGT_DISCONNECT;
732 tp->nego_goal_period = 0;
733 tp->nego_goal_offset = 0;
734 tp->nego_goal_width = 0;
735 tp->nego_goal_tags = 0;
738 /* If the settings are not changing, skip this. */
739 if (spi_width(tp->starget) == tp->nego_goal_width &&
740 spi_period(tp->starget) == tp->nego_goal_period &&
741 spi_offset(tp->starget) == tp->nego_goal_offset) {
742 tp->flags &= ~ESP_TGT_CHECK_NEGO;
743 goto build_identify;
746 if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
747 esp->msg_out_len =
748 spi_populate_width_msg(&esp->msg_out[0],
749 (tp->nego_goal_width ?
750 1 : 0));
751 tp->flags |= ESP_TGT_NEGO_WIDE;
752 } else if (esp_need_to_nego_sync(tp)) {
753 esp->msg_out_len =
754 spi_populate_sync_msg(&esp->msg_out[0],
755 tp->nego_goal_period,
756 tp->nego_goal_offset);
757 tp->flags |= ESP_TGT_NEGO_SYNC;
758 } else {
759 tp->flags &= ~ESP_TGT_CHECK_NEGO;
762 /* Process it like a slow command. */
763 if (tp->flags & (ESP_TGT_NEGO_WIDE | ESP_TGT_NEGO_SYNC))
764 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
767 build_identify:
768 /* If we don't have a lun-data struct yet, we're probing
769 * so do not disconnect. Also, do not disconnect unless
770 * we have a tag on this command.
772 if (lp && (tp->flags & ESP_TGT_DISCONNECT) && ent->tag[0])
773 *p++ = IDENTIFY(1, lun);
774 else
775 *p++ = IDENTIFY(0, lun);
777 if (ent->tag[0] && esp->rev == ESP100) {
778 /* ESP100 lacks select w/atn3 command, use select
779 * and stop instead.
781 esp->flags |= ESP_FLAG_DOING_SLOWCMD;
784 if (!(esp->flags & ESP_FLAG_DOING_SLOWCMD)) {
785 start_cmd = ESP_CMD_DMA | ESP_CMD_SELA;
786 if (ent->tag[0]) {
787 *p++ = ent->tag[0];
788 *p++ = ent->tag[1];
790 start_cmd = ESP_CMD_DMA | ESP_CMD_SA3;
793 for (i = 0; i < cmd->cmd_len; i++)
794 *p++ = cmd->cmnd[i];
796 esp->select_state = ESP_SELECT_BASIC;
797 } else {
798 esp->cmd_bytes_left = cmd->cmd_len;
799 esp->cmd_bytes_ptr = &cmd->cmnd[0];
801 if (ent->tag[0]) {
802 for (i = esp->msg_out_len - 1;
803 i >= 0; i--)
804 esp->msg_out[i + 2] = esp->msg_out[i];
805 esp->msg_out[0] = ent->tag[0];
806 esp->msg_out[1] = ent->tag[1];
807 esp->msg_out_len += 2;
810 start_cmd = ESP_CMD_DMA | ESP_CMD_SELAS;
811 esp->select_state = ESP_SELECT_MSGOUT;
813 val = tgt;
814 if (esp->rev == FASHME)
815 val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
816 esp_write8(val, ESP_BUSID);
818 esp_write_tgt_sync(esp, tgt);
819 esp_write_tgt_config3(esp, tgt);
821 val = (p - esp->command_block);
823 if (esp_debug & ESP_DEBUG_SCSICMD) {
824 printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
825 for (i = 0; i < cmd->cmd_len; i++)
826 printk("%02x ", cmd->cmnd[i]);
827 printk("]\n");
830 if (esp->rev == FASHME)
831 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
832 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
833 val, 16, 0, start_cmd);
836 static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
838 struct list_head *head = &esp->esp_cmd_pool;
839 struct esp_cmd_entry *ret;
841 if (list_empty(head)) {
842 ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
843 } else {
844 ret = list_entry(head->next, struct esp_cmd_entry, list);
845 list_del(&ret->list);
846 memset(ret, 0, sizeof(*ret));
848 return ret;
851 static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
853 list_add(&ent->list, &esp->esp_cmd_pool);
856 static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
857 struct scsi_cmnd *cmd, unsigned int result)
859 struct scsi_device *dev = cmd->device;
860 int tgt = dev->id;
861 int lun = dev->lun;
863 esp->active_cmd = NULL;
864 esp_unmap_dma(esp, cmd);
865 esp_free_lun_tag(ent, dev->hostdata);
866 cmd->result = result;
868 if (ent->eh_done) {
869 complete(ent->eh_done);
870 ent->eh_done = NULL;
873 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
874 esp->ops->unmap_single(esp, ent->sense_dma,
875 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
876 ent->sense_ptr = NULL;
878 /* Restore the message/status bytes to what we actually
879 * saw originally. Also, report that we are providing
880 * the sense data.
882 cmd->result = ((DRIVER_SENSE << 24) |
883 (DID_OK << 16) |
884 (COMMAND_COMPLETE << 8) |
885 (SAM_STAT_CHECK_CONDITION << 0));
887 ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
888 if (esp_debug & ESP_DEBUG_AUTOSENSE) {
889 int i;
891 printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
892 esp->host->unique_id, tgt, lun);
893 for (i = 0; i < 18; i++)
894 printk("%02x ", cmd->sense_buffer[i]);
895 printk("]\n");
899 cmd->scsi_done(cmd);
901 list_del(&ent->list);
902 esp_put_ent(esp, ent);
904 esp_maybe_execute_command(esp);
907 static unsigned int compose_result(unsigned int status, unsigned int message,
908 unsigned int driver_code)
910 return (status | (message << 8) | (driver_code << 16));
913 static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
915 struct scsi_device *dev = ent->cmd->device;
916 struct esp_lun_data *lp = dev->hostdata;
918 scsi_track_queue_full(dev, lp->num_tagged - 1);
921 static int esp_queuecommand(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
923 struct scsi_device *dev = cmd->device;
924 struct esp *esp = host_to_esp(dev->host);
925 struct esp_cmd_priv *spriv;
926 struct esp_cmd_entry *ent;
928 ent = esp_get_ent(esp);
929 if (!ent)
930 return SCSI_MLQUEUE_HOST_BUSY;
932 ent->cmd = cmd;
934 cmd->scsi_done = done;
936 spriv = ESP_CMD_PRIV(cmd);
937 spriv->u.dma_addr = ~(dma_addr_t)0x0;
939 list_add_tail(&ent->list, &esp->queued_cmds);
941 esp_maybe_execute_command(esp);
943 return 0;
946 static int esp_check_gross_error(struct esp *esp)
948 if (esp->sreg & ESP_STAT_SPAM) {
949 /* Gross Error, could be one of:
950 * - top of fifo overwritten
951 * - top of command register overwritten
952 * - DMA programmed with wrong direction
953 * - improper phase change
955 printk(KERN_ERR PFX "esp%d: Gross error sreg[%02x]\n",
956 esp->host->unique_id, esp->sreg);
957 /* XXX Reset the chip. XXX */
958 return 1;
960 return 0;
963 static int esp_check_spur_intr(struct esp *esp)
965 switch (esp->rev) {
966 case ESP100:
967 case ESP100A:
968 /* The interrupt pending bit of the status register cannot
969 * be trusted on these revisions.
971 esp->sreg &= ~ESP_STAT_INTR;
972 break;
974 default:
975 if (!(esp->sreg & ESP_STAT_INTR)) {
976 esp->ireg = esp_read8(ESP_INTRPT);
977 if (esp->ireg & ESP_INTR_SR)
978 return 1;
980 /* If the DMA is indicating interrupt pending and the
981 * ESP is not, the only possibility is a DMA error.
983 if (!esp->ops->dma_error(esp)) {
984 printk(KERN_ERR PFX "esp%d: Spurious irq, "
985 "sreg=%x.\n",
986 esp->host->unique_id, esp->sreg);
987 return -1;
990 printk(KERN_ERR PFX "esp%d: DMA error\n",
991 esp->host->unique_id);
993 /* XXX Reset the chip. XXX */
994 return -1;
996 break;
999 return 0;
1002 static void esp_schedule_reset(struct esp *esp)
1004 esp_log_reset("ESP: esp_schedule_reset() from %p\n",
1005 __builtin_return_address(0));
1006 esp->flags |= ESP_FLAG_RESETTING;
1007 esp_event(esp, ESP_EVENT_RESET);
1010 /* In order to avoid having to add a special half-reconnected state
1011 * into the driver we just sit here and poll through the rest of
1012 * the reselection process to get the tag message bytes.
1014 static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
1015 struct esp_lun_data *lp)
1017 struct esp_cmd_entry *ent;
1018 int i;
1020 if (!lp->num_tagged) {
1021 printk(KERN_ERR PFX "esp%d: Reconnect w/num_tagged==0\n",
1022 esp->host->unique_id);
1023 return NULL;
1026 esp_log_reconnect("ESP: reconnect tag, ");
1028 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
1029 if (esp->ops->irq_pending(esp))
1030 break;
1032 if (i == ESP_QUICKIRQ_LIMIT) {
1033 printk(KERN_ERR PFX "esp%d: Reconnect IRQ1 timeout\n",
1034 esp->host->unique_id);
1035 return NULL;
1038 esp->sreg = esp_read8(ESP_STATUS);
1039 esp->ireg = esp_read8(ESP_INTRPT);
1041 esp_log_reconnect("IRQ(%d:%x:%x), ",
1042 i, esp->ireg, esp->sreg);
1044 if (esp->ireg & ESP_INTR_DC) {
1045 printk(KERN_ERR PFX "esp%d: Reconnect, got disconnect.\n",
1046 esp->host->unique_id);
1047 return NULL;
1050 if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
1051 printk(KERN_ERR PFX "esp%d: Reconnect, not MIP sreg[%02x].\n",
1052 esp->host->unique_id, esp->sreg);
1053 return NULL;
1056 /* DMA in the tag bytes... */
1057 esp->command_block[0] = 0xff;
1058 esp->command_block[1] = 0xff;
1059 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1060 2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
1062 /* ACK the msssage. */
1063 scsi_esp_cmd(esp, ESP_CMD_MOK);
1065 for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
1066 if (esp->ops->irq_pending(esp)) {
1067 esp->sreg = esp_read8(ESP_STATUS);
1068 esp->ireg = esp_read8(ESP_INTRPT);
1069 if (esp->ireg & ESP_INTR_FDONE)
1070 break;
1072 udelay(1);
1074 if (i == ESP_RESELECT_TAG_LIMIT) {
1075 printk(KERN_ERR PFX "esp%d: Reconnect IRQ2 timeout\n",
1076 esp->host->unique_id);
1077 return NULL;
1079 esp->ops->dma_drain(esp);
1080 esp->ops->dma_invalidate(esp);
1082 esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
1083 i, esp->ireg, esp->sreg,
1084 esp->command_block[0],
1085 esp->command_block[1]);
1087 if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
1088 esp->command_block[0] > ORDERED_QUEUE_TAG) {
1089 printk(KERN_ERR PFX "esp%d: Reconnect, bad tag "
1090 "type %02x.\n",
1091 esp->host->unique_id, esp->command_block[0]);
1092 return NULL;
1095 ent = lp->tagged_cmds[esp->command_block[1]];
1096 if (!ent) {
1097 printk(KERN_ERR PFX "esp%d: Reconnect, no entry for "
1098 "tag %02x.\n",
1099 esp->host->unique_id, esp->command_block[1]);
1100 return NULL;
1103 return ent;
1106 static int esp_reconnect(struct esp *esp)
1108 struct esp_cmd_entry *ent;
1109 struct esp_target_data *tp;
1110 struct esp_lun_data *lp;
1111 struct scsi_device *dev;
1112 int target, lun;
1114 BUG_ON(esp->active_cmd);
1115 if (esp->rev == FASHME) {
1116 /* FASHME puts the target and lun numbers directly
1117 * into the fifo.
1119 target = esp->fifo[0];
1120 lun = esp->fifo[1] & 0x7;
1121 } else {
1122 u8 bits = esp_read8(ESP_FDATA);
1124 /* Older chips put the lun directly into the fifo, but
1125 * the target is given as a sample of the arbitration
1126 * lines on the bus at reselection time. So we should
1127 * see the ID of the ESP and the one reconnecting target
1128 * set in the bitmap.
1130 if (!(bits & esp->scsi_id_mask))
1131 goto do_reset;
1132 bits &= ~esp->scsi_id_mask;
1133 if (!bits || (bits & (bits - 1)))
1134 goto do_reset;
1136 target = ffs(bits) - 1;
1137 lun = (esp_read8(ESP_FDATA) & 0x7);
1139 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1140 if (esp->rev == ESP100) {
1141 u8 ireg = esp_read8(ESP_INTRPT);
1142 /* This chip has a bug during reselection that can
1143 * cause a spurious illegal-command interrupt, which
1144 * we simply ACK here. Another possibility is a bus
1145 * reset so we must check for that.
1147 if (ireg & ESP_INTR_SR)
1148 goto do_reset;
1150 scsi_esp_cmd(esp, ESP_CMD_NULL);
1153 esp_write_tgt_sync(esp, target);
1154 esp_write_tgt_config3(esp, target);
1156 scsi_esp_cmd(esp, ESP_CMD_MOK);
1158 if (esp->rev == FASHME)
1159 esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
1160 ESP_BUSID);
1162 tp = &esp->target[target];
1163 dev = __scsi_device_lookup_by_target(tp->starget, lun);
1164 if (!dev) {
1165 printk(KERN_ERR PFX "esp%d: Reconnect, no lp "
1166 "tgt[%u] lun[%u]\n",
1167 esp->host->unique_id, target, lun);
1168 goto do_reset;
1170 lp = dev->hostdata;
1172 ent = lp->non_tagged_cmd;
1173 if (!ent) {
1174 ent = esp_reconnect_with_tag(esp, lp);
1175 if (!ent)
1176 goto do_reset;
1179 esp->active_cmd = ent;
1181 if (ent->flags & ESP_CMD_FLAG_ABORT) {
1182 esp->msg_out[0] = ABORT_TASK_SET;
1183 esp->msg_out_len = 1;
1184 scsi_esp_cmd(esp, ESP_CMD_SATN);
1187 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1188 esp_restore_pointers(esp, ent);
1189 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1190 return 1;
1192 do_reset:
1193 esp_schedule_reset(esp);
1194 return 0;
1197 static int esp_finish_select(struct esp *esp)
1199 struct esp_cmd_entry *ent;
1200 struct scsi_cmnd *cmd;
1201 u8 orig_select_state;
1203 orig_select_state = esp->select_state;
1205 /* No longer selecting. */
1206 esp->select_state = ESP_SELECT_NONE;
1208 esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
1209 ent = esp->active_cmd;
1210 cmd = ent->cmd;
1212 if (esp->ops->dma_error(esp)) {
1213 /* If we see a DMA error during or as a result of selection,
1214 * all bets are off.
1216 esp_schedule_reset(esp);
1217 esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
1218 return 0;
1221 esp->ops->dma_invalidate(esp);
1223 if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
1224 struct esp_target_data *tp = &esp->target[cmd->device->id];
1226 /* Carefully back out of the selection attempt. Release
1227 * resources (such as DMA mapping & TAG) and reset state (such
1228 * as message out and command delivery variables).
1230 if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1231 esp_unmap_dma(esp, cmd);
1232 esp_free_lun_tag(ent, cmd->device->hostdata);
1233 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
1234 esp->flags &= ~ESP_FLAG_DOING_SLOWCMD;
1235 esp->cmd_bytes_ptr = NULL;
1236 esp->cmd_bytes_left = 0;
1237 } else {
1238 esp->ops->unmap_single(esp, ent->sense_dma,
1239 SCSI_SENSE_BUFFERSIZE,
1240 DMA_FROM_DEVICE);
1241 ent->sense_ptr = NULL;
1244 /* Now that the state is unwound properly, put back onto
1245 * the issue queue. This command is no longer active.
1247 list_del(&ent->list);
1248 list_add(&ent->list, &esp->queued_cmds);
1249 esp->active_cmd = NULL;
1251 /* Return value ignored by caller, it directly invokes
1252 * esp_reconnect().
1254 return 0;
1257 if (esp->ireg == ESP_INTR_DC) {
1258 struct scsi_device *dev = cmd->device;
1260 /* Disconnect. Make sure we re-negotiate sync and
1261 * wide parameters if this target starts responding
1262 * again in the future.
1264 esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
1266 scsi_esp_cmd(esp, ESP_CMD_ESEL);
1267 esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
1268 return 1;
1271 if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
1272 /* Selection successful. On pre-FAST chips we have
1273 * to do a NOP and possibly clean out the FIFO.
1275 if (esp->rev <= ESP236) {
1276 int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1278 scsi_esp_cmd(esp, ESP_CMD_NULL);
1280 if (!fcnt &&
1281 (!esp->prev_soff ||
1282 ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
1283 esp_flush_fifo(esp);
1286 /* If we are doing a slow command, negotiation, etc.
1287 * we'll do the right thing as we transition to the
1288 * next phase.
1290 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1291 return 0;
1294 printk("ESP: Unexpected selection completion ireg[%x].\n",
1295 esp->ireg);
1296 esp_schedule_reset(esp);
1297 return 0;
1300 static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
1301 struct scsi_cmnd *cmd)
1303 int fifo_cnt, ecount, bytes_sent, flush_fifo;
1305 fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
1306 if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
1307 fifo_cnt <<= 1;
1309 ecount = 0;
1310 if (!(esp->sreg & ESP_STAT_TCNT)) {
1311 ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
1312 (((unsigned int)esp_read8(ESP_TCMED)) << 8));
1313 if (esp->rev == FASHME)
1314 ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
1317 bytes_sent = esp->data_dma_len;
1318 bytes_sent -= ecount;
1320 if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1321 bytes_sent -= fifo_cnt;
1323 flush_fifo = 0;
1324 if (!esp->prev_soff) {
1325 /* Synchronous data transfer, always flush fifo. */
1326 flush_fifo = 1;
1327 } else {
1328 if (esp->rev == ESP100) {
1329 u32 fflags, phase;
1331 /* ESP100 has a chip bug where in the synchronous data
1332 * phase it can mistake a final long REQ pulse from the
1333 * target as an extra data byte. Fun.
1335 * To detect this case we resample the status register
1336 * and fifo flags. If we're still in a data phase and
1337 * we see spurious chunks in the fifo, we return error
1338 * to the caller which should reset and set things up
1339 * such that we only try future transfers to this
1340 * target in synchronous mode.
1342 esp->sreg = esp_read8(ESP_STATUS);
1343 phase = esp->sreg & ESP_STAT_PMASK;
1344 fflags = esp_read8(ESP_FFLAGS);
1346 if ((phase == ESP_DOP &&
1347 (fflags & ESP_FF_ONOTZERO)) ||
1348 (phase == ESP_DIP &&
1349 (fflags & ESP_FF_FBYTES)))
1350 return -1;
1352 if (!(ent->flags & ESP_CMD_FLAG_WRITE))
1353 flush_fifo = 1;
1356 if (flush_fifo)
1357 esp_flush_fifo(esp);
1359 return bytes_sent;
1362 static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
1363 u8 scsi_period, u8 scsi_offset,
1364 u8 esp_stp, u8 esp_soff)
1366 spi_period(tp->starget) = scsi_period;
1367 spi_offset(tp->starget) = scsi_offset;
1368 spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
1370 if (esp_soff) {
1371 esp_stp &= 0x1f;
1372 esp_soff |= esp->radelay;
1373 if (esp->rev >= FAS236) {
1374 u8 bit = ESP_CONFIG3_FSCSI;
1375 if (esp->rev >= FAS100A)
1376 bit = ESP_CONFIG3_FAST;
1378 if (scsi_period < 50) {
1379 if (esp->rev == FASHME)
1380 esp_soff &= ~esp->radelay;
1381 tp->esp_config3 |= bit;
1382 } else {
1383 tp->esp_config3 &= ~bit;
1385 esp->prev_cfg3 = tp->esp_config3;
1386 esp_write8(esp->prev_cfg3, ESP_CFG3);
1390 tp->esp_period = esp->prev_stp = esp_stp;
1391 tp->esp_offset = esp->prev_soff = esp_soff;
1393 esp_write8(esp_soff, ESP_SOFF);
1394 esp_write8(esp_stp, ESP_STP);
1396 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1398 spi_display_xfer_agreement(tp->starget);
1401 static void esp_msgin_reject(struct esp *esp)
1403 struct esp_cmd_entry *ent = esp->active_cmd;
1404 struct scsi_cmnd *cmd = ent->cmd;
1405 struct esp_target_data *tp;
1406 int tgt;
1408 tgt = cmd->device->id;
1409 tp = &esp->target[tgt];
1411 if (tp->flags & ESP_TGT_NEGO_WIDE) {
1412 tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
1414 if (!esp_need_to_nego_sync(tp)) {
1415 tp->flags &= ~ESP_TGT_CHECK_NEGO;
1416 scsi_esp_cmd(esp, ESP_CMD_RATN);
1417 } else {
1418 esp->msg_out_len =
1419 spi_populate_sync_msg(&esp->msg_out[0],
1420 tp->nego_goal_period,
1421 tp->nego_goal_offset);
1422 tp->flags |= ESP_TGT_NEGO_SYNC;
1423 scsi_esp_cmd(esp, ESP_CMD_SATN);
1425 return;
1428 if (tp->flags & ESP_TGT_NEGO_SYNC) {
1429 tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
1430 tp->esp_period = 0;
1431 tp->esp_offset = 0;
1432 esp_setsync(esp, tp, 0, 0, 0, 0);
1433 scsi_esp_cmd(esp, ESP_CMD_RATN);
1434 return;
1437 esp->msg_out[0] = ABORT_TASK_SET;
1438 esp->msg_out_len = 1;
1439 scsi_esp_cmd(esp, ESP_CMD_SATN);
1442 static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
1444 u8 period = esp->msg_in[3];
1445 u8 offset = esp->msg_in[4];
1446 u8 stp;
1448 if (!(tp->flags & ESP_TGT_NEGO_SYNC))
1449 goto do_reject;
1451 if (offset > 15)
1452 goto do_reject;
1454 if (offset) {
1455 int rounded_up, one_clock;
1457 if (period > esp->max_period) {
1458 period = offset = 0;
1459 goto do_sdtr;
1461 if (period < esp->min_period)
1462 goto do_reject;
1464 one_clock = esp->ccycle / 1000;
1465 rounded_up = (period << 2);
1466 rounded_up = (rounded_up + one_clock - 1) / one_clock;
1467 stp = rounded_up;
1468 if (stp && esp->rev >= FAS236) {
1469 if (stp >= 50)
1470 stp--;
1472 } else {
1473 stp = 0;
1476 esp_setsync(esp, tp, period, offset, stp, offset);
1477 return;
1479 do_reject:
1480 esp->msg_out[0] = MESSAGE_REJECT;
1481 esp->msg_out_len = 1;
1482 scsi_esp_cmd(esp, ESP_CMD_SATN);
1483 return;
1485 do_sdtr:
1486 tp->nego_goal_period = period;
1487 tp->nego_goal_offset = offset;
1488 esp->msg_out_len =
1489 spi_populate_sync_msg(&esp->msg_out[0],
1490 tp->nego_goal_period,
1491 tp->nego_goal_offset);
1492 scsi_esp_cmd(esp, ESP_CMD_SATN);
1495 static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
1497 int size = 8 << esp->msg_in[3];
1498 u8 cfg3;
1500 if (esp->rev != FASHME)
1501 goto do_reject;
1503 if (size != 8 && size != 16)
1504 goto do_reject;
1506 if (!(tp->flags & ESP_TGT_NEGO_WIDE))
1507 goto do_reject;
1509 cfg3 = tp->esp_config3;
1510 if (size == 16) {
1511 tp->flags |= ESP_TGT_WIDE;
1512 cfg3 |= ESP_CONFIG3_EWIDE;
1513 } else {
1514 tp->flags &= ~ESP_TGT_WIDE;
1515 cfg3 &= ~ESP_CONFIG3_EWIDE;
1517 tp->esp_config3 = cfg3;
1518 esp->prev_cfg3 = cfg3;
1519 esp_write8(cfg3, ESP_CFG3);
1521 tp->flags &= ~ESP_TGT_NEGO_WIDE;
1523 spi_period(tp->starget) = 0;
1524 spi_offset(tp->starget) = 0;
1525 if (!esp_need_to_nego_sync(tp)) {
1526 tp->flags &= ~ESP_TGT_CHECK_NEGO;
1527 scsi_esp_cmd(esp, ESP_CMD_RATN);
1528 } else {
1529 esp->msg_out_len =
1530 spi_populate_sync_msg(&esp->msg_out[0],
1531 tp->nego_goal_period,
1532 tp->nego_goal_offset);
1533 tp->flags |= ESP_TGT_NEGO_SYNC;
1534 scsi_esp_cmd(esp, ESP_CMD_SATN);
1536 return;
1538 do_reject:
1539 esp->msg_out[0] = MESSAGE_REJECT;
1540 esp->msg_out_len = 1;
1541 scsi_esp_cmd(esp, ESP_CMD_SATN);
1544 static void esp_msgin_extended(struct esp *esp)
1546 struct esp_cmd_entry *ent = esp->active_cmd;
1547 struct scsi_cmnd *cmd = ent->cmd;
1548 struct esp_target_data *tp;
1549 int tgt = cmd->device->id;
1551 tp = &esp->target[tgt];
1552 if (esp->msg_in[2] == EXTENDED_SDTR) {
1553 esp_msgin_sdtr(esp, tp);
1554 return;
1556 if (esp->msg_in[2] == EXTENDED_WDTR) {
1557 esp_msgin_wdtr(esp, tp);
1558 return;
1561 printk("ESP: Unexpected extended msg type %x\n",
1562 esp->msg_in[2]);
1564 esp->msg_out[0] = ABORT_TASK_SET;
1565 esp->msg_out_len = 1;
1566 scsi_esp_cmd(esp, ESP_CMD_SATN);
1569 /* Analyze msgin bytes received from target so far. Return non-zero
1570 * if there are more bytes needed to complete the message.
1572 static int esp_msgin_process(struct esp *esp)
1574 u8 msg0 = esp->msg_in[0];
1575 int len = esp->msg_in_len;
1577 if (msg0 & 0x80) {
1578 /* Identify */
1579 printk("ESP: Unexpected msgin identify\n");
1580 return 0;
1583 switch (msg0) {
1584 case EXTENDED_MESSAGE:
1585 if (len == 1)
1586 return 1;
1587 if (len < esp->msg_in[1] + 2)
1588 return 1;
1589 esp_msgin_extended(esp);
1590 return 0;
1592 case IGNORE_WIDE_RESIDUE: {
1593 struct esp_cmd_entry *ent;
1594 struct esp_cmd_priv *spriv;
1595 if (len == 1)
1596 return 1;
1598 if (esp->msg_in[1] != 1)
1599 goto do_reject;
1601 ent = esp->active_cmd;
1602 spriv = ESP_CMD_PRIV(ent->cmd);
1604 if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
1605 spriv->cur_sg--;
1606 spriv->cur_residue = 1;
1607 } else
1608 spriv->cur_residue++;
1609 spriv->tot_residue++;
1610 return 0;
1612 case NOP:
1613 return 0;
1614 case RESTORE_POINTERS:
1615 esp_restore_pointers(esp, esp->active_cmd);
1616 return 0;
1617 case SAVE_POINTERS:
1618 esp_save_pointers(esp, esp->active_cmd);
1619 return 0;
1621 case COMMAND_COMPLETE:
1622 case DISCONNECT: {
1623 struct esp_cmd_entry *ent = esp->active_cmd;
1625 ent->message = msg0;
1626 esp_event(esp, ESP_EVENT_FREE_BUS);
1627 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1628 return 0;
1630 case MESSAGE_REJECT:
1631 esp_msgin_reject(esp);
1632 return 0;
1634 default:
1635 do_reject:
1636 esp->msg_out[0] = MESSAGE_REJECT;
1637 esp->msg_out_len = 1;
1638 scsi_esp_cmd(esp, ESP_CMD_SATN);
1639 return 0;
1643 static int esp_process_event(struct esp *esp)
1645 int write;
1647 again:
1648 write = 0;
1649 switch (esp->event) {
1650 case ESP_EVENT_CHECK_PHASE:
1651 switch (esp->sreg & ESP_STAT_PMASK) {
1652 case ESP_DOP:
1653 esp_event(esp, ESP_EVENT_DATA_OUT);
1654 break;
1655 case ESP_DIP:
1656 esp_event(esp, ESP_EVENT_DATA_IN);
1657 break;
1658 case ESP_STATP:
1659 esp_flush_fifo(esp);
1660 scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
1661 esp_event(esp, ESP_EVENT_STATUS);
1662 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1663 return 1;
1665 case ESP_MOP:
1666 esp_event(esp, ESP_EVENT_MSGOUT);
1667 break;
1669 case ESP_MIP:
1670 esp_event(esp, ESP_EVENT_MSGIN);
1671 break;
1673 case ESP_CMDP:
1674 esp_event(esp, ESP_EVENT_CMD_START);
1675 break;
1677 default:
1678 printk("ESP: Unexpected phase, sreg=%02x\n",
1679 esp->sreg);
1680 esp_schedule_reset(esp);
1681 return 0;
1683 goto again;
1684 break;
1686 case ESP_EVENT_DATA_IN:
1687 write = 1;
1688 /* fallthru */
1690 case ESP_EVENT_DATA_OUT: {
1691 struct esp_cmd_entry *ent = esp->active_cmd;
1692 struct scsi_cmnd *cmd = ent->cmd;
1693 dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
1694 unsigned int dma_len = esp_cur_dma_len(ent, cmd);
1696 if (esp->rev == ESP100)
1697 scsi_esp_cmd(esp, ESP_CMD_NULL);
1699 if (write)
1700 ent->flags |= ESP_CMD_FLAG_WRITE;
1701 else
1702 ent->flags &= ~ESP_CMD_FLAG_WRITE;
1704 dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
1705 esp->data_dma_len = dma_len;
1707 if (!dma_len) {
1708 printk(KERN_ERR PFX "esp%d: DMA length is zero!\n",
1709 esp->host->unique_id);
1710 printk(KERN_ERR PFX "esp%d: cur adr[%08llx] len[%08x]\n",
1711 esp->host->unique_id,
1712 (unsigned long long)esp_cur_dma_addr(ent, cmd),
1713 esp_cur_dma_len(ent, cmd));
1714 esp_schedule_reset(esp);
1715 return 0;
1718 esp_log_datastart("ESP: start data addr[%08llx] len[%u] "
1719 "write(%d)\n",
1720 (unsigned long long)dma_addr, dma_len, write);
1722 esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
1723 write, ESP_CMD_DMA | ESP_CMD_TI);
1724 esp_event(esp, ESP_EVENT_DATA_DONE);
1725 break;
1727 case ESP_EVENT_DATA_DONE: {
1728 struct esp_cmd_entry *ent = esp->active_cmd;
1729 struct scsi_cmnd *cmd = ent->cmd;
1730 int bytes_sent;
1732 if (esp->ops->dma_error(esp)) {
1733 printk("ESP: data done, DMA error, resetting\n");
1734 esp_schedule_reset(esp);
1735 return 0;
1738 if (ent->flags & ESP_CMD_FLAG_WRITE) {
1739 /* XXX parity errors, etc. XXX */
1741 esp->ops->dma_drain(esp);
1743 esp->ops->dma_invalidate(esp);
1745 if (esp->ireg != ESP_INTR_BSERV) {
1746 /* We should always see exactly a bus-service
1747 * interrupt at the end of a successful transfer.
1749 printk("ESP: data done, not BSERV, resetting\n");
1750 esp_schedule_reset(esp);
1751 return 0;
1754 bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
1756 esp_log_datadone("ESP: data done flgs[%x] sent[%d]\n",
1757 ent->flags, bytes_sent);
1759 if (bytes_sent < 0) {
1760 /* XXX force sync mode for this target XXX */
1761 esp_schedule_reset(esp);
1762 return 0;
1765 esp_advance_dma(esp, ent, cmd, bytes_sent);
1766 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1767 goto again;
1768 break;
1771 case ESP_EVENT_STATUS: {
1772 struct esp_cmd_entry *ent = esp->active_cmd;
1774 if (esp->ireg & ESP_INTR_FDONE) {
1775 ent->status = esp_read8(ESP_FDATA);
1776 ent->message = esp_read8(ESP_FDATA);
1777 scsi_esp_cmd(esp, ESP_CMD_MOK);
1778 } else if (esp->ireg == ESP_INTR_BSERV) {
1779 ent->status = esp_read8(ESP_FDATA);
1780 ent->message = 0xff;
1781 esp_event(esp, ESP_EVENT_MSGIN);
1782 return 0;
1785 if (ent->message != COMMAND_COMPLETE) {
1786 printk("ESP: Unexpected message %x in status\n",
1787 ent->message);
1788 esp_schedule_reset(esp);
1789 return 0;
1792 esp_event(esp, ESP_EVENT_FREE_BUS);
1793 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1794 break;
1796 case ESP_EVENT_FREE_BUS: {
1797 struct esp_cmd_entry *ent = esp->active_cmd;
1798 struct scsi_cmnd *cmd = ent->cmd;
1800 if (ent->message == COMMAND_COMPLETE ||
1801 ent->message == DISCONNECT)
1802 scsi_esp_cmd(esp, ESP_CMD_ESEL);
1804 if (ent->message == COMMAND_COMPLETE) {
1805 esp_log_cmddone("ESP: Command done status[%x] "
1806 "message[%x]\n",
1807 ent->status, ent->message);
1808 if (ent->status == SAM_STAT_TASK_SET_FULL)
1809 esp_event_queue_full(esp, ent);
1811 if (ent->status == SAM_STAT_CHECK_CONDITION &&
1812 !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
1813 ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
1814 esp_autosense(esp, ent);
1815 } else {
1816 esp_cmd_is_done(esp, ent, cmd,
1817 compose_result(ent->status,
1818 ent->message,
1819 DID_OK));
1821 } else if (ent->message == DISCONNECT) {
1822 esp_log_disconnect("ESP: Disconnecting tgt[%d] "
1823 "tag[%x:%x]\n",
1824 cmd->device->id,
1825 ent->tag[0], ent->tag[1]);
1827 esp->active_cmd = NULL;
1828 esp_maybe_execute_command(esp);
1829 } else {
1830 printk("ESP: Unexpected message %x in freebus\n",
1831 ent->message);
1832 esp_schedule_reset(esp);
1833 return 0;
1835 if (esp->active_cmd)
1836 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1837 break;
1839 case ESP_EVENT_MSGOUT: {
1840 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1842 if (esp_debug & ESP_DEBUG_MSGOUT) {
1843 int i;
1844 printk("ESP: Sending message [ ");
1845 for (i = 0; i < esp->msg_out_len; i++)
1846 printk("%02x ", esp->msg_out[i]);
1847 printk("]\n");
1850 if (esp->rev == FASHME) {
1851 int i;
1853 /* Always use the fifo. */
1854 for (i = 0; i < esp->msg_out_len; i++) {
1855 esp_write8(esp->msg_out[i], ESP_FDATA);
1856 esp_write8(0, ESP_FDATA);
1858 scsi_esp_cmd(esp, ESP_CMD_TI);
1859 } else {
1860 if (esp->msg_out_len == 1) {
1861 esp_write8(esp->msg_out[0], ESP_FDATA);
1862 scsi_esp_cmd(esp, ESP_CMD_TI);
1863 } else {
1864 /* Use DMA. */
1865 memcpy(esp->command_block,
1866 esp->msg_out,
1867 esp->msg_out_len);
1869 esp->ops->send_dma_cmd(esp,
1870 esp->command_block_dma,
1871 esp->msg_out_len,
1872 esp->msg_out_len,
1874 ESP_CMD_DMA|ESP_CMD_TI);
1877 esp_event(esp, ESP_EVENT_MSGOUT_DONE);
1878 break;
1880 case ESP_EVENT_MSGOUT_DONE:
1881 if (esp->rev == FASHME) {
1882 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1883 } else {
1884 if (esp->msg_out_len > 1)
1885 esp->ops->dma_invalidate(esp);
1888 if (!(esp->ireg & ESP_INTR_DC)) {
1889 if (esp->rev != FASHME)
1890 scsi_esp_cmd(esp, ESP_CMD_NULL);
1892 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1893 goto again;
1894 case ESP_EVENT_MSGIN:
1895 if (esp->ireg & ESP_INTR_BSERV) {
1896 if (esp->rev == FASHME) {
1897 if (!(esp_read8(ESP_STATUS2) &
1898 ESP_STAT2_FEMPTY))
1899 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1900 } else {
1901 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1902 if (esp->rev == ESP100)
1903 scsi_esp_cmd(esp, ESP_CMD_NULL);
1905 scsi_esp_cmd(esp, ESP_CMD_TI);
1906 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1907 return 1;
1909 if (esp->ireg & ESP_INTR_FDONE) {
1910 u8 val;
1912 if (esp->rev == FASHME)
1913 val = esp->fifo[0];
1914 else
1915 val = esp_read8(ESP_FDATA);
1916 esp->msg_in[esp->msg_in_len++] = val;
1918 esp_log_msgin("ESP: Got msgin byte %x\n", val);
1920 if (!esp_msgin_process(esp))
1921 esp->msg_in_len = 0;
1923 if (esp->rev == FASHME)
1924 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1926 scsi_esp_cmd(esp, ESP_CMD_MOK);
1928 if (esp->event != ESP_EVENT_FREE_BUS)
1929 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1930 } else {
1931 printk("ESP: MSGIN neither BSERV not FDON, resetting");
1932 esp_schedule_reset(esp);
1933 return 0;
1935 break;
1936 case ESP_EVENT_CMD_START:
1937 memcpy(esp->command_block, esp->cmd_bytes_ptr,
1938 esp->cmd_bytes_left);
1939 if (esp->rev == FASHME)
1940 scsi_esp_cmd(esp, ESP_CMD_FLUSH);
1941 esp->ops->send_dma_cmd(esp, esp->command_block_dma,
1942 esp->cmd_bytes_left, 16, 0,
1943 ESP_CMD_DMA | ESP_CMD_TI);
1944 esp_event(esp, ESP_EVENT_CMD_DONE);
1945 esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
1946 break;
1947 case ESP_EVENT_CMD_DONE:
1948 esp->ops->dma_invalidate(esp);
1949 if (esp->ireg & ESP_INTR_BSERV) {
1950 esp_event(esp, ESP_EVENT_CHECK_PHASE);
1951 goto again;
1953 esp_schedule_reset(esp);
1954 return 0;
1955 break;
1957 case ESP_EVENT_RESET:
1958 scsi_esp_cmd(esp, ESP_CMD_RS);
1959 break;
1961 default:
1962 printk("ESP: Unexpected event %x, resetting\n",
1963 esp->event);
1964 esp_schedule_reset(esp);
1965 return 0;
1966 break;
1968 return 1;
1971 static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
1973 struct scsi_cmnd *cmd = ent->cmd;
1975 esp_unmap_dma(esp, cmd);
1976 esp_free_lun_tag(ent, cmd->device->hostdata);
1977 cmd->result = DID_RESET << 16;
1979 if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
1980 esp->ops->unmap_single(esp, ent->sense_dma,
1981 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
1982 ent->sense_ptr = NULL;
1985 cmd->scsi_done(cmd);
1986 list_del(&ent->list);
1987 esp_put_ent(esp, ent);
1990 static void esp_clear_hold(struct scsi_device *dev, void *data)
1992 struct esp_lun_data *lp = dev->hostdata;
1994 BUG_ON(lp->num_tagged);
1995 lp->hold = 0;
1998 static void esp_reset_cleanup(struct esp *esp)
2000 struct esp_cmd_entry *ent, *tmp;
2001 int i;
2003 list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
2004 struct scsi_cmnd *cmd = ent->cmd;
2006 list_del(&ent->list);
2007 cmd->result = DID_RESET << 16;
2008 cmd->scsi_done(cmd);
2009 esp_put_ent(esp, ent);
2012 list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
2013 if (ent == esp->active_cmd)
2014 esp->active_cmd = NULL;
2015 esp_reset_cleanup_one(esp, ent);
2018 BUG_ON(esp->active_cmd != NULL);
2020 /* Force renegotiation of sync/wide transfers. */
2021 for (i = 0; i < ESP_MAX_TARGET; i++) {
2022 struct esp_target_data *tp = &esp->target[i];
2024 tp->esp_period = 0;
2025 tp->esp_offset = 0;
2026 tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
2027 ESP_CONFIG3_FSCSI |
2028 ESP_CONFIG3_FAST);
2029 tp->flags &= ~ESP_TGT_WIDE;
2030 tp->flags |= ESP_TGT_CHECK_NEGO;
2032 if (tp->starget)
2033 starget_for_each_device(tp->starget, NULL,
2034 esp_clear_hold);
2036 esp->flags &= ~ESP_FLAG_RESETTING;
2039 /* Runs under host->lock */
2040 static void __esp_interrupt(struct esp *esp)
2042 int finish_reset, intr_done;
2043 u8 phase;
2045 esp->sreg = esp_read8(ESP_STATUS);
2047 if (esp->flags & ESP_FLAG_RESETTING) {
2048 finish_reset = 1;
2049 } else {
2050 if (esp_check_gross_error(esp))
2051 return;
2053 finish_reset = esp_check_spur_intr(esp);
2054 if (finish_reset < 0)
2055 return;
2058 esp->ireg = esp_read8(ESP_INTRPT);
2060 if (esp->ireg & ESP_INTR_SR)
2061 finish_reset = 1;
2063 if (finish_reset) {
2064 esp_reset_cleanup(esp);
2065 if (esp->eh_reset) {
2066 complete(esp->eh_reset);
2067 esp->eh_reset = NULL;
2069 return;
2072 phase = (esp->sreg & ESP_STAT_PMASK);
2073 if (esp->rev == FASHME) {
2074 if (((phase != ESP_DIP && phase != ESP_DOP) &&
2075 esp->select_state == ESP_SELECT_NONE &&
2076 esp->event != ESP_EVENT_STATUS &&
2077 esp->event != ESP_EVENT_DATA_DONE) ||
2078 (esp->ireg & ESP_INTR_RSEL)) {
2079 esp->sreg2 = esp_read8(ESP_STATUS2);
2080 if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
2081 (esp->sreg2 & ESP_STAT2_F1BYTE))
2082 hme_read_fifo(esp);
2086 esp_log_intr("ESP: intr sreg[%02x] seqreg[%02x] "
2087 "sreg2[%02x] ireg[%02x]\n",
2088 esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
2090 intr_done = 0;
2092 if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
2093 printk("ESP: unexpected IREG %02x\n", esp->ireg);
2094 if (esp->ireg & ESP_INTR_IC)
2095 esp_dump_cmd_log(esp);
2097 esp_schedule_reset(esp);
2098 } else {
2099 if (!(esp->ireg & ESP_INTR_RSEL)) {
2100 /* Some combination of FDONE, BSERV, DC. */
2101 if (esp->select_state != ESP_SELECT_NONE)
2102 intr_done = esp_finish_select(esp);
2103 } else if (esp->ireg & ESP_INTR_RSEL) {
2104 if (esp->active_cmd)
2105 (void) esp_finish_select(esp);
2106 intr_done = esp_reconnect(esp);
2109 while (!intr_done)
2110 intr_done = esp_process_event(esp);
2113 irqreturn_t scsi_esp_intr(int irq, void *dev_id)
2115 struct esp *esp = dev_id;
2116 unsigned long flags;
2117 irqreturn_t ret;
2119 spin_lock_irqsave(esp->host->host_lock, flags);
2120 ret = IRQ_NONE;
2121 if (esp->ops->irq_pending(esp)) {
2122 ret = IRQ_HANDLED;
2123 for (;;) {
2124 int i;
2126 __esp_interrupt(esp);
2127 if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
2128 break;
2129 esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
2131 for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
2132 if (esp->ops->irq_pending(esp))
2133 break;
2135 if (i == ESP_QUICKIRQ_LIMIT)
2136 break;
2139 spin_unlock_irqrestore(esp->host->host_lock, flags);
2141 return ret;
2143 EXPORT_SYMBOL(scsi_esp_intr);
2145 static void __devinit esp_get_revision(struct esp *esp)
2147 u8 val;
2149 esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
2150 esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
2151 esp_write8(esp->config2, ESP_CFG2);
2153 val = esp_read8(ESP_CFG2);
2154 val &= ~ESP_CONFIG2_MAGIC;
2155 if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
2156 /* If what we write to cfg2 does not come back, cfg2 is not
2157 * implemented, therefore this must be a plain esp100.
2159 esp->rev = ESP100;
2160 } else {
2161 esp->config2 = 0;
2162 esp_set_all_config3(esp, 5);
2163 esp->prev_cfg3 = 5;
2164 esp_write8(esp->config2, ESP_CFG2);
2165 esp_write8(0, ESP_CFG3);
2166 esp_write8(esp->prev_cfg3, ESP_CFG3);
2168 val = esp_read8(ESP_CFG3);
2169 if (val != 5) {
2170 /* The cfg2 register is implemented, however
2171 * cfg3 is not, must be esp100a.
2173 esp->rev = ESP100A;
2174 } else {
2175 esp_set_all_config3(esp, 0);
2176 esp->prev_cfg3 = 0;
2177 esp_write8(esp->prev_cfg3, ESP_CFG3);
2179 /* All of cfg{1,2,3} implemented, must be one of
2180 * the fas variants, figure out which one.
2182 if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
2183 esp->rev = FAST;
2184 esp->sync_defp = SYNC_DEFP_FAST;
2185 } else {
2186 esp->rev = ESP236;
2188 esp->config2 = 0;
2189 esp_write8(esp->config2, ESP_CFG2);
2194 static void __devinit esp_init_swstate(struct esp *esp)
2196 int i;
2198 INIT_LIST_HEAD(&esp->queued_cmds);
2199 INIT_LIST_HEAD(&esp->active_cmds);
2200 INIT_LIST_HEAD(&esp->esp_cmd_pool);
2202 /* Start with a clear state, domain validation (via ->slave_configure,
2203 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
2204 * commands.
2206 for (i = 0 ; i < ESP_MAX_TARGET; i++) {
2207 esp->target[i].flags = 0;
2208 esp->target[i].nego_goal_period = 0;
2209 esp->target[i].nego_goal_offset = 0;
2210 esp->target[i].nego_goal_width = 0;
2211 esp->target[i].nego_goal_tags = 0;
2215 /* This places the ESP into a known state at boot time. */
2216 static void esp_bootup_reset(struct esp *esp)
2218 u8 val;
2220 /* Reset the DMA */
2221 esp->ops->reset_dma(esp);
2223 /* Reset the ESP */
2224 esp_reset_esp(esp);
2226 /* Reset the SCSI bus, but tell ESP not to generate an irq */
2227 val = esp_read8(ESP_CFG1);
2228 val |= ESP_CONFIG1_SRRDISAB;
2229 esp_write8(val, ESP_CFG1);
2231 scsi_esp_cmd(esp, ESP_CMD_RS);
2232 udelay(400);
2234 esp_write8(esp->config1, ESP_CFG1);
2236 /* Eat any bitrot in the chip and we are done... */
2237 esp_read8(ESP_INTRPT);
2240 static void __devinit esp_set_clock_params(struct esp *esp)
2242 int fmhz;
2243 u8 ccf;
2245 /* This is getting messy but it has to be done correctly or else
2246 * you get weird behavior all over the place. We are trying to
2247 * basically figure out three pieces of information.
2249 * a) Clock Conversion Factor
2251 * This is a representation of the input crystal clock frequency
2252 * going into the ESP on this machine. Any operation whose timing
2253 * is longer than 400ns depends on this value being correct. For
2254 * example, you'll get blips for arbitration/selection during high
2255 * load or with multiple targets if this is not set correctly.
2257 * b) Selection Time-Out
2259 * The ESP isn't very bright and will arbitrate for the bus and try
2260 * to select a target forever if you let it. This value tells the
2261 * ESP when it has taken too long to negotiate and that it should
2262 * interrupt the CPU so we can see what happened. The value is
2263 * computed as follows (from NCR/Symbios chip docs).
2265 * (Time Out Period) * (Input Clock)
2266 * STO = ----------------------------------
2267 * (8192) * (Clock Conversion Factor)
2269 * We use a time out period of 250ms (ESP_BUS_TIMEOUT).
2271 * c) Imperical constants for synchronous offset and transfer period
2272 * register values
2274 * This entails the smallest and largest sync period we could ever
2275 * handle on this ESP.
2277 fmhz = esp->cfreq;
2279 ccf = ((fmhz / 1000000) + 4) / 5;
2280 if (ccf == 1)
2281 ccf = 2;
2283 /* If we can't find anything reasonable, just assume 20MHZ.
2284 * This is the clock frequency of the older sun4c's where I've
2285 * been unable to find the clock-frequency PROM property. All
2286 * other machines provide useful values it seems.
2288 if (fmhz <= 5000000 || ccf < 1 || ccf > 8) {
2289 fmhz = 20000000;
2290 ccf = 4;
2293 esp->cfact = (ccf == 8 ? 0 : ccf);
2294 esp->cfreq = fmhz;
2295 esp->ccycle = ESP_MHZ_TO_CYCLE(fmhz);
2296 esp->ctick = ESP_TICK(ccf, esp->ccycle);
2297 esp->neg_defp = ESP_NEG_DEFP(fmhz, ccf);
2298 esp->sync_defp = SYNC_DEFP_SLOW;
2301 static const char *esp_chip_names[] = {
2302 "ESP100",
2303 "ESP100A",
2304 "ESP236",
2305 "FAS236",
2306 "FAS100A",
2307 "FAST",
2308 "FASHME",
2311 static struct scsi_transport_template *esp_transport_template;
2313 int __devinit scsi_esp_register(struct esp *esp, struct device *dev)
2315 static int instance;
2316 int err;
2318 esp->host->transportt = esp_transport_template;
2319 esp->host->max_lun = ESP_MAX_LUN;
2320 esp->host->cmd_per_lun = 2;
2321 esp->host->unique_id = instance;
2323 esp_set_clock_params(esp);
2325 esp_get_revision(esp);
2327 esp_init_swstate(esp);
2329 esp_bootup_reset(esp);
2331 printk(KERN_INFO PFX "esp%u, regs[%1p:%1p] irq[%u]\n",
2332 esp->host->unique_id, esp->regs, esp->dma_regs,
2333 esp->host->irq);
2334 printk(KERN_INFO PFX "esp%u is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
2335 esp->host->unique_id, esp_chip_names[esp->rev],
2336 esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
2338 /* Let the SCSI bus reset settle. */
2339 ssleep(esp_bus_reset_settle);
2341 err = scsi_add_host(esp->host, dev);
2342 if (err)
2343 return err;
2345 instance++;
2347 scsi_scan_host(esp->host);
2349 return 0;
2351 EXPORT_SYMBOL(scsi_esp_register);
2353 void __devexit scsi_esp_unregister(struct esp *esp)
2355 scsi_remove_host(esp->host);
2357 EXPORT_SYMBOL(scsi_esp_unregister);
2359 static int esp_slave_alloc(struct scsi_device *dev)
2361 struct esp *esp = host_to_esp(dev->host);
2362 struct esp_target_data *tp = &esp->target[dev->id];
2363 struct esp_lun_data *lp;
2365 lp = kzalloc(sizeof(*lp), GFP_KERNEL);
2366 if (!lp)
2367 return -ENOMEM;
2368 dev->hostdata = lp;
2370 tp->starget = dev->sdev_target;
2372 spi_min_period(tp->starget) = esp->min_period;
2373 spi_max_offset(tp->starget) = 15;
2375 if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
2376 spi_max_width(tp->starget) = 1;
2377 else
2378 spi_max_width(tp->starget) = 0;
2380 return 0;
2383 static int esp_slave_configure(struct scsi_device *dev)
2385 struct esp *esp = host_to_esp(dev->host);
2386 struct esp_target_data *tp = &esp->target[dev->id];
2387 int goal_tags, queue_depth;
2389 goal_tags = 0;
2391 if (dev->tagged_supported) {
2392 /* XXX make this configurable somehow XXX */
2393 goal_tags = ESP_DEFAULT_TAGS;
2395 if (goal_tags > ESP_MAX_TAG)
2396 goal_tags = ESP_MAX_TAG;
2399 queue_depth = goal_tags;
2400 if (queue_depth < dev->host->cmd_per_lun)
2401 queue_depth = dev->host->cmd_per_lun;
2403 if (goal_tags) {
2404 scsi_set_tag_type(dev, MSG_ORDERED_TAG);
2405 scsi_activate_tcq(dev, queue_depth);
2406 } else {
2407 scsi_deactivate_tcq(dev, queue_depth);
2409 tp->flags |= ESP_TGT_DISCONNECT;
2411 if (!spi_initial_dv(dev->sdev_target))
2412 spi_dv_device(dev);
2414 return 0;
2417 static void esp_slave_destroy(struct scsi_device *dev)
2419 struct esp_lun_data *lp = dev->hostdata;
2421 kfree(lp);
2422 dev->hostdata = NULL;
2425 static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
2427 struct esp *esp = host_to_esp(cmd->device->host);
2428 struct esp_cmd_entry *ent, *tmp;
2429 struct completion eh_done;
2430 unsigned long flags;
2432 /* XXX This helps a lot with debugging but might be a bit
2433 * XXX much for the final driver.
2435 spin_lock_irqsave(esp->host->host_lock, flags);
2436 printk(KERN_ERR PFX "esp%d: Aborting command [%p:%02x]\n",
2437 esp->host->unique_id, cmd, cmd->cmnd[0]);
2438 ent = esp->active_cmd;
2439 if (ent)
2440 printk(KERN_ERR PFX "esp%d: Current command [%p:%02x]\n",
2441 esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2442 list_for_each_entry(ent, &esp->queued_cmds, list) {
2443 printk(KERN_ERR PFX "esp%d: Queued command [%p:%02x]\n",
2444 esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2446 list_for_each_entry(ent, &esp->active_cmds, list) {
2447 printk(KERN_ERR PFX "esp%d: Active command [%p:%02x]\n",
2448 esp->host->unique_id, ent->cmd, ent->cmd->cmnd[0]);
2450 esp_dump_cmd_log(esp);
2451 spin_unlock_irqrestore(esp->host->host_lock, flags);
2453 spin_lock_irqsave(esp->host->host_lock, flags);
2455 ent = NULL;
2456 list_for_each_entry(tmp, &esp->queued_cmds, list) {
2457 if (tmp->cmd == cmd) {
2458 ent = tmp;
2459 break;
2463 if (ent) {
2464 /* Easiest case, we didn't even issue the command
2465 * yet so it is trivial to abort.
2467 list_del(&ent->list);
2469 cmd->result = DID_ABORT << 16;
2470 cmd->scsi_done(cmd);
2472 esp_put_ent(esp, ent);
2474 goto out_success;
2477 init_completion(&eh_done);
2479 ent = esp->active_cmd;
2480 if (ent && ent->cmd == cmd) {
2481 /* Command is the currently active command on
2482 * the bus. If we already have an output message
2483 * pending, no dice.
2485 if (esp->msg_out_len)
2486 goto out_failure;
2488 /* Send out an abort, encouraging the target to
2489 * go to MSGOUT phase by asserting ATN.
2491 esp->msg_out[0] = ABORT_TASK_SET;
2492 esp->msg_out_len = 1;
2493 ent->eh_done = &eh_done;
2495 scsi_esp_cmd(esp, ESP_CMD_SATN);
2496 } else {
2497 /* The command is disconnected. This is not easy to
2498 * abort. For now we fail and let the scsi error
2499 * handling layer go try a scsi bus reset or host
2500 * reset.
2502 * What we could do is put together a scsi command
2503 * solely for the purpose of sending an abort message
2504 * to the target. Coming up with all the code to
2505 * cook up scsi commands, special case them everywhere,
2506 * etc. is for questionable gain and it would be better
2507 * if the generic scsi error handling layer could do at
2508 * least some of that for us.
2510 * Anyways this is an area for potential future improvement
2511 * in this driver.
2513 goto out_failure;
2516 spin_unlock_irqrestore(esp->host->host_lock, flags);
2518 if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
2519 spin_lock_irqsave(esp->host->host_lock, flags);
2520 ent->eh_done = NULL;
2521 spin_unlock_irqrestore(esp->host->host_lock, flags);
2523 return FAILED;
2526 return SUCCESS;
2528 out_success:
2529 spin_unlock_irqrestore(esp->host->host_lock, flags);
2530 return SUCCESS;
2532 out_failure:
2533 /* XXX This might be a good location to set ESP_TGT_BROKEN
2534 * XXX since we know which target/lun in particular is
2535 * XXX causing trouble.
2537 spin_unlock_irqrestore(esp->host->host_lock, flags);
2538 return FAILED;
2541 static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
2543 struct esp *esp = host_to_esp(cmd->device->host);
2544 struct completion eh_reset;
2545 unsigned long flags;
2547 init_completion(&eh_reset);
2549 spin_lock_irqsave(esp->host->host_lock, flags);
2551 esp->eh_reset = &eh_reset;
2553 /* XXX This is too simple... We should add lots of
2554 * XXX checks here so that if we find that the chip is
2555 * XXX very wedged we return failure immediately so
2556 * XXX that we can perform a full chip reset.
2558 esp->flags |= ESP_FLAG_RESETTING;
2559 scsi_esp_cmd(esp, ESP_CMD_RS);
2561 spin_unlock_irqrestore(esp->host->host_lock, flags);
2563 ssleep(esp_bus_reset_settle);
2565 if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
2566 spin_lock_irqsave(esp->host->host_lock, flags);
2567 esp->eh_reset = NULL;
2568 spin_unlock_irqrestore(esp->host->host_lock, flags);
2570 return FAILED;
2573 return SUCCESS;
2576 /* All bets are off, reset the entire device. */
2577 static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
2579 struct esp *esp = host_to_esp(cmd->device->host);
2580 unsigned long flags;
2582 spin_lock_irqsave(esp->host->host_lock, flags);
2583 esp_bootup_reset(esp);
2584 esp_reset_cleanup(esp);
2585 spin_unlock_irqrestore(esp->host->host_lock, flags);
2587 ssleep(esp_bus_reset_settle);
2589 return SUCCESS;
2592 static const char *esp_info(struct Scsi_Host *host)
2594 return "esp";
2597 struct scsi_host_template scsi_esp_template = {
2598 .module = THIS_MODULE,
2599 .name = "esp",
2600 .info = esp_info,
2601 .queuecommand = esp_queuecommand,
2602 .slave_alloc = esp_slave_alloc,
2603 .slave_configure = esp_slave_configure,
2604 .slave_destroy = esp_slave_destroy,
2605 .eh_abort_handler = esp_eh_abort_handler,
2606 .eh_bus_reset_handler = esp_eh_bus_reset_handler,
2607 .eh_host_reset_handler = esp_eh_host_reset_handler,
2608 .can_queue = 7,
2609 .this_id = 7,
2610 .sg_tablesize = SG_ALL,
2611 .use_clustering = ENABLE_CLUSTERING,
2612 .max_sectors = 0xffff,
2613 .skip_settle_delay = 1,
2615 EXPORT_SYMBOL(scsi_esp_template);
2617 static void esp_get_signalling(struct Scsi_Host *host)
2619 struct esp *esp = host_to_esp(host);
2620 enum spi_signal_type type;
2622 if (esp->flags & ESP_FLAG_DIFFERENTIAL)
2623 type = SPI_SIGNAL_HVD;
2624 else
2625 type = SPI_SIGNAL_SE;
2627 spi_signalling(host) = type;
2630 static void esp_set_offset(struct scsi_target *target, int offset)
2632 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2633 struct esp *esp = host_to_esp(host);
2634 struct esp_target_data *tp = &esp->target[target->id];
2636 tp->nego_goal_offset = offset;
2637 tp->flags |= ESP_TGT_CHECK_NEGO;
2640 static void esp_set_period(struct scsi_target *target, int period)
2642 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2643 struct esp *esp = host_to_esp(host);
2644 struct esp_target_data *tp = &esp->target[target->id];
2646 tp->nego_goal_period = period;
2647 tp->flags |= ESP_TGT_CHECK_NEGO;
2650 static void esp_set_width(struct scsi_target *target, int width)
2652 struct Scsi_Host *host = dev_to_shost(target->dev.parent);
2653 struct esp *esp = host_to_esp(host);
2654 struct esp_target_data *tp = &esp->target[target->id];
2656 tp->nego_goal_width = (width ? 1 : 0);
2657 tp->flags |= ESP_TGT_CHECK_NEGO;
2660 static struct spi_function_template esp_transport_ops = {
2661 .set_offset = esp_set_offset,
2662 .show_offset = 1,
2663 .set_period = esp_set_period,
2664 .show_period = 1,
2665 .set_width = esp_set_width,
2666 .show_width = 1,
2667 .get_signalling = esp_get_signalling,
2670 static int __init esp_init(void)
2672 BUILD_BUG_ON(sizeof(struct scsi_pointer) <
2673 sizeof(struct esp_cmd_priv));
2675 esp_transport_template = spi_attach_transport(&esp_transport_ops);
2676 if (!esp_transport_template)
2677 return -ENODEV;
2679 return 0;
2682 static void __exit esp_exit(void)
2684 spi_release_transport(esp_transport_template);
2687 MODULE_DESCRIPTION("ESP SCSI driver core");
2688 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
2689 MODULE_LICENSE("GPL");
2690 MODULE_VERSION(DRV_VERSION);
2692 module_param(esp_bus_reset_settle, int, 0);
2693 MODULE_PARM_DESC(esp_bus_reset_settle,
2694 "ESP scsi bus reset delay in seconds");
2696 module_param(esp_debug, int, 0);
2697 MODULE_PARM_DESC(esp_debug,
2698 "ESP bitmapped debugging message enable value:\n"
2699 " 0x00000001 Log interrupt events\n"
2700 " 0x00000002 Log scsi commands\n"
2701 " 0x00000004 Log resets\n"
2702 " 0x00000008 Log message in events\n"
2703 " 0x00000010 Log message out events\n"
2704 " 0x00000020 Log command completion\n"
2705 " 0x00000040 Log disconnects\n"
2706 " 0x00000080 Log data start\n"
2707 " 0x00000100 Log data done\n"
2708 " 0x00000200 Log reconnects\n"
2709 " 0x00000400 Log auto-sense data\n"
2712 module_init(esp_init);
2713 module_exit(esp_exit);