RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / drivers / rtc / rtc-cmos.c
blobe24ea82dc35b83b1036a2b5cf15d9e54afd2ee96
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
39 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
40 #include <asm-generic/rtc.h>
43 struct cmos_rtc {
44 struct rtc_device *rtc;
45 struct device *dev;
46 int irq;
47 struct resource *iomem;
49 void (*wake_on)(struct device *);
50 void (*wake_off)(struct device *);
52 u8 enabled_wake;
53 u8 suspend_ctrl;
55 /* newer hardware extends the original register set */
56 u8 day_alrm;
57 u8 mon_alrm;
58 u8 century;
61 /* both platform and pnp busses use negative numbers for invalid irqs */
62 #define is_valid_irq(n) ((n) >= 0)
64 static const char driver_name[] = "rtc_cmos";
66 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
67 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
68 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
70 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
72 static inline int is_intr(u8 rtc_intr)
74 if (!(rtc_intr & RTC_IRQF))
75 return 0;
76 return rtc_intr & RTC_IRQMASK;
79 /*----------------------------------------------------------------*/
81 static int cmos_read_time(struct device *dev, struct rtc_time *t)
83 /* REVISIT: if the clock has a "century" register, use
84 * that instead of the heuristic in get_rtc_time().
85 * That'll make Y3K compatility (year > 2070) easy!
87 get_rtc_time(t);
88 return 0;
91 static int cmos_set_time(struct device *dev, struct rtc_time *t)
93 /* REVISIT: set the "century" register if available
95 * NOTE: this ignores the issue whereby updating the seconds
96 * takes effect exactly 500ms after we write the register.
97 * (Also queueing and other delays before we get this far.)
99 return set_rtc_time(t);
102 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
104 struct cmos_rtc *cmos = dev_get_drvdata(dev);
105 unsigned char rtc_control;
107 if (!is_valid_irq(cmos->irq))
108 return -EIO;
110 /* Basic alarms only support hour, minute, and seconds fields.
111 * Some also support day and month, for alarms up to a year in
112 * the future.
114 t->time.tm_mday = -1;
115 t->time.tm_mon = -1;
117 spin_lock_irq(&rtc_lock);
118 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
119 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
120 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
122 if (cmos->day_alrm) {
123 t->time.tm_mday = CMOS_READ(cmos->day_alrm);
124 if (!t->time.tm_mday)
125 t->time.tm_mday = -1;
127 if (cmos->mon_alrm) {
128 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
129 if (!t->time.tm_mon)
130 t->time.tm_mon = -1;
134 rtc_control = CMOS_READ(RTC_CONTROL);
135 spin_unlock_irq(&rtc_lock);
137 /* REVISIT this assumes PC style usage: always BCD */
139 if (((unsigned)t->time.tm_sec) < 0x60)
140 t->time.tm_sec = BCD2BIN(t->time.tm_sec);
141 else
142 t->time.tm_sec = -1;
143 if (((unsigned)t->time.tm_min) < 0x60)
144 t->time.tm_min = BCD2BIN(t->time.tm_min);
145 else
146 t->time.tm_min = -1;
147 if (((unsigned)t->time.tm_hour) < 0x24)
148 t->time.tm_hour = BCD2BIN(t->time.tm_hour);
149 else
150 t->time.tm_hour = -1;
152 if (cmos->day_alrm) {
153 if (((unsigned)t->time.tm_mday) <= 0x31)
154 t->time.tm_mday = BCD2BIN(t->time.tm_mday);
155 else
156 t->time.tm_mday = -1;
157 if (cmos->mon_alrm) {
158 if (((unsigned)t->time.tm_mon) <= 0x12)
159 t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1;
160 else
161 t->time.tm_mon = -1;
164 t->time.tm_year = -1;
166 t->enabled = !!(rtc_control & RTC_AIE);
167 t->pending = 0;
169 return 0;
172 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
174 struct cmos_rtc *cmos = dev_get_drvdata(dev);
175 unsigned char mon, mday, hrs, min, sec;
176 unsigned char rtc_control, rtc_intr;
178 if (!is_valid_irq(cmos->irq))
179 return -EIO;
181 /* REVISIT this assumes PC style usage: always BCD */
183 /* Writing 0xff means "don't care" or "match all". */
185 mon = t->time.tm_mon;
186 mon = (mon < 12) ? BIN2BCD(mon) : 0xff;
187 mon++;
189 mday = t->time.tm_mday;
190 mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff;
192 hrs = t->time.tm_hour;
193 hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff;
195 min = t->time.tm_min;
196 min = (min < 60) ? BIN2BCD(min) : 0xff;
198 sec = t->time.tm_sec;
199 sec = (sec < 60) ? BIN2BCD(sec) : 0xff;
201 spin_lock_irq(&rtc_lock);
203 /* next rtc irq must not be from previous alarm setting */
204 rtc_control = CMOS_READ(RTC_CONTROL);
205 rtc_control &= ~RTC_AIE;
206 CMOS_WRITE(rtc_control, RTC_CONTROL);
207 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
208 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
209 if (is_intr(rtc_intr))
210 rtc_update_irq(cmos->rtc, 1, rtc_intr);
212 /* update alarm */
213 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
214 CMOS_WRITE(min, RTC_MINUTES_ALARM);
215 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
217 /* the system may support an "enhanced" alarm */
218 if (cmos->day_alrm) {
219 CMOS_WRITE(mday, cmos->day_alrm);
220 if (cmos->mon_alrm)
221 CMOS_WRITE(mon, cmos->mon_alrm);
224 if (t->enabled) {
225 rtc_control |= RTC_AIE;
226 CMOS_WRITE(rtc_control, RTC_CONTROL);
227 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
228 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
229 if (is_intr(rtc_intr))
230 rtc_update_irq(cmos->rtc, 1, rtc_intr);
233 spin_unlock_irq(&rtc_lock);
235 return 0;
238 static int cmos_set_freq(struct device *dev, int freq)
240 struct cmos_rtc *cmos = dev_get_drvdata(dev);
241 int f;
242 unsigned long flags;
244 if (!is_valid_irq(cmos->irq))
245 return -ENXIO;
247 /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
248 f = ffs(freq);
249 if (f != 0) {
250 if (f-- > 16 || freq != (1 << f))
251 return -EINVAL;
252 f = 16 - f;
255 spin_lock_irqsave(&rtc_lock, flags);
256 CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
257 spin_unlock_irqrestore(&rtc_lock, flags);
259 return 0;
262 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
264 static int
265 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
267 struct cmos_rtc *cmos = dev_get_drvdata(dev);
268 unsigned char rtc_control, rtc_intr;
269 unsigned long flags;
271 switch (cmd) {
272 case RTC_AIE_OFF:
273 case RTC_AIE_ON:
274 case RTC_UIE_OFF:
275 case RTC_UIE_ON:
276 case RTC_PIE_OFF:
277 case RTC_PIE_ON:
278 if (!is_valid_irq(cmos->irq))
279 return -EINVAL;
280 break;
281 default:
282 return -ENOIOCTLCMD;
285 spin_lock_irqsave(&rtc_lock, flags);
286 rtc_control = CMOS_READ(RTC_CONTROL);
287 switch (cmd) {
288 case RTC_AIE_OFF: /* alarm off */
289 rtc_control &= ~RTC_AIE;
290 break;
291 case RTC_AIE_ON: /* alarm on */
292 rtc_control |= RTC_AIE;
293 break;
294 case RTC_UIE_OFF: /* update off */
295 rtc_control &= ~RTC_UIE;
296 break;
297 case RTC_UIE_ON: /* update on */
298 rtc_control |= RTC_UIE;
299 break;
300 case RTC_PIE_OFF: /* periodic off */
301 rtc_control &= ~RTC_PIE;
302 break;
303 case RTC_PIE_ON: /* periodic on */
304 rtc_control |= RTC_PIE;
305 break;
307 CMOS_WRITE(rtc_control, RTC_CONTROL);
308 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
309 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
310 if (is_intr(rtc_intr))
311 rtc_update_irq(cmos->rtc, 1, rtc_intr);
312 spin_unlock_irqrestore(&rtc_lock, flags);
313 return 0;
316 #else
317 #define cmos_rtc_ioctl NULL
318 #endif
320 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
322 static int cmos_procfs(struct device *dev, struct seq_file *seq)
324 struct cmos_rtc *cmos = dev_get_drvdata(dev);
325 unsigned char rtc_control, valid;
327 spin_lock_irq(&rtc_lock);
328 rtc_control = CMOS_READ(RTC_CONTROL);
329 valid = CMOS_READ(RTC_VALID);
330 spin_unlock_irq(&rtc_lock);
332 /* NOTE: at least ICH6 reports battery status using a different
333 * (non-RTC) bit; and SQWE is ignored on many current systems.
335 return seq_printf(seq,
336 "periodic_IRQ\t: %s\n"
337 "update_IRQ\t: %s\n"
338 // "square_wave\t: %s\n"
339 // "BCD\t\t: %s\n"
340 "DST_enable\t: %s\n"
341 "periodic_freq\t: %d\n"
342 "batt_status\t: %s\n",
343 (rtc_control & RTC_PIE) ? "yes" : "no",
344 (rtc_control & RTC_UIE) ? "yes" : "no",
345 // (rtc_control & RTC_SQWE) ? "yes" : "no",
346 // (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
347 (rtc_control & RTC_DST_EN) ? "yes" : "no",
348 cmos->rtc->irq_freq,
349 (valid & RTC_VRT) ? "okay" : "dead");
352 #else
353 #define cmos_procfs NULL
354 #endif
356 static const struct rtc_class_ops cmos_rtc_ops = {
357 .ioctl = cmos_rtc_ioctl,
358 .read_time = cmos_read_time,
359 .set_time = cmos_set_time,
360 .read_alarm = cmos_read_alarm,
361 .set_alarm = cmos_set_alarm,
362 .proc = cmos_procfs,
363 .irq_set_freq = cmos_set_freq,
366 /*----------------------------------------------------------------*/
368 static struct cmos_rtc cmos_rtc;
370 static irqreturn_t cmos_interrupt(int irq, void *p)
372 u8 irqstat;
374 spin_lock(&rtc_lock);
375 irqstat = CMOS_READ(RTC_INTR_FLAGS);
376 irqstat &= (CMOS_READ(RTC_CONTROL) & RTC_IRQMASK) | RTC_IRQF;
377 spin_unlock(&rtc_lock);
379 if (is_intr(irqstat)) {
380 rtc_update_irq(p, 1, irqstat);
381 return IRQ_HANDLED;
382 } else
383 return IRQ_NONE;
386 #ifdef CONFIG_PNP
387 #define is_pnp() 1
388 #define INITSECTION
390 #else
391 #define is_pnp() 0
392 #define INITSECTION __init
393 #endif
395 static int INITSECTION
396 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
398 struct cmos_rtc_board_info *info = dev->platform_data;
399 int retval = 0;
400 unsigned char rtc_control;
402 /* there can be only one ... */
403 if (cmos_rtc.dev)
404 return -EBUSY;
406 if (!ports)
407 return -ENODEV;
409 cmos_rtc.irq = rtc_irq;
410 cmos_rtc.iomem = ports;
412 /* For ACPI systems extension info comes from the FADT. On others,
413 * board specific setup provides it as appropriate. Systems where
414 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
415 * some almost-clones) can provide hooks to make that behave.
417 if (info) {
418 cmos_rtc.day_alrm = info->rtc_day_alarm;
419 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
420 cmos_rtc.century = info->rtc_century;
422 if (info->wake_on && info->wake_off) {
423 cmos_rtc.wake_on = info->wake_on;
424 cmos_rtc.wake_off = info->wake_off;
428 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
429 &cmos_rtc_ops, THIS_MODULE);
430 if (IS_ERR(cmos_rtc.rtc))
431 return PTR_ERR(cmos_rtc.rtc);
433 cmos_rtc.dev = dev;
434 dev_set_drvdata(dev, &cmos_rtc);
436 /* platform and pnp busses handle resources incompatibly.
438 * REVISIT for non-x86 systems we may need to handle io memory
439 * resources: ioremap them, and request_mem_region().
441 if (is_pnp()) {
442 retval = request_resource(&ioport_resource, ports);
443 if (retval < 0) {
444 dev_dbg(dev, "i/o registers already in use\n");
445 goto cleanup0;
448 rename_region(ports, cmos_rtc.rtc->dev.bus_id);
450 spin_lock_irq(&rtc_lock);
452 /* force periodic irq to CMOS reset default of 1024Hz;
454 * REVISIT it's been reported that at least one x86_64 ALI mobo
455 * doesn't use 32KHz here ... for portability we might need to
456 * do something about other clock frequencies.
458 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
459 cmos_rtc.rtc->irq_freq = 1024;
461 /* disable irqs.
463 * NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
464 * allegedly some older rtcs need that to handle irqs properly
466 rtc_control = CMOS_READ(RTC_CONTROL);
467 rtc_control &= ~(RTC_PIE | RTC_AIE | RTC_UIE);
468 CMOS_WRITE(rtc_control, RTC_CONTROL);
469 CMOS_READ(RTC_INTR_FLAGS);
471 spin_unlock_irq(&rtc_lock);
473 /* FIXME teach the alarm code how to handle binary mode;
474 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
476 if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) {
477 dev_dbg(dev, "only 24-hr BCD mode supported\n");
478 retval = -ENXIO;
479 goto cleanup1;
482 if (is_valid_irq(rtc_irq))
483 retval = request_irq(rtc_irq, cmos_interrupt, IRQF_DISABLED,
484 cmos_rtc.rtc->dev.bus_id,
485 cmos_rtc.rtc);
486 if (retval < 0) {
487 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
488 goto cleanup1;
491 /* REVISIT optionally make 50 or 114 bytes NVRAM available,
492 * like rtc-ds1553, rtc-ds1742 ... this will often include
493 * registers for century, and day/month alarm.
496 pr_info("%s: alarms up to one %s%s\n",
497 cmos_rtc.rtc->dev.bus_id,
498 is_valid_irq(rtc_irq)
499 ? (cmos_rtc.mon_alrm
500 ? "year"
501 : (cmos_rtc.day_alrm
502 ? "month" : "day"))
503 : "no",
504 cmos_rtc.century ? ", y3k" : ""
507 return 0;
509 cleanup1:
510 rename_region(ports, NULL);
511 cleanup0:
512 rtc_device_unregister(cmos_rtc.rtc);
513 return retval;
516 static void cmos_do_shutdown(void)
518 unsigned char rtc_control;
520 spin_lock_irq(&rtc_lock);
521 rtc_control = CMOS_READ(RTC_CONTROL);
522 rtc_control &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
523 CMOS_WRITE(rtc_control, RTC_CONTROL);
524 CMOS_READ(RTC_INTR_FLAGS);
525 spin_unlock_irq(&rtc_lock);
528 static void __exit cmos_do_remove(struct device *dev)
530 struct cmos_rtc *cmos = dev_get_drvdata(dev);
532 cmos_do_shutdown();
534 if (is_pnp())
535 release_resource(cmos->iomem);
536 rename_region(cmos->iomem, NULL);
538 if (is_valid_irq(cmos->irq))
539 free_irq(cmos->irq, cmos_rtc.rtc);
541 rtc_device_unregister(cmos_rtc.rtc);
543 cmos_rtc.dev = NULL;
544 dev_set_drvdata(dev, NULL);
547 #ifdef CONFIG_PM
549 static int cmos_suspend(struct device *dev, pm_message_t mesg)
551 struct cmos_rtc *cmos = dev_get_drvdata(dev);
552 int do_wake = device_may_wakeup(dev);
553 unsigned char tmp;
555 /* only the alarm might be a wakeup event source */
556 spin_lock_irq(&rtc_lock);
557 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
558 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
559 unsigned char irqstat;
561 if (do_wake)
562 tmp &= ~(RTC_PIE|RTC_UIE);
563 else
564 tmp &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
565 CMOS_WRITE(tmp, RTC_CONTROL);
566 irqstat = CMOS_READ(RTC_INTR_FLAGS);
567 irqstat &= (tmp & RTC_IRQMASK) | RTC_IRQF;
568 if (is_intr(irqstat))
569 rtc_update_irq(cmos->rtc, 1, irqstat);
571 spin_unlock_irq(&rtc_lock);
573 if (tmp & RTC_AIE) {
574 cmos->enabled_wake = 1;
575 if (cmos->wake_on)
576 cmos->wake_on(dev);
577 else
578 enable_irq_wake(cmos->irq);
581 pr_debug("%s: suspend%s, ctrl %02x\n",
582 cmos_rtc.rtc->dev.bus_id,
583 (tmp & RTC_AIE) ? ", alarm may wake" : "",
584 tmp);
586 return 0;
589 static int cmos_resume(struct device *dev)
591 struct cmos_rtc *cmos = dev_get_drvdata(dev);
592 unsigned char tmp = cmos->suspend_ctrl;
594 /* re-enable any irqs previously active */
595 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
597 if (cmos->enabled_wake) {
598 if (cmos->wake_off)
599 cmos->wake_off(dev);
600 else
601 disable_irq_wake(cmos->irq);
602 cmos->enabled_wake = 0;
605 spin_lock_irq(&rtc_lock);
606 CMOS_WRITE(tmp, RTC_CONTROL);
607 tmp = CMOS_READ(RTC_INTR_FLAGS);
608 tmp &= (cmos->suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
609 if (is_intr(tmp))
610 rtc_update_irq(cmos->rtc, 1, tmp);
611 spin_unlock_irq(&rtc_lock);
614 pr_debug("%s: resume, ctrl %02x\n",
615 cmos_rtc.rtc->dev.bus_id,
616 cmos->suspend_ctrl);
619 return 0;
622 #else
623 #define cmos_suspend NULL
624 #define cmos_resume NULL
625 #endif
627 /*----------------------------------------------------------------*/
629 /* The "CMOS" RTC normally lives on the platform_bus. On ACPI systems,
630 * the device node will always be created as a PNPACPI device.
633 #ifdef CONFIG_PNP
635 #include <linux/pnp.h>
637 static int __devinit
638 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
640 /* REVISIT paranoia argues for a shutdown notifier, since PNP
641 * drivers can't provide shutdown() methods to disable IRQs.
642 * Or better yet, fix PNP to allow those methods...
644 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
645 /* Some machines contain a PNP entry for the RTC, but
646 * don't define the IRQ. It should always be safe to
647 * hardcode it in these cases
649 return cmos_do_probe(&pnp->dev, &pnp->res.port_resource[0], 8);
650 else
651 return cmos_do_probe(&pnp->dev,
652 &pnp->res.port_resource[0],
653 pnp->res.irq_resource[0].start);
656 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
658 cmos_do_remove(&pnp->dev);
661 #ifdef CONFIG_PM
663 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
665 return cmos_suspend(&pnp->dev, mesg);
668 static int cmos_pnp_resume(struct pnp_dev *pnp)
670 return cmos_resume(&pnp->dev);
673 #else
674 #define cmos_pnp_suspend NULL
675 #define cmos_pnp_resume NULL
676 #endif
679 static const struct pnp_device_id rtc_ids[] = {
680 { .id = "PNP0b00", },
681 { .id = "PNP0b01", },
682 { .id = "PNP0b02", },
683 { },
685 MODULE_DEVICE_TABLE(pnp, rtc_ids);
687 static struct pnp_driver cmos_pnp_driver = {
688 .name = (char *) driver_name,
689 .id_table = rtc_ids,
690 .probe = cmos_pnp_probe,
691 .remove = __exit_p(cmos_pnp_remove),
693 /* flag ensures resume() gets called, and stops syslog spam */
694 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
695 .suspend = cmos_pnp_suspend,
696 .resume = cmos_pnp_resume,
699 static int __init cmos_init(void)
701 return pnp_register_driver(&cmos_pnp_driver);
703 module_init(cmos_init);
705 static void __exit cmos_exit(void)
707 pnp_unregister_driver(&cmos_pnp_driver);
709 module_exit(cmos_exit);
711 #else /* no PNP */
713 /*----------------------------------------------------------------*/
715 /* Platform setup should have set up an RTC device, when PNP is
716 * unavailable ... this could happen even on (older) PCs.
719 static int __init cmos_platform_probe(struct platform_device *pdev)
721 return cmos_do_probe(&pdev->dev,
722 platform_get_resource(pdev, IORESOURCE_IO, 0),
723 platform_get_irq(pdev, 0));
726 static int __exit cmos_platform_remove(struct platform_device *pdev)
728 cmos_do_remove(&pdev->dev);
729 return 0;
732 static void cmos_platform_shutdown(struct platform_device *pdev)
734 cmos_do_shutdown();
737 static struct platform_driver cmos_platform_driver = {
738 .remove = __exit_p(cmos_platform_remove),
739 .shutdown = cmos_platform_shutdown,
740 .driver = {
741 .name = (char *) driver_name,
742 .suspend = cmos_suspend,
743 .resume = cmos_resume,
747 static int __init cmos_init(void)
749 return platform_driver_probe(&cmos_platform_driver,
750 cmos_platform_probe);
752 module_init(cmos_init);
754 static void __exit cmos_exit(void)
756 platform_driver_unregister(&cmos_platform_driver);
758 module_exit(cmos_exit);
761 #endif /* !PNP */
763 MODULE_AUTHOR("David Brownell");
764 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
765 MODULE_LICENSE("GPL");