RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / drivers / net / e100.c
blob763810c7f33aa1e3bb682e1afdc780ac18ca8ce1
1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
42 * Theory of Operation
44 * I. General
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
73 * III. Transmit
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
97 * IV. Recieve
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
117 * placed.
119 * V. Miscellaneous
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
132 * TODO:
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
136 * FIXES:
137 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
138 * - Stratus87247: protect MDI control register manipulations
141 #include <linux/module.h>
142 #include <linux/moduleparam.h>
143 #include <linux/kernel.h>
144 #include <linux/types.h>
145 #include <linux/slab.h>
146 #include <linux/delay.h>
147 #include <linux/init.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/netdevice.h>
151 #include <linux/etherdevice.h>
152 #include <linux/mii.h>
153 #include <linux/if_vlan.h>
154 #include <linux/skbuff.h>
155 #include <linux/ethtool.h>
156 #include <linux/string.h>
157 #include <asm/unaligned.h>
160 #define DRV_NAME "e100"
161 #define DRV_EXT "-NAPI"
162 #define DRV_VERSION "3.5.17-k4"DRV_EXT
163 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
164 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
165 #define PFX DRV_NAME ": "
167 #define E100_WATCHDOG_PERIOD (2 * HZ)
168 #define E100_NAPI_WEIGHT 16
170 MODULE_DESCRIPTION(DRV_DESCRIPTION);
171 MODULE_AUTHOR(DRV_COPYRIGHT);
172 MODULE_LICENSE("GPL");
173 MODULE_VERSION(DRV_VERSION);
175 static int debug = 3;
176 static int eeprom_bad_csum_allow = 0;
177 static int use_io = 0;
178 module_param(debug, int, 0);
179 module_param(eeprom_bad_csum_allow, int, 0);
180 module_param(use_io, int, 0);
181 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
182 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
183 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
184 #define DPRINTK(nlevel, klevel, fmt, args...) \
185 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
186 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
187 __FUNCTION__ , ## args))
189 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
190 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
191 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
192 static struct pci_device_id e100_id_table[] = {
193 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
194 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
195 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
196 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
197 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
198 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
199 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
200 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
201 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
202 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
203 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
204 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
205 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
206 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
207 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
208 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
209 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
210 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
211 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
212 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
213 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
214 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
215 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
216 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
217 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
218 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
219 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
220 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
221 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
222 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
223 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
224 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
225 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
226 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
227 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
228 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
229 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
230 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
231 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
232 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
233 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
234 { 0, }
236 MODULE_DEVICE_TABLE(pci, e100_id_table);
238 enum mac {
239 mac_82557_D100_A = 0,
240 mac_82557_D100_B = 1,
241 mac_82557_D100_C = 2,
242 mac_82558_D101_A4 = 4,
243 mac_82558_D101_B0 = 5,
244 mac_82559_D101M = 8,
245 mac_82559_D101S = 9,
246 mac_82550_D102 = 12,
247 mac_82550_D102_C = 13,
248 mac_82551_E = 14,
249 mac_82551_F = 15,
250 mac_82551_10 = 16,
251 mac_unknown = 0xFF,
254 enum phy {
255 phy_100a = 0x000003E0,
256 phy_100c = 0x035002A8,
257 phy_82555_tx = 0x015002A8,
258 phy_nsc_tx = 0x5C002000,
259 phy_82562_et = 0x033002A8,
260 phy_82562_em = 0x032002A8,
261 phy_82562_ek = 0x031002A8,
262 phy_82562_eh = 0x017002A8,
263 phy_unknown = 0xFFFFFFFF,
266 /* CSR (Control/Status Registers) */
267 struct csr {
268 struct {
269 u8 status;
270 u8 stat_ack;
271 u8 cmd_lo;
272 u8 cmd_hi;
273 u32 gen_ptr;
274 } scb;
275 u32 port;
276 u16 flash_ctrl;
277 u8 eeprom_ctrl_lo;
278 u8 eeprom_ctrl_hi;
279 u32 mdi_ctrl;
280 u32 rx_dma_count;
283 enum scb_status {
284 rus_ready = 0x10,
285 rus_mask = 0x3C,
288 enum ru_state {
289 RU_SUSPENDED = 0,
290 RU_RUNNING = 1,
291 RU_UNINITIALIZED = -1,
294 enum scb_stat_ack {
295 stat_ack_not_ours = 0x00,
296 stat_ack_sw_gen = 0x04,
297 stat_ack_rnr = 0x10,
298 stat_ack_cu_idle = 0x20,
299 stat_ack_frame_rx = 0x40,
300 stat_ack_cu_cmd_done = 0x80,
301 stat_ack_not_present = 0xFF,
302 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
303 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
306 enum scb_cmd_hi {
307 irq_mask_none = 0x00,
308 irq_mask_all = 0x01,
309 irq_sw_gen = 0x02,
312 enum scb_cmd_lo {
313 cuc_nop = 0x00,
314 ruc_start = 0x01,
315 ruc_load_base = 0x06,
316 cuc_start = 0x10,
317 cuc_resume = 0x20,
318 cuc_dump_addr = 0x40,
319 cuc_dump_stats = 0x50,
320 cuc_load_base = 0x60,
321 cuc_dump_reset = 0x70,
324 enum cuc_dump {
325 cuc_dump_complete = 0x0000A005,
326 cuc_dump_reset_complete = 0x0000A007,
329 enum port {
330 software_reset = 0x0000,
331 selftest = 0x0001,
332 selective_reset = 0x0002,
335 enum eeprom_ctrl_lo {
336 eesk = 0x01,
337 eecs = 0x02,
338 eedi = 0x04,
339 eedo = 0x08,
342 enum mdi_ctrl {
343 mdi_write = 0x04000000,
344 mdi_read = 0x08000000,
345 mdi_ready = 0x10000000,
348 enum eeprom_op {
349 op_write = 0x05,
350 op_read = 0x06,
351 op_ewds = 0x10,
352 op_ewen = 0x13,
355 enum eeprom_offsets {
356 eeprom_cnfg_mdix = 0x03,
357 eeprom_id = 0x0A,
358 eeprom_config_asf = 0x0D,
359 eeprom_smbus_addr = 0x90,
362 enum eeprom_cnfg_mdix {
363 eeprom_mdix_enabled = 0x0080,
366 enum eeprom_id {
367 eeprom_id_wol = 0x0020,
370 enum eeprom_config_asf {
371 eeprom_asf = 0x8000,
372 eeprom_gcl = 0x4000,
375 enum cb_status {
376 cb_complete = 0x8000,
377 cb_ok = 0x2000,
380 enum cb_command {
381 cb_nop = 0x0000,
382 cb_iaaddr = 0x0001,
383 cb_config = 0x0002,
384 cb_multi = 0x0003,
385 cb_tx = 0x0004,
386 cb_ucode = 0x0005,
387 cb_dump = 0x0006,
388 cb_tx_sf = 0x0008,
389 cb_cid = 0x1f00,
390 cb_i = 0x2000,
391 cb_s = 0x4000,
392 cb_el = 0x8000,
395 struct rfd {
396 u16 status;
397 u16 command;
398 u32 link;
399 u32 rbd;
400 u16 actual_size;
401 u16 size;
404 struct rx {
405 struct rx *next, *prev;
406 struct sk_buff *skb;
407 dma_addr_t dma_addr;
410 #if defined(__BIG_ENDIAN_BITFIELD)
411 #define X(a,b) b,a
412 #else
413 #define X(a,b) a,b
414 #endif
415 struct config {
416 /*0*/ u8 X(byte_count:6, pad0:2);
417 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
418 /*2*/ u8 adaptive_ifs;
419 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
420 term_write_cache_line:1), pad3:4);
421 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
422 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
423 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
424 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
425 rx_discard_overruns:1), rx_save_bad_frames:1);
426 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
427 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
428 tx_dynamic_tbd:1);
429 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
430 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
431 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
432 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
433 loopback:2);
434 /*11*/ u8 X(linear_priority:3, pad11:5);
435 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
436 /*13*/ u8 ip_addr_lo;
437 /*14*/ u8 ip_addr_hi;
438 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
439 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
440 pad15_2:1), crs_or_cdt:1);
441 /*16*/ u8 fc_delay_lo;
442 /*17*/ u8 fc_delay_hi;
443 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
444 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
445 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
446 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
447 full_duplex_force:1), full_duplex_pin:1);
448 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
449 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
450 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
451 u8 pad_d102[9];
454 #define E100_MAX_MULTICAST_ADDRS 64
455 struct multi {
456 u16 count;
457 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
460 /* Important: keep total struct u32-aligned */
461 #define UCODE_SIZE 134
462 struct cb {
463 u16 status;
464 u16 command;
465 u32 link;
466 union {
467 u8 iaaddr[ETH_ALEN];
468 u32 ucode[UCODE_SIZE];
469 struct config config;
470 struct multi multi;
471 struct {
472 u32 tbd_array;
473 u16 tcb_byte_count;
474 u8 threshold;
475 u8 tbd_count;
476 struct {
477 u32 buf_addr;
478 u16 size;
479 u16 eol;
480 } tbd;
481 } tcb;
482 u32 dump_buffer_addr;
483 } u;
484 struct cb *next, *prev;
485 dma_addr_t dma_addr;
486 struct sk_buff *skb;
489 enum loopback {
490 lb_none = 0, lb_mac = 1, lb_phy = 3,
493 struct stats {
494 u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
495 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
496 tx_multiple_collisions, tx_total_collisions;
497 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
498 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
499 rx_short_frame_errors;
500 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
501 u16 xmt_tco_frames, rcv_tco_frames;
502 u32 complete;
505 struct mem {
506 struct {
507 u32 signature;
508 u32 result;
509 } selftest;
510 struct stats stats;
511 u8 dump_buf[596];
514 struct param_range {
515 u32 min;
516 u32 max;
517 u32 count;
520 struct params {
521 struct param_range rfds;
522 struct param_range cbs;
525 struct nic {
526 /* Begin: frequently used values: keep adjacent for cache effect */
527 u32 msg_enable ____cacheline_aligned;
528 struct net_device *netdev;
529 struct pci_dev *pdev;
531 struct rx *rxs ____cacheline_aligned;
532 struct rx *rx_to_use;
533 struct rx *rx_to_clean;
534 struct rfd blank_rfd;
535 enum ru_state ru_running;
537 spinlock_t cb_lock ____cacheline_aligned;
538 spinlock_t cmd_lock;
539 struct csr __iomem *csr;
540 enum scb_cmd_lo cuc_cmd;
541 unsigned int cbs_avail;
542 struct cb *cbs;
543 struct cb *cb_to_use;
544 struct cb *cb_to_send;
545 struct cb *cb_to_clean;
546 u16 tx_command;
547 /* End: frequently used values: keep adjacent for cache effect */
549 enum {
550 ich = (1 << 0),
551 promiscuous = (1 << 1),
552 multicast_all = (1 << 2),
553 wol_magic = (1 << 3),
554 ich_10h_workaround = (1 << 4),
555 } flags ____cacheline_aligned;
557 enum mac mac;
558 enum phy phy;
559 struct params params;
560 struct net_device_stats net_stats;
561 struct timer_list watchdog;
562 struct timer_list blink_timer;
563 struct mii_if_info mii;
564 struct work_struct tx_timeout_task;
565 enum loopback loopback;
567 struct mem *mem;
568 dma_addr_t dma_addr;
570 dma_addr_t cbs_dma_addr;
571 u8 adaptive_ifs;
572 u8 tx_threshold;
573 u32 tx_frames;
574 u32 tx_collisions;
575 u32 tx_deferred;
576 u32 tx_single_collisions;
577 u32 tx_multiple_collisions;
578 u32 tx_fc_pause;
579 u32 tx_tco_frames;
581 u32 rx_fc_pause;
582 u32 rx_fc_unsupported;
583 u32 rx_tco_frames;
584 u32 rx_over_length_errors;
586 u8 rev_id;
587 u16 leds;
588 u16 eeprom_wc;
589 u16 eeprom[256];
590 spinlock_t mdio_lock;
593 static inline void e100_write_flush(struct nic *nic)
595 /* Flush previous PCI writes through intermediate bridges
596 * by doing a benign read */
597 (void)ioread8(&nic->csr->scb.status);
600 static void e100_enable_irq(struct nic *nic)
602 unsigned long flags;
604 spin_lock_irqsave(&nic->cmd_lock, flags);
605 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
606 e100_write_flush(nic);
607 spin_unlock_irqrestore(&nic->cmd_lock, flags);
610 static void e100_disable_irq(struct nic *nic)
612 unsigned long flags;
614 spin_lock_irqsave(&nic->cmd_lock, flags);
615 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
616 e100_write_flush(nic);
617 spin_unlock_irqrestore(&nic->cmd_lock, flags);
620 static void e100_hw_reset(struct nic *nic)
622 /* Put CU and RU into idle with a selective reset to get
623 * device off of PCI bus */
624 iowrite32(selective_reset, &nic->csr->port);
625 e100_write_flush(nic); udelay(20);
627 /* Now fully reset device */
628 iowrite32(software_reset, &nic->csr->port);
629 e100_write_flush(nic); udelay(20);
631 /* Mask off our interrupt line - it's unmasked after reset */
632 e100_disable_irq(nic);
635 static int e100_self_test(struct nic *nic)
637 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
639 /* Passing the self-test is a pretty good indication
640 * that the device can DMA to/from host memory */
642 nic->mem->selftest.signature = 0;
643 nic->mem->selftest.result = 0xFFFFFFFF;
645 iowrite32(selftest | dma_addr, &nic->csr->port);
646 e100_write_flush(nic);
647 /* Wait 10 msec for self-test to complete */
648 msleep(10);
650 /* Interrupts are enabled after self-test */
651 e100_disable_irq(nic);
653 /* Check results of self-test */
654 if(nic->mem->selftest.result != 0) {
655 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
656 nic->mem->selftest.result);
657 return -ETIMEDOUT;
659 if(nic->mem->selftest.signature == 0) {
660 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
661 return -ETIMEDOUT;
664 return 0;
667 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
669 u32 cmd_addr_data[3];
670 u8 ctrl;
671 int i, j;
673 /* Three cmds: write/erase enable, write data, write/erase disable */
674 cmd_addr_data[0] = op_ewen << (addr_len - 2);
675 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
676 cpu_to_le16(data);
677 cmd_addr_data[2] = op_ewds << (addr_len - 2);
679 /* Bit-bang cmds to write word to eeprom */
680 for(j = 0; j < 3; j++) {
682 /* Chip select */
683 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
684 e100_write_flush(nic); udelay(4);
686 for(i = 31; i >= 0; i--) {
687 ctrl = (cmd_addr_data[j] & (1 << i)) ?
688 eecs | eedi : eecs;
689 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
690 e100_write_flush(nic); udelay(4);
692 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
693 e100_write_flush(nic); udelay(4);
695 /* Wait 10 msec for cmd to complete */
696 msleep(10);
698 /* Chip deselect */
699 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
700 e100_write_flush(nic); udelay(4);
704 /* General technique stolen from the eepro100 driver - very clever */
705 static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
707 u32 cmd_addr_data;
708 u16 data = 0;
709 u8 ctrl;
710 int i;
712 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
714 /* Chip select */
715 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
716 e100_write_flush(nic); udelay(4);
718 /* Bit-bang to read word from eeprom */
719 for(i = 31; i >= 0; i--) {
720 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
721 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
722 e100_write_flush(nic); udelay(4);
724 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
725 e100_write_flush(nic); udelay(4);
727 /* Eeprom drives a dummy zero to EEDO after receiving
728 * complete address. Use this to adjust addr_len. */
729 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
730 if(!(ctrl & eedo) && i > 16) {
731 *addr_len -= (i - 16);
732 i = 17;
735 data = (data << 1) | (ctrl & eedo ? 1 : 0);
738 /* Chip deselect */
739 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
740 e100_write_flush(nic); udelay(4);
742 return le16_to_cpu(data);
745 /* Load entire EEPROM image into driver cache and validate checksum */
746 static int e100_eeprom_load(struct nic *nic)
748 u16 addr, addr_len = 8, checksum = 0;
750 /* Try reading with an 8-bit addr len to discover actual addr len */
751 e100_eeprom_read(nic, &addr_len, 0);
752 nic->eeprom_wc = 1 << addr_len;
754 for(addr = 0; addr < nic->eeprom_wc; addr++) {
755 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
756 if(addr < nic->eeprom_wc - 1)
757 checksum += cpu_to_le16(nic->eeprom[addr]);
760 /* The checksum, stored in the last word, is calculated such that
761 * the sum of words should be 0xBABA */
762 checksum = le16_to_cpu(0xBABA - checksum);
763 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
764 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
765 if (!eeprom_bad_csum_allow)
766 return -EAGAIN;
769 return 0;
772 /* Save (portion of) driver EEPROM cache to device and update checksum */
773 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
775 u16 addr, addr_len = 8, checksum = 0;
777 /* Try reading with an 8-bit addr len to discover actual addr len */
778 e100_eeprom_read(nic, &addr_len, 0);
779 nic->eeprom_wc = 1 << addr_len;
781 if(start + count >= nic->eeprom_wc)
782 return -EINVAL;
784 for(addr = start; addr < start + count; addr++)
785 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
787 /* The checksum, stored in the last word, is calculated such that
788 * the sum of words should be 0xBABA */
789 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
790 checksum += cpu_to_le16(nic->eeprom[addr]);
791 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
792 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
793 nic->eeprom[nic->eeprom_wc - 1]);
795 return 0;
798 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
799 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
800 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
802 unsigned long flags;
803 unsigned int i;
804 int err = 0;
806 spin_lock_irqsave(&nic->cmd_lock, flags);
808 /* Previous command is accepted when SCB clears */
809 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
810 if(likely(!ioread8(&nic->csr->scb.cmd_lo)))
811 break;
812 cpu_relax();
813 if(unlikely(i > E100_WAIT_SCB_FAST))
814 udelay(5);
816 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
817 err = -EAGAIN;
818 goto err_unlock;
821 if(unlikely(cmd != cuc_resume))
822 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
823 iowrite8(cmd, &nic->csr->scb.cmd_lo);
825 err_unlock:
826 spin_unlock_irqrestore(&nic->cmd_lock, flags);
828 return err;
831 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
832 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
834 struct cb *cb;
835 unsigned long flags;
836 int err = 0;
838 spin_lock_irqsave(&nic->cb_lock, flags);
840 if(unlikely(!nic->cbs_avail)) {
841 err = -ENOMEM;
842 goto err_unlock;
845 cb = nic->cb_to_use;
846 nic->cb_to_use = cb->next;
847 nic->cbs_avail--;
848 cb->skb = skb;
850 if(unlikely(!nic->cbs_avail))
851 err = -ENOSPC;
853 cb_prepare(nic, cb, skb);
855 /* Order is important otherwise we'll be in a race with h/w:
856 * set S-bit in current first, then clear S-bit in previous. */
857 cb->command |= cpu_to_le16(cb_s);
858 wmb();
859 cb->prev->command &= cpu_to_le16(~cb_s);
861 while(nic->cb_to_send != nic->cb_to_use) {
862 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
863 nic->cb_to_send->dma_addr))) {
864 /* Ok, here's where things get sticky. It's
865 * possible that we can't schedule the command
866 * because the controller is too busy, so
867 * let's just queue the command and try again
868 * when another command is scheduled. */
869 if(err == -ENOSPC) {
870 //request a reset
871 schedule_work(&nic->tx_timeout_task);
873 break;
874 } else {
875 nic->cuc_cmd = cuc_resume;
876 nic->cb_to_send = nic->cb_to_send->next;
880 err_unlock:
881 spin_unlock_irqrestore(&nic->cb_lock, flags);
883 return err;
886 static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
888 u32 data_out = 0;
889 unsigned int i;
890 unsigned long flags;
894 * Stratus87247: we shouldn't be writing the MDI control
895 * register until the Ready bit shows True. Also, since
896 * manipulation of the MDI control registers is a multi-step
897 * procedure it should be done under lock.
899 spin_lock_irqsave(&nic->mdio_lock, flags);
900 for (i = 100; i; --i) {
901 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
902 break;
903 udelay(20);
905 if (unlikely(!i)) {
906 printk("e100.mdio_ctrl(%s) won't go Ready\n",
907 nic->netdev->name );
908 spin_unlock_irqrestore(&nic->mdio_lock, flags);
909 return 0; /* No way to indicate timeout error */
911 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
913 for (i = 0; i < 100; i++) {
914 udelay(20);
915 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
916 break;
918 spin_unlock_irqrestore(&nic->mdio_lock, flags);
919 DPRINTK(HW, DEBUG,
920 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
921 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
922 return (u16)data_out;
925 static int mdio_read(struct net_device *netdev, int addr, int reg)
927 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
930 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
932 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
935 static void e100_get_defaults(struct nic *nic)
937 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
938 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
940 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id);
941 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
942 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id;
943 if(nic->mac == mac_unknown)
944 nic->mac = mac_82557_D100_A;
946 nic->params.rfds = rfds;
947 nic->params.cbs = cbs;
949 /* Quadwords to DMA into FIFO before starting frame transmit */
950 nic->tx_threshold = 0xE0;
952 /* no interrupt for every tx completion, delay = 256us if not 557*/
953 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
954 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
956 /* Template for a freshly allocated RFD */
957 nic->blank_rfd.command = cpu_to_le16(cb_el);
958 nic->blank_rfd.rbd = 0xFFFFFFFF;
959 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
961 /* MII setup */
962 nic->mii.phy_id_mask = 0x1F;
963 nic->mii.reg_num_mask = 0x1F;
964 nic->mii.dev = nic->netdev;
965 nic->mii.mdio_read = mdio_read;
966 nic->mii.mdio_write = mdio_write;
969 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
971 struct config *config = &cb->u.config;
972 u8 *c = (u8 *)config;
974 cb->command = cpu_to_le16(cb_config);
976 memset(config, 0, sizeof(struct config));
978 config->byte_count = 0x16; /* bytes in this struct */
979 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
980 config->direct_rx_dma = 0x1; /* reserved */
981 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
982 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
983 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
984 config->tx_underrun_retry = 0x3; /* # of underrun retries */
985 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
986 config->pad10 = 0x6;
987 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
988 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
989 config->ifs = 0x6; /* x16 = inter frame spacing */
990 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
991 config->pad15_1 = 0x1;
992 config->pad15_2 = 0x1;
993 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
994 config->fc_delay_hi = 0x40; /* time delay for fc frame */
995 config->tx_padding = 0x1; /* 1=pad short frames */
996 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
997 config->pad18 = 0x1;
998 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
999 config->pad20_1 = 0x1F;
1000 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1001 config->pad21_1 = 0x5;
1003 config->adaptive_ifs = nic->adaptive_ifs;
1004 config->loopback = nic->loopback;
1006 if(nic->mii.force_media && nic->mii.full_duplex)
1007 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1009 if(nic->flags & promiscuous || nic->loopback) {
1010 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1011 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1012 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1015 if(nic->flags & multicast_all)
1016 config->multicast_all = 0x1; /* 1=accept, 0=no */
1018 /* disable WoL when up */
1019 if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
1020 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1022 if(nic->mac >= mac_82558_D101_A4) {
1023 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1024 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1025 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1026 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1027 if(nic->mac >= mac_82559_D101M)
1028 config->tno_intr = 0x1; /* TCO stats enable */
1029 else
1030 config->standard_stat_counter = 0x0;
1033 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1034 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1035 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1036 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1037 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1038 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1041 /********************************************************/
1042 /* Micro code for 8086:1229 Rev 8 */
1043 /********************************************************/
1045 /* Parameter values for the D101M B-step */
1046 #define D101M_CPUSAVER_TIMER_DWORD 78
1047 #define D101M_CPUSAVER_BUNDLE_DWORD 65
1048 #define D101M_CPUSAVER_MIN_SIZE_DWORD 126
1050 #define D101M_B_RCVBUNDLE_UCODE \
1052 0x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \
1053 0x000C0001, 0x00101312, 0x000C0008, 0x00380216, \
1054 0x0010009C, 0x00204056, 0x002380CC, 0x00380056, \
1055 0x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \
1056 0x00380438, 0x00000000, 0x00140000, 0x00380555, \
1057 0x00308000, 0x00100662, 0x00100561, 0x000E0408, \
1058 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1059 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1060 0x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \
1061 0x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \
1062 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1063 0x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \
1064 0x003A0437, 0x00044010, 0x0038078A, 0x00000000, \
1065 0x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \
1066 0x00130824, 0x000C0001, 0x00101213, 0x00260C75, \
1067 0x00041000, 0x00010004, 0x00130826, 0x000C0006, \
1068 0x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \
1069 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1070 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1071 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1072 0x00101210, 0x00380C34, 0x00000000, 0x00000000, \
1073 0x0021155B, 0x00100099, 0x00206559, 0x0010009C, \
1074 0x00244559, 0x00130836, 0x000C0000, 0x00220C62, \
1075 0x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \
1076 0x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \
1077 0x00214C0E, 0x00380555, 0x00010004, 0x00041000, \
1078 0x00278C67, 0x00040800, 0x00018100, 0x003A0437, \
1079 0x00130826, 0x000C0001, 0x00220559, 0x00101313, \
1080 0x00380559, 0x00000000, 0x00000000, 0x00000000, \
1081 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1082 0x00000000, 0x00130831, 0x0010090B, 0x00124813, \
1083 0x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \
1084 0x003806A8, 0x00000000, 0x00000000, 0x00000000, \
1087 /********************************************************/
1088 /* Micro code for 8086:1229 Rev 9 */
1089 /********************************************************/
1091 /* Parameter values for the D101S */
1092 #define D101S_CPUSAVER_TIMER_DWORD 78
1093 #define D101S_CPUSAVER_BUNDLE_DWORD 67
1094 #define D101S_CPUSAVER_MIN_SIZE_DWORD 128
1096 #define D101S_RCVBUNDLE_UCODE \
1098 0x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \
1099 0x000C0001, 0x00101312, 0x000C0008, 0x00380243, \
1100 0x0010009C, 0x00204056, 0x002380D0, 0x00380056, \
1101 0x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \
1102 0x0038047F, 0x00000000, 0x00140000, 0x003805A3, \
1103 0x00308000, 0x00100610, 0x00100561, 0x000E0408, \
1104 0x00134861, 0x000C0002, 0x00103093, 0x00308000, \
1105 0x00100624, 0x00100561, 0x000E0408, 0x00100861, \
1106 0x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \
1107 0x00380F90, 0x00080000, 0x00103090, 0x00380F90, \
1108 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1109 0x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \
1110 0x003A047E, 0x00044010, 0x00380819, 0x00000000, \
1111 0x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \
1112 0x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \
1113 0x00101213, 0x00260FF7, 0x00041000, 0x00010004, \
1114 0x00130826, 0x000C0006, 0x00220700, 0x0013C926, \
1115 0x00101313, 0x00380700, 0x00000000, 0x00000000, \
1116 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1117 0x00080600, 0x00101B10, 0x00050004, 0x00100826, \
1118 0x00101210, 0x00380FB6, 0x00000000, 0x00000000, \
1119 0x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \
1120 0x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \
1121 0x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \
1122 0x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \
1123 0x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \
1124 0x00010004, 0x00041000, 0x00278FE9, 0x00040800, \
1125 0x00018100, 0x003A047E, 0x00130826, 0x000C0001, \
1126 0x002205A7, 0x00101313, 0x003805A7, 0x00000000, \
1127 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1128 0x00000000, 0x00000000, 0x00000000, 0x00130831, \
1129 0x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \
1130 0x00041000, 0x00010004, 0x00380700 \
1133 /********************************************************/
1134 /* Micro code for the 8086:1229 Rev F/10 */
1135 /********************************************************/
1137 /* Parameter values for the D102 E-step */
1138 #define D102_E_CPUSAVER_TIMER_DWORD 42
1139 #define D102_E_CPUSAVER_BUNDLE_DWORD 54
1140 #define D102_E_CPUSAVER_MIN_SIZE_DWORD 46
1142 #define D102_E_RCVBUNDLE_UCODE \
1144 0x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \
1145 0x00E014B9, 0x00000000, 0x00000000, 0x00000000, \
1146 0x00E014BD, 0x00000000, 0x00000000, 0x00000000, \
1147 0x00E014D5, 0x00000000, 0x00000000, 0x00000000, \
1148 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1149 0x00E014C1, 0x00000000, 0x00000000, 0x00000000, \
1150 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1151 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1152 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1153 0x00E014C8, 0x00000000, 0x00000000, 0x00000000, \
1154 0x00200600, 0x00E014EE, 0x00000000, 0x00000000, \
1155 0x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \
1156 0x00E00E43, 0x00000000, 0x00000000, 0x00000000, \
1157 0x00300006, 0x00E014FB, 0x00000000, 0x00000000, \
1158 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1159 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1160 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1161 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \
1162 0x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \
1163 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1164 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1165 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1166 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1167 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1168 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1169 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1170 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1171 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1172 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1173 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1174 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1175 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1176 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
1179 static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1181 /* *INDENT-OFF* */
1182 static struct {
1183 u32 ucode[UCODE_SIZE + 1];
1184 u8 mac;
1185 u8 timer_dword;
1186 u8 bundle_dword;
1187 u8 min_size_dword;
1188 } ucode_opts[] = {
1189 { D101M_B_RCVBUNDLE_UCODE,
1190 mac_82559_D101M,
1191 D101M_CPUSAVER_TIMER_DWORD,
1192 D101M_CPUSAVER_BUNDLE_DWORD,
1193 D101M_CPUSAVER_MIN_SIZE_DWORD },
1194 { D101S_RCVBUNDLE_UCODE,
1195 mac_82559_D101S,
1196 D101S_CPUSAVER_TIMER_DWORD,
1197 D101S_CPUSAVER_BUNDLE_DWORD,
1198 D101S_CPUSAVER_MIN_SIZE_DWORD },
1199 { D102_E_RCVBUNDLE_UCODE,
1200 mac_82551_F,
1201 D102_E_CPUSAVER_TIMER_DWORD,
1202 D102_E_CPUSAVER_BUNDLE_DWORD,
1203 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1204 { D102_E_RCVBUNDLE_UCODE,
1205 mac_82551_10,
1206 D102_E_CPUSAVER_TIMER_DWORD,
1207 D102_E_CPUSAVER_BUNDLE_DWORD,
1208 D102_E_CPUSAVER_MIN_SIZE_DWORD },
1209 { {0}, 0, 0, 0, 0}
1210 }, *opts;
1211 /* *INDENT-ON* */
1213 /*************************************************************************
1214 * CPUSaver parameters
1216 * All CPUSaver parameters are 16-bit literals that are part of a
1217 * "move immediate value" instruction. By changing the value of
1218 * the literal in the instruction before the code is loaded, the
1219 * driver can change the algorithm.
1221 * INTDELAY - This loads the dead-man timer with its initial value.
1222 * When this timer expires the interrupt is asserted, and the
1223 * timer is reset each time a new packet is received. (see
1224 * BUNDLEMAX below to set the limit on number of chained packets)
1225 * The current default is 0x600 or 1536. Experiments show that
1226 * the value should probably stay within the 0x200 - 0x1000.
1228 * BUNDLEMAX -
1229 * This sets the maximum number of frames that will be bundled. In
1230 * some situations, such as the TCP windowing algorithm, it may be
1231 * better to limit the growth of the bundle size than let it go as
1232 * high as it can, because that could cause too much added latency.
1233 * The default is six, because this is the number of packets in the
1234 * default TCP window size. A value of 1 would make CPUSaver indicate
1235 * an interrupt for every frame received. If you do not want to put
1236 * a limit on the bundle size, set this value to xFFFF.
1238 * BUNDLESMALL -
1239 * This contains a bit-mask describing the minimum size frame that
1240 * will be bundled. The default masks the lower 7 bits, which means
1241 * that any frame less than 128 bytes in length will not be bundled,
1242 * but will instead immediately generate an interrupt. This does
1243 * not affect the current bundle in any way. Any frame that is 128
1244 * bytes or large will be bundled normally. This feature is meant
1245 * to provide immediate indication of ACK frames in a TCP environment.
1246 * Customers were seeing poor performance when a machine with CPUSaver
1247 * enabled was sending but not receiving. The delay introduced when
1248 * the ACKs were received was enough to reduce total throughput, because
1249 * the sender would sit idle until the ACK was finally seen.
1251 * The current default is 0xFF80, which masks out the lower 7 bits.
1252 * This means that any frame which is x7F (127) bytes or smaller
1253 * will cause an immediate interrupt. Because this value must be a
1254 * bit mask, there are only a few valid values that can be used. To
1255 * turn this feature off, the driver can write the value xFFFF to the
1256 * lower word of this instruction (in the same way that the other
1257 * parameters are used). Likewise, a value of 0xF800 (2047) would
1258 * cause an interrupt to be generated for every frame, because all
1259 * standard Ethernet frames are <= 2047 bytes in length.
1260 *************************************************************************/
1262 /* if you wish to disable the ucode functionality, while maintaining the
1263 * workarounds it provides, set the following defines to:
1264 * BUNDLESMALL 0
1265 * BUNDLEMAX 1
1266 * INTDELAY 1
1268 #define BUNDLESMALL 1
1269 #define BUNDLEMAX (u16)6
1270 #define INTDELAY (u16)1536 /* 0x600 */
1272 /* do not load u-code for ICH devices */
1273 if (nic->flags & ich)
1274 goto noloaducode;
1276 /* Search for ucode match against h/w rev_id */
1277 for (opts = ucode_opts; opts->mac; opts++) {
1278 int i;
1279 u32 *ucode = opts->ucode;
1280 if (nic->mac != opts->mac)
1281 continue;
1283 /* Insert user-tunable settings */
1284 ucode[opts->timer_dword] &= 0xFFFF0000;
1285 ucode[opts->timer_dword] |= INTDELAY;
1286 ucode[opts->bundle_dword] &= 0xFFFF0000;
1287 ucode[opts->bundle_dword] |= BUNDLEMAX;
1288 ucode[opts->min_size_dword] &= 0xFFFF0000;
1289 ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80;
1291 for (i = 0; i < UCODE_SIZE; i++)
1292 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
1293 cb->command = cpu_to_le16(cb_ucode | cb_el);
1294 return;
1297 noloaducode:
1298 cb->command = cpu_to_le16(cb_nop | cb_el);
1301 static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb,
1302 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
1304 int err = 0, counter = 50;
1305 struct cb *cb = nic->cb_to_clean;
1307 if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode)))
1308 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err);
1310 /* must restart cuc */
1311 nic->cuc_cmd = cuc_start;
1313 /* wait for completion */
1314 e100_write_flush(nic);
1315 udelay(10);
1317 /* wait for possibly (ouch) 500ms */
1318 while (!(cb->status & cpu_to_le16(cb_complete))) {
1319 msleep(10);
1320 if (!--counter) break;
1323 /* ack any interupts, something could have been set */
1324 iowrite8(~0, &nic->csr->scb.stat_ack);
1326 /* if the command failed, or is not OK, notify and return */
1327 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1328 DPRINTK(PROBE,ERR, "ucode load failed\n");
1329 err = -EPERM;
1332 return err;
1335 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1336 struct sk_buff *skb)
1338 cb->command = cpu_to_le16(cb_iaaddr);
1339 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1342 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1344 cb->command = cpu_to_le16(cb_dump);
1345 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1346 offsetof(struct mem, dump_buf));
1349 #define NCONFIG_AUTO_SWITCH 0x0080
1350 #define MII_NSC_CONG MII_RESV1
1351 #define NSC_CONG_ENABLE 0x0100
1352 #define NSC_CONG_TXREADY 0x0400
1353 #define ADVERTISE_FC_SUPPORTED 0x0400
1354 static int e100_phy_init(struct nic *nic)
1356 struct net_device *netdev = nic->netdev;
1357 u32 addr;
1358 u16 bmcr, stat, id_lo, id_hi, cong;
1360 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1361 for(addr = 0; addr < 32; addr++) {
1362 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1363 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1364 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1365 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1366 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1367 break;
1369 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1370 if(addr == 32)
1371 return -EAGAIN;
1373 /* Selected the phy and isolate the rest */
1374 for(addr = 0; addr < 32; addr++) {
1375 if(addr != nic->mii.phy_id) {
1376 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1377 } else {
1378 bmcr = mdio_read(netdev, addr, MII_BMCR);
1379 mdio_write(netdev, addr, MII_BMCR,
1380 bmcr & ~BMCR_ISOLATE);
1384 /* Get phy ID */
1385 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1386 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1387 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1388 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1390 /* Handle National tx phys */
1391 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1392 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1393 /* Disable congestion control */
1394 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1395 cong |= NSC_CONG_TXREADY;
1396 cong &= ~NSC_CONG_ENABLE;
1397 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1400 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1401 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1402 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1403 /* enable/disable MDI/MDI-X auto-switching. */
1404 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1405 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1408 return 0;
1411 static int e100_hw_init(struct nic *nic)
1413 int err;
1415 e100_hw_reset(nic);
1417 DPRINTK(HW, ERR, "e100_hw_init\n");
1418 if(!in_interrupt() && (err = e100_self_test(nic)))
1419 return err;
1421 if((err = e100_phy_init(nic)))
1422 return err;
1423 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1424 return err;
1425 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1426 return err;
1427 if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode)))
1428 return err;
1429 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1430 return err;
1431 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1432 return err;
1433 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1434 nic->dma_addr + offsetof(struct mem, stats))))
1435 return err;
1436 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1437 return err;
1439 e100_disable_irq(nic);
1441 return 0;
1444 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1446 struct net_device *netdev = nic->netdev;
1447 struct dev_mc_list *list = netdev->mc_list;
1448 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1450 cb->command = cpu_to_le16(cb_multi);
1451 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1452 for(i = 0; list && i < count; i++, list = list->next)
1453 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1454 ETH_ALEN);
1457 static void e100_set_multicast_list(struct net_device *netdev)
1459 struct nic *nic = netdev_priv(netdev);
1461 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1462 netdev->mc_count, netdev->flags);
1464 if(netdev->flags & IFF_PROMISC)
1465 nic->flags |= promiscuous;
1466 else
1467 nic->flags &= ~promiscuous;
1469 if(netdev->flags & IFF_ALLMULTI ||
1470 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1471 nic->flags |= multicast_all;
1472 else
1473 nic->flags &= ~multicast_all;
1475 e100_exec_cb(nic, NULL, e100_configure);
1476 e100_exec_cb(nic, NULL, e100_multi);
1479 static void e100_update_stats(struct nic *nic)
1481 struct net_device_stats *ns = &nic->net_stats;
1482 struct stats *s = &nic->mem->stats;
1483 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1484 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1485 &s->complete;
1487 /* Device's stats reporting may take several microseconds to
1488 * complete, so where always waiting for results of the
1489 * previous command. */
1491 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1492 *complete = 0;
1493 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1494 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1495 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1496 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1497 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1498 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1499 ns->collisions += nic->tx_collisions;
1500 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1501 le32_to_cpu(s->tx_lost_crs);
1502 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1503 nic->rx_over_length_errors;
1504 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1505 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1506 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1507 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1508 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1509 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1510 le32_to_cpu(s->rx_alignment_errors) +
1511 le32_to_cpu(s->rx_short_frame_errors) +
1512 le32_to_cpu(s->rx_cdt_errors);
1513 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1514 nic->tx_single_collisions +=
1515 le32_to_cpu(s->tx_single_collisions);
1516 nic->tx_multiple_collisions +=
1517 le32_to_cpu(s->tx_multiple_collisions);
1518 if(nic->mac >= mac_82558_D101_A4) {
1519 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1520 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1521 nic->rx_fc_unsupported +=
1522 le32_to_cpu(s->fc_rcv_unsupported);
1523 if(nic->mac >= mac_82559_D101M) {
1524 nic->tx_tco_frames +=
1525 le16_to_cpu(s->xmt_tco_frames);
1526 nic->rx_tco_frames +=
1527 le16_to_cpu(s->rcv_tco_frames);
1533 if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1534 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1537 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1539 /* Adjust inter-frame-spacing (IFS) between two transmits if
1540 * we're getting collisions on a half-duplex connection. */
1542 if(duplex == DUPLEX_HALF) {
1543 u32 prev = nic->adaptive_ifs;
1544 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1546 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1547 (nic->tx_frames > min_frames)) {
1548 if(nic->adaptive_ifs < 60)
1549 nic->adaptive_ifs += 5;
1550 } else if (nic->tx_frames < min_frames) {
1551 if(nic->adaptive_ifs >= 5)
1552 nic->adaptive_ifs -= 5;
1554 if(nic->adaptive_ifs != prev)
1555 e100_exec_cb(nic, NULL, e100_configure);
1559 static void e100_watchdog(unsigned long data)
1561 struct nic *nic = (struct nic *)data;
1562 struct ethtool_cmd cmd;
1564 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1566 /* mii library handles link maintenance tasks */
1568 mii_ethtool_gset(&nic->mii, &cmd);
1570 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1571 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1572 cmd.speed == SPEED_100 ? "100" : "10",
1573 cmd.duplex == DUPLEX_FULL ? "full" : "half");
1574 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1575 DPRINTK(LINK, INFO, "link down\n");
1578 mii_check_link(&nic->mii);
1580 /* Software generated interrupt to recover from (rare) Rx
1581 * allocation failure.
1582 * Unfortunately have to use a spinlock to not re-enable interrupts
1583 * accidentally, due to hardware that shares a register between the
1584 * interrupt mask bit and the SW Interrupt generation bit */
1585 spin_lock_irq(&nic->cmd_lock);
1586 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1587 e100_write_flush(nic);
1588 spin_unlock_irq(&nic->cmd_lock);
1590 e100_update_stats(nic);
1591 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1593 if(nic->mac <= mac_82557_D100_C)
1594 /* Issue a multicast command to workaround a 557 lock up */
1595 e100_set_multicast_list(nic->netdev);
1597 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1598 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1599 nic->flags |= ich_10h_workaround;
1600 else
1601 nic->flags &= ~ich_10h_workaround;
1603 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
1606 static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1607 struct sk_buff *skb)
1609 cb->command = nic->tx_command;
1610 /* interrupt every 16 packets regardless of delay */
1611 if((nic->cbs_avail & ~15) == nic->cbs_avail)
1612 cb->command |= cpu_to_le16(cb_i);
1613 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1614 cb->u.tcb.tcb_byte_count = 0;
1615 cb->u.tcb.threshold = nic->tx_threshold;
1616 cb->u.tcb.tbd_count = 1;
1617 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1618 skb->data, skb->len, PCI_DMA_TODEVICE));
1619 /* check for mapping failure? */
1620 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1623 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1625 struct nic *nic = netdev_priv(netdev);
1626 int err;
1628 if(nic->flags & ich_10h_workaround) {
1629 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1630 Issue a NOP command followed by a 1us delay before
1631 issuing the Tx command. */
1632 if(e100_exec_cmd(nic, cuc_nop, 0))
1633 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1634 udelay(1);
1637 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1639 switch(err) {
1640 case -ENOSPC:
1641 /* We queued the skb, but now we're out of space. */
1642 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1643 netif_stop_queue(netdev);
1644 break;
1645 case -ENOMEM:
1646 /* This is a hard error - log it. */
1647 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1648 netif_stop_queue(netdev);
1649 return 1;
1652 netdev->trans_start = jiffies;
1653 return 0;
1656 static int e100_tx_clean(struct nic *nic)
1658 struct cb *cb;
1659 int tx_cleaned = 0;
1661 spin_lock(&nic->cb_lock);
1663 /* Clean CBs marked complete */
1664 for(cb = nic->cb_to_clean;
1665 cb->status & cpu_to_le16(cb_complete);
1666 cb = nic->cb_to_clean = cb->next) {
1667 DPRINTK(TX_DONE, DEBUG, "cb[%d]->status = 0x%04X\n",
1668 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1669 cb->status);
1671 if(likely(cb->skb != NULL)) {
1672 nic->net_stats.tx_packets++;
1673 nic->net_stats.tx_bytes += cb->skb->len;
1675 pci_unmap_single(nic->pdev,
1676 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1677 le16_to_cpu(cb->u.tcb.tbd.size),
1678 PCI_DMA_TODEVICE);
1679 dev_kfree_skb_any(cb->skb);
1680 cb->skb = NULL;
1681 tx_cleaned = 1;
1683 cb->status = 0;
1684 nic->cbs_avail++;
1687 spin_unlock(&nic->cb_lock);
1689 /* Recover from running out of Tx resources in xmit_frame */
1690 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1691 netif_wake_queue(nic->netdev);
1693 return tx_cleaned;
1696 static void e100_clean_cbs(struct nic *nic)
1698 if(nic->cbs) {
1699 while(nic->cbs_avail != nic->params.cbs.count) {
1700 struct cb *cb = nic->cb_to_clean;
1701 if(cb->skb) {
1702 pci_unmap_single(nic->pdev,
1703 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1704 le16_to_cpu(cb->u.tcb.tbd.size),
1705 PCI_DMA_TODEVICE);
1706 dev_kfree_skb(cb->skb);
1708 nic->cb_to_clean = nic->cb_to_clean->next;
1709 nic->cbs_avail++;
1711 pci_free_consistent(nic->pdev,
1712 sizeof(struct cb) * nic->params.cbs.count,
1713 nic->cbs, nic->cbs_dma_addr);
1714 nic->cbs = NULL;
1715 nic->cbs_avail = 0;
1717 nic->cuc_cmd = cuc_start;
1718 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1719 nic->cbs;
1722 static int e100_alloc_cbs(struct nic *nic)
1724 struct cb *cb;
1725 unsigned int i, count = nic->params.cbs.count;
1727 nic->cuc_cmd = cuc_start;
1728 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1729 nic->cbs_avail = 0;
1731 nic->cbs = pci_alloc_consistent(nic->pdev,
1732 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1733 if(!nic->cbs)
1734 return -ENOMEM;
1736 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1737 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1738 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1740 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1741 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1742 ((i+1) % count) * sizeof(struct cb));
1743 cb->skb = NULL;
1746 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1747 nic->cbs_avail = count;
1749 return 0;
1752 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1754 if(!nic->rxs) return;
1755 if(RU_SUSPENDED != nic->ru_running) return;
1757 /* handle init time starts */
1758 if(!rx) rx = nic->rxs;
1760 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1761 if(rx->skb) {
1762 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1763 nic->ru_running = RU_RUNNING;
1767 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1768 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1770 if(!(rx->skb = netdev_alloc_skb(nic->netdev, RFD_BUF_LEN + NET_IP_ALIGN)))
1771 return -ENOMEM;
1773 /* Align, init, and map the RFD. */
1774 skb_reserve(rx->skb, NET_IP_ALIGN);
1775 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1776 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1777 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1779 if(pci_dma_mapping_error(rx->dma_addr)) {
1780 dev_kfree_skb_any(rx->skb);
1781 rx->skb = NULL;
1782 rx->dma_addr = 0;
1783 return -ENOMEM;
1786 /* Link the RFD to end of RFA by linking previous RFD to
1787 * this one, and clearing EL bit of previous. */
1788 if(rx->prev->skb) {
1789 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1790 put_unaligned(cpu_to_le32(rx->dma_addr),
1791 (u32 *)&prev_rfd->link);
1792 wmb();
1793 prev_rfd->command &= ~cpu_to_le16(cb_el);
1794 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1795 sizeof(struct rfd), PCI_DMA_TODEVICE);
1798 return 0;
1801 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1802 unsigned int *work_done, unsigned int work_to_do)
1804 struct sk_buff *skb = rx->skb;
1805 struct rfd *rfd = (struct rfd *)skb->data;
1806 u16 rfd_status, actual_size;
1808 if(unlikely(work_done && *work_done >= work_to_do))
1809 return -EAGAIN;
1811 /* Need to sync before taking a peek at cb_complete bit */
1812 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1813 sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1814 rfd_status = le16_to_cpu(rfd->status);
1816 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1818 /* If data isn't ready, nothing to indicate */
1819 if(unlikely(!(rfd_status & cb_complete)))
1820 return -ENODATA;
1822 /* Get actual data size */
1823 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1824 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1825 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1827 /* Get data */
1828 pci_unmap_single(nic->pdev, rx->dma_addr,
1829 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1831 /* this allows for a fast restart without re-enabling interrupts */
1832 if(le16_to_cpu(rfd->command) & cb_el)
1833 nic->ru_running = RU_SUSPENDED;
1835 /* Pull off the RFD and put the actual data (minus eth hdr) */
1836 skb_reserve(skb, sizeof(struct rfd));
1837 skb_put(skb, actual_size);
1838 skb->protocol = eth_type_trans(skb, nic->netdev);
1840 if(unlikely(!(rfd_status & cb_ok))) {
1841 /* Don't indicate if hardware indicates errors */
1842 dev_kfree_skb_any(skb);
1843 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) {
1844 /* Don't indicate oversized frames */
1845 nic->rx_over_length_errors++;
1846 dev_kfree_skb_any(skb);
1847 } else {
1848 nic->net_stats.rx_packets++;
1849 nic->net_stats.rx_bytes += actual_size;
1850 nic->netdev->last_rx = jiffies;
1851 netif_receive_skb(skb);
1852 if(work_done)
1853 (*work_done)++;
1856 rx->skb = NULL;
1858 return 0;
1861 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1862 unsigned int work_to_do)
1864 struct rx *rx;
1865 int restart_required = 0;
1866 struct rx *rx_to_start = NULL;
1868 /* are we already rnr? then pay attention!!! this ensures that
1869 * the state machine progression never allows a start with a
1870 * partially cleaned list, avoiding a race between hardware
1871 * and rx_to_clean when in NAPI mode */
1872 if(RU_SUSPENDED == nic->ru_running)
1873 restart_required = 1;
1875 /* Indicate newly arrived packets */
1876 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1877 int err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1878 if(-EAGAIN == err) {
1879 /* hit quota so have more work to do, restart once
1880 * cleanup is complete */
1881 restart_required = 0;
1882 break;
1883 } else if(-ENODATA == err)
1884 break; /* No more to clean */
1887 /* save our starting point as the place we'll restart the receiver */
1888 if(restart_required)
1889 rx_to_start = nic->rx_to_clean;
1891 /* Alloc new skbs to refill list */
1892 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1893 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1894 break; /* Better luck next time (see watchdog) */
1897 if(restart_required) {
1898 // ack the rnr?
1899 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
1900 e100_start_receiver(nic, rx_to_start);
1901 if(work_done)
1902 (*work_done)++;
1906 static void e100_rx_clean_list(struct nic *nic)
1908 struct rx *rx;
1909 unsigned int i, count = nic->params.rfds.count;
1911 nic->ru_running = RU_UNINITIALIZED;
1913 if(nic->rxs) {
1914 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1915 if(rx->skb) {
1916 pci_unmap_single(nic->pdev, rx->dma_addr,
1917 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1918 dev_kfree_skb(rx->skb);
1921 kfree(nic->rxs);
1922 nic->rxs = NULL;
1925 nic->rx_to_use = nic->rx_to_clean = NULL;
1928 static int e100_rx_alloc_list(struct nic *nic)
1930 struct rx *rx;
1931 unsigned int i, count = nic->params.rfds.count;
1933 nic->rx_to_use = nic->rx_to_clean = NULL;
1934 nic->ru_running = RU_UNINITIALIZED;
1936 if(!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
1937 return -ENOMEM;
1939 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1940 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1941 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1942 if(e100_rx_alloc_skb(nic, rx)) {
1943 e100_rx_clean_list(nic);
1944 return -ENOMEM;
1948 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
1949 nic->ru_running = RU_SUSPENDED;
1951 return 0;
1954 static irqreturn_t e100_intr(int irq, void *dev_id)
1956 struct net_device *netdev = dev_id;
1957 struct nic *nic = netdev_priv(netdev);
1958 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
1960 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1962 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
1963 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1964 return IRQ_NONE;
1966 /* Ack interrupt(s) */
1967 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
1969 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1970 if(stat_ack & stat_ack_rnr)
1971 nic->ru_running = RU_SUSPENDED;
1973 if(likely(netif_rx_schedule_prep(netdev))) {
1974 e100_disable_irq(nic);
1975 __netif_rx_schedule(netdev);
1978 return IRQ_HANDLED;
1981 static int e100_poll(struct net_device *netdev, int *budget)
1983 struct nic *nic = netdev_priv(netdev);
1984 unsigned int work_to_do = min(netdev->quota, *budget);
1985 unsigned int work_done = 0;
1986 int tx_cleaned;
1988 e100_rx_clean(nic, &work_done, work_to_do);
1989 tx_cleaned = e100_tx_clean(nic);
1991 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1992 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
1993 netif_rx_complete(netdev);
1994 e100_enable_irq(nic);
1995 return 0;
1998 *budget -= work_done;
1999 netdev->quota -= work_done;
2001 return 1;
2004 #ifdef CONFIG_NET_POLL_CONTROLLER
2005 static void e100_netpoll(struct net_device *netdev)
2007 struct nic *nic = netdev_priv(netdev);
2009 e100_disable_irq(nic);
2010 e100_intr(nic->pdev->irq, netdev);
2011 e100_tx_clean(nic);
2012 e100_enable_irq(nic);
2014 #endif
2016 static struct net_device_stats *e100_get_stats(struct net_device *netdev)
2018 struct nic *nic = netdev_priv(netdev);
2019 return &nic->net_stats;
2022 static int e100_set_mac_address(struct net_device *netdev, void *p)
2024 struct nic *nic = netdev_priv(netdev);
2025 struct sockaddr *addr = p;
2027 if (!is_valid_ether_addr(addr->sa_data))
2028 return -EADDRNOTAVAIL;
2030 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2031 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2033 return 0;
2036 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2038 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2039 return -EINVAL;
2040 netdev->mtu = new_mtu;
2041 return 0;
2044 static int e100_asf(struct nic *nic)
2046 /* ASF can be enabled from eeprom */
2047 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2048 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2049 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2050 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
2053 static int e100_up(struct nic *nic)
2055 int err;
2057 if((err = e100_rx_alloc_list(nic)))
2058 return err;
2059 if((err = e100_alloc_cbs(nic)))
2060 goto err_rx_clean_list;
2061 if((err = e100_hw_init(nic)))
2062 goto err_clean_cbs;
2063 e100_set_multicast_list(nic->netdev);
2064 e100_start_receiver(nic, NULL);
2065 mod_timer(&nic->watchdog, jiffies);
2066 if((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2067 nic->netdev->name, nic->netdev)))
2068 goto err_no_irq;
2069 netif_wake_queue(nic->netdev);
2070 netif_poll_enable(nic->netdev);
2071 /* enable ints _after_ enabling poll, preventing a race between
2072 * disable ints+schedule */
2073 e100_enable_irq(nic);
2074 return 0;
2076 err_no_irq:
2077 del_timer_sync(&nic->watchdog);
2078 err_clean_cbs:
2079 e100_clean_cbs(nic);
2080 err_rx_clean_list:
2081 e100_rx_clean_list(nic);
2082 return err;
2085 static void e100_down(struct nic *nic)
2087 /* wait here for poll to complete */
2088 netif_poll_disable(nic->netdev);
2089 netif_stop_queue(nic->netdev);
2090 e100_hw_reset(nic);
2091 free_irq(nic->pdev->irq, nic->netdev);
2092 del_timer_sync(&nic->watchdog);
2093 netif_carrier_off(nic->netdev);
2094 e100_clean_cbs(nic);
2095 e100_rx_clean_list(nic);
2098 static void e100_tx_timeout(struct net_device *netdev)
2100 struct nic *nic = netdev_priv(netdev);
2102 /* Reset outside of interrupt context, to avoid request_irq
2103 * in interrupt context */
2104 schedule_work(&nic->tx_timeout_task);
2107 static void e100_tx_timeout_task(struct work_struct *work)
2109 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2110 struct net_device *netdev = nic->netdev;
2112 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
2113 ioread8(&nic->csr->scb.status));
2114 e100_down(netdev_priv(netdev));
2115 e100_up(netdev_priv(netdev));
2118 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2120 int err;
2121 struct sk_buff *skb;
2123 /* Use driver resources to perform internal MAC or PHY
2124 * loopback test. A single packet is prepared and transmitted
2125 * in loopback mode, and the test passes if the received
2126 * packet compares byte-for-byte to the transmitted packet. */
2128 if((err = e100_rx_alloc_list(nic)))
2129 return err;
2130 if((err = e100_alloc_cbs(nic)))
2131 goto err_clean_rx;
2133 /* ICH PHY loopback is broken so do MAC loopback instead */
2134 if(nic->flags & ich && loopback_mode == lb_phy)
2135 loopback_mode = lb_mac;
2137 nic->loopback = loopback_mode;
2138 if((err = e100_hw_init(nic)))
2139 goto err_loopback_none;
2141 if(loopback_mode == lb_phy)
2142 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2143 BMCR_LOOPBACK);
2145 e100_start_receiver(nic, NULL);
2147 if(!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2148 err = -ENOMEM;
2149 goto err_loopback_none;
2151 skb_put(skb, ETH_DATA_LEN);
2152 memset(skb->data, 0xFF, ETH_DATA_LEN);
2153 e100_xmit_frame(skb, nic->netdev);
2155 msleep(10);
2157 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2158 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
2160 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2161 skb->data, ETH_DATA_LEN))
2162 err = -EAGAIN;
2164 err_loopback_none:
2165 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2166 nic->loopback = lb_none;
2167 e100_clean_cbs(nic);
2168 e100_hw_reset(nic);
2169 err_clean_rx:
2170 e100_rx_clean_list(nic);
2171 return err;
2174 #define MII_LED_CONTROL 0x1B
2175 static void e100_blink_led(unsigned long data)
2177 struct nic *nic = (struct nic *)data;
2178 enum led_state {
2179 led_on = 0x01,
2180 led_off = 0x04,
2181 led_on_559 = 0x05,
2182 led_on_557 = 0x07,
2185 nic->leds = (nic->leds & led_on) ? led_off :
2186 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2187 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
2188 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
2191 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2193 struct nic *nic = netdev_priv(netdev);
2194 return mii_ethtool_gset(&nic->mii, cmd);
2197 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2199 struct nic *nic = netdev_priv(netdev);
2200 int err;
2202 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2203 err = mii_ethtool_sset(&nic->mii, cmd);
2204 e100_exec_cb(nic, NULL, e100_configure);
2206 return err;
2209 static void e100_get_drvinfo(struct net_device *netdev,
2210 struct ethtool_drvinfo *info)
2212 struct nic *nic = netdev_priv(netdev);
2213 strcpy(info->driver, DRV_NAME);
2214 strcpy(info->version, DRV_VERSION);
2215 strcpy(info->fw_version, "N/A");
2216 strcpy(info->bus_info, pci_name(nic->pdev));
2219 static int e100_get_regs_len(struct net_device *netdev)
2221 struct nic *nic = netdev_priv(netdev);
2222 #define E100_PHY_REGS 0x1C
2223 #define E100_REGS_LEN 1 + E100_PHY_REGS + \
2224 sizeof(nic->mem->dump_buf) / sizeof(u32)
2225 return E100_REGS_LEN * sizeof(u32);
2228 static void e100_get_regs(struct net_device *netdev,
2229 struct ethtool_regs *regs, void *p)
2231 struct nic *nic = netdev_priv(netdev);
2232 u32 *buff = p;
2233 int i;
2235 regs->version = (1 << 24) | nic->rev_id;
2236 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2237 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2238 ioread16(&nic->csr->scb.status);
2239 for(i = E100_PHY_REGS; i >= 0; i--)
2240 buff[1 + E100_PHY_REGS - i] =
2241 mdio_read(netdev, nic->mii.phy_id, i);
2242 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2243 e100_exec_cb(nic, NULL, e100_dump);
2244 msleep(10);
2245 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2246 sizeof(nic->mem->dump_buf));
2249 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2251 struct nic *nic = netdev_priv(netdev);
2252 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2253 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2256 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2258 struct nic *nic = netdev_priv(netdev);
2260 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
2261 return -EOPNOTSUPP;
2263 if(wol->wolopts)
2264 nic->flags |= wol_magic;
2265 else
2266 nic->flags &= ~wol_magic;
2268 e100_exec_cb(nic, NULL, e100_configure);
2270 return 0;
2273 static u32 e100_get_msglevel(struct net_device *netdev)
2275 struct nic *nic = netdev_priv(netdev);
2276 return nic->msg_enable;
2279 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2281 struct nic *nic = netdev_priv(netdev);
2282 nic->msg_enable = value;
2285 static int e100_nway_reset(struct net_device *netdev)
2287 struct nic *nic = netdev_priv(netdev);
2288 return mii_nway_restart(&nic->mii);
2291 static u32 e100_get_link(struct net_device *netdev)
2293 struct nic *nic = netdev_priv(netdev);
2294 return mii_link_ok(&nic->mii);
2297 static int e100_get_eeprom_len(struct net_device *netdev)
2299 struct nic *nic = netdev_priv(netdev);
2300 return nic->eeprom_wc << 1;
2303 #define E100_EEPROM_MAGIC 0x1234
2304 static int e100_get_eeprom(struct net_device *netdev,
2305 struct ethtool_eeprom *eeprom, u8 *bytes)
2307 struct nic *nic = netdev_priv(netdev);
2309 eeprom->magic = E100_EEPROM_MAGIC;
2310 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2312 return 0;
2315 static int e100_set_eeprom(struct net_device *netdev,
2316 struct ethtool_eeprom *eeprom, u8 *bytes)
2318 struct nic *nic = netdev_priv(netdev);
2320 if(eeprom->magic != E100_EEPROM_MAGIC)
2321 return -EINVAL;
2323 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2325 return e100_eeprom_save(nic, eeprom->offset >> 1,
2326 (eeprom->len >> 1) + 1);
2329 static void e100_get_ringparam(struct net_device *netdev,
2330 struct ethtool_ringparam *ring)
2332 struct nic *nic = netdev_priv(netdev);
2333 struct param_range *rfds = &nic->params.rfds;
2334 struct param_range *cbs = &nic->params.cbs;
2336 ring->rx_max_pending = rfds->max;
2337 ring->tx_max_pending = cbs->max;
2338 ring->rx_mini_max_pending = 0;
2339 ring->rx_jumbo_max_pending = 0;
2340 ring->rx_pending = rfds->count;
2341 ring->tx_pending = cbs->count;
2342 ring->rx_mini_pending = 0;
2343 ring->rx_jumbo_pending = 0;
2346 static int e100_set_ringparam(struct net_device *netdev,
2347 struct ethtool_ringparam *ring)
2349 struct nic *nic = netdev_priv(netdev);
2350 struct param_range *rfds = &nic->params.rfds;
2351 struct param_range *cbs = &nic->params.cbs;
2353 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2354 return -EINVAL;
2356 if(netif_running(netdev))
2357 e100_down(nic);
2358 rfds->count = max(ring->rx_pending, rfds->min);
2359 rfds->count = min(rfds->count, rfds->max);
2360 cbs->count = max(ring->tx_pending, cbs->min);
2361 cbs->count = min(cbs->count, cbs->max);
2362 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2363 rfds->count, cbs->count);
2364 if(netif_running(netdev))
2365 e100_up(nic);
2367 return 0;
2370 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2371 "Link test (on/offline)",
2372 "Eeprom test (on/offline)",
2373 "Self test (offline)",
2374 "Mac loopback (offline)",
2375 "Phy loopback (offline)",
2377 #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2379 static int e100_diag_test_count(struct net_device *netdev)
2381 return E100_TEST_LEN;
2384 static void e100_diag_test(struct net_device *netdev,
2385 struct ethtool_test *test, u64 *data)
2387 struct ethtool_cmd cmd;
2388 struct nic *nic = netdev_priv(netdev);
2389 int i, err;
2391 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2392 data[0] = !mii_link_ok(&nic->mii);
2393 data[1] = e100_eeprom_load(nic);
2394 if(test->flags & ETH_TEST_FL_OFFLINE) {
2396 /* save speed, duplex & autoneg settings */
2397 err = mii_ethtool_gset(&nic->mii, &cmd);
2399 if(netif_running(netdev))
2400 e100_down(nic);
2401 data[2] = e100_self_test(nic);
2402 data[3] = e100_loopback_test(nic, lb_mac);
2403 data[4] = e100_loopback_test(nic, lb_phy);
2405 /* restore speed, duplex & autoneg settings */
2406 err = mii_ethtool_sset(&nic->mii, &cmd);
2408 if(netif_running(netdev))
2409 e100_up(nic);
2411 for(i = 0; i < E100_TEST_LEN; i++)
2412 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2414 msleep_interruptible(4 * 1000);
2417 static int e100_phys_id(struct net_device *netdev, u32 data)
2419 struct nic *nic = netdev_priv(netdev);
2421 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2422 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2423 mod_timer(&nic->blink_timer, jiffies);
2424 msleep_interruptible(data * 1000);
2425 del_timer_sync(&nic->blink_timer);
2426 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2428 return 0;
2431 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2432 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2433 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2434 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2435 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2436 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2437 "tx_heartbeat_errors", "tx_window_errors",
2438 /* device-specific stats */
2439 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2440 "tx_flow_control_pause", "rx_flow_control_pause",
2441 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2443 #define E100_NET_STATS_LEN 21
2444 #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2446 static int e100_get_stats_count(struct net_device *netdev)
2448 return E100_STATS_LEN;
2451 static void e100_get_ethtool_stats(struct net_device *netdev,
2452 struct ethtool_stats *stats, u64 *data)
2454 struct nic *nic = netdev_priv(netdev);
2455 int i;
2457 for(i = 0; i < E100_NET_STATS_LEN; i++)
2458 data[i] = ((unsigned long *)&nic->net_stats)[i];
2460 data[i++] = nic->tx_deferred;
2461 data[i++] = nic->tx_single_collisions;
2462 data[i++] = nic->tx_multiple_collisions;
2463 data[i++] = nic->tx_fc_pause;
2464 data[i++] = nic->rx_fc_pause;
2465 data[i++] = nic->rx_fc_unsupported;
2466 data[i++] = nic->tx_tco_frames;
2467 data[i++] = nic->rx_tco_frames;
2470 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2472 switch(stringset) {
2473 case ETH_SS_TEST:
2474 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2475 break;
2476 case ETH_SS_STATS:
2477 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2478 break;
2482 static const struct ethtool_ops e100_ethtool_ops = {
2483 .get_settings = e100_get_settings,
2484 .set_settings = e100_set_settings,
2485 .get_drvinfo = e100_get_drvinfo,
2486 .get_regs_len = e100_get_regs_len,
2487 .get_regs = e100_get_regs,
2488 .get_wol = e100_get_wol,
2489 .set_wol = e100_set_wol,
2490 .get_msglevel = e100_get_msglevel,
2491 .set_msglevel = e100_set_msglevel,
2492 .nway_reset = e100_nway_reset,
2493 .get_link = e100_get_link,
2494 .get_eeprom_len = e100_get_eeprom_len,
2495 .get_eeprom = e100_get_eeprom,
2496 .set_eeprom = e100_set_eeprom,
2497 .get_ringparam = e100_get_ringparam,
2498 .set_ringparam = e100_set_ringparam,
2499 .self_test_count = e100_diag_test_count,
2500 .self_test = e100_diag_test,
2501 .get_strings = e100_get_strings,
2502 .phys_id = e100_phys_id,
2503 .get_stats_count = e100_get_stats_count,
2504 .get_ethtool_stats = e100_get_ethtool_stats,
2505 .get_perm_addr = ethtool_op_get_perm_addr,
2508 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2510 struct nic *nic = netdev_priv(netdev);
2512 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2515 static int e100_alloc(struct nic *nic)
2517 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2518 &nic->dma_addr);
2519 return nic->mem ? 0 : -ENOMEM;
2522 static void e100_free(struct nic *nic)
2524 if(nic->mem) {
2525 pci_free_consistent(nic->pdev, sizeof(struct mem),
2526 nic->mem, nic->dma_addr);
2527 nic->mem = NULL;
2531 static int e100_open(struct net_device *netdev)
2533 struct nic *nic = netdev_priv(netdev);
2534 int err = 0;
2536 netif_carrier_off(netdev);
2537 if((err = e100_up(nic)))
2538 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2539 return err;
2542 static int e100_close(struct net_device *netdev)
2544 e100_down(netdev_priv(netdev));
2545 return 0;
2548 static int __devinit e100_probe(struct pci_dev *pdev,
2549 const struct pci_device_id *ent)
2551 struct net_device *netdev;
2552 struct nic *nic;
2553 int err;
2555 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2556 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2557 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2558 return -ENOMEM;
2561 netdev->open = e100_open;
2562 netdev->stop = e100_close;
2563 netdev->hard_start_xmit = e100_xmit_frame;
2564 netdev->get_stats = e100_get_stats;
2565 netdev->set_multicast_list = e100_set_multicast_list;
2566 netdev->set_mac_address = e100_set_mac_address;
2567 netdev->change_mtu = e100_change_mtu;
2568 netdev->do_ioctl = e100_do_ioctl;
2569 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2570 netdev->tx_timeout = e100_tx_timeout;
2571 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2572 netdev->poll = e100_poll;
2573 netdev->weight = E100_NAPI_WEIGHT;
2574 #ifdef CONFIG_NET_POLL_CONTROLLER
2575 netdev->poll_controller = e100_netpoll;
2576 #endif
2577 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2579 nic = netdev_priv(netdev);
2580 nic->netdev = netdev;
2581 nic->pdev = pdev;
2582 nic->msg_enable = (1 << debug) - 1;
2583 pci_set_drvdata(pdev, netdev);
2585 if((err = pci_enable_device(pdev))) {
2586 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2587 goto err_out_free_dev;
2590 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2591 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2592 "base address, aborting.\n");
2593 err = -ENODEV;
2594 goto err_out_disable_pdev;
2597 if((err = pci_request_regions(pdev, DRV_NAME))) {
2598 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2599 goto err_out_disable_pdev;
2602 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
2603 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2604 goto err_out_free_res;
2607 SET_MODULE_OWNER(netdev);
2608 SET_NETDEV_DEV(netdev, &pdev->dev);
2610 if (use_io)
2611 DPRINTK(PROBE, INFO, "using i/o access mode\n");
2613 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2614 if(!nic->csr) {
2615 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2616 err = -ENOMEM;
2617 goto err_out_free_res;
2620 if(ent->driver_data)
2621 nic->flags |= ich;
2622 else
2623 nic->flags &= ~ich;
2625 e100_get_defaults(nic);
2627 /* locks must be initialized before calling hw_reset */
2628 spin_lock_init(&nic->cb_lock);
2629 spin_lock_init(&nic->cmd_lock);
2630 spin_lock_init(&nic->mdio_lock);
2632 /* Reset the device before pci_set_master() in case device is in some
2633 * funky state and has an interrupt pending - hint: we don't have the
2634 * interrupt handler registered yet. */
2635 e100_hw_reset(nic);
2637 pci_set_master(pdev);
2639 init_timer(&nic->watchdog);
2640 nic->watchdog.function = e100_watchdog;
2641 nic->watchdog.data = (unsigned long)nic;
2642 init_timer(&nic->blink_timer);
2643 nic->blink_timer.function = e100_blink_led;
2644 nic->blink_timer.data = (unsigned long)nic;
2646 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2648 if((err = e100_alloc(nic))) {
2649 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2650 goto err_out_iounmap;
2653 if((err = e100_eeprom_load(nic)))
2654 goto err_out_free;
2656 e100_phy_init(nic);
2658 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2659 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
2660 if (!is_valid_ether_addr(netdev->perm_addr)) {
2661 if (!eeprom_bad_csum_allow) {
2662 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2663 "EEPROM, aborting.\n");
2664 err = -EAGAIN;
2665 goto err_out_free;
2666 } else {
2667 DPRINTK(PROBE, ERR, "Invalid MAC address from EEPROM, "
2668 "you MUST configure one.\n");
2672 /* Wol magic packet can be enabled from eeprom */
2673 if((nic->mac >= mac_82558_D101_A4) &&
2674 (nic->eeprom[eeprom_id] & eeprom_id_wol))
2675 nic->flags |= wol_magic;
2677 /* ack any pending wake events, disable PME */
2678 err = pci_enable_wake(pdev, 0, 0);
2679 if (err)
2680 DPRINTK(PROBE, ERR, "Error clearing wake event\n");
2682 strcpy(netdev->name, "eth%d");
2683 if((err = register_netdev(netdev))) {
2684 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2685 goto err_out_free;
2688 DPRINTK(PROBE, INFO, "addr 0x%llx, irq %d, "
2689 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2690 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), pdev->irq,
2691 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
2692 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
2694 return 0;
2696 err_out_free:
2697 e100_free(nic);
2698 err_out_iounmap:
2699 pci_iounmap(pdev, nic->csr);
2700 err_out_free_res:
2701 pci_release_regions(pdev);
2702 err_out_disable_pdev:
2703 pci_disable_device(pdev);
2704 err_out_free_dev:
2705 pci_set_drvdata(pdev, NULL);
2706 free_netdev(netdev);
2707 return err;
2710 static void __devexit e100_remove(struct pci_dev *pdev)
2712 struct net_device *netdev = pci_get_drvdata(pdev);
2714 if(netdev) {
2715 struct nic *nic = netdev_priv(netdev);
2716 unregister_netdev(netdev);
2717 e100_free(nic);
2718 iounmap(nic->csr);
2719 free_netdev(netdev);
2720 pci_release_regions(pdev);
2721 pci_disable_device(pdev);
2722 pci_set_drvdata(pdev, NULL);
2726 #ifdef CONFIG_PM
2727 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2729 struct net_device *netdev = pci_get_drvdata(pdev);
2730 struct nic *nic = netdev_priv(netdev);
2732 if (netif_running(netdev))
2733 netif_poll_disable(nic->netdev);
2734 del_timer_sync(&nic->watchdog);
2735 netif_carrier_off(nic->netdev);
2736 netif_device_detach(netdev);
2738 pci_save_state(pdev);
2740 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2741 pci_enable_wake(pdev, PCI_D3hot, 1);
2742 pci_enable_wake(pdev, PCI_D3cold, 1);
2743 } else {
2744 pci_enable_wake(pdev, PCI_D3hot, 0);
2745 pci_enable_wake(pdev, PCI_D3cold, 0);
2748 pci_disable_device(pdev);
2749 free_irq(pdev->irq, netdev);
2750 pci_set_power_state(pdev, PCI_D3hot);
2752 return 0;
2755 static int e100_resume(struct pci_dev *pdev)
2757 struct net_device *netdev = pci_get_drvdata(pdev);
2758 struct nic *nic = netdev_priv(netdev);
2760 pci_set_power_state(pdev, PCI_D0);
2761 pci_restore_state(pdev);
2762 /* ack any pending wake events, disable PME */
2763 pci_enable_wake(pdev, 0, 0);
2765 netif_device_attach(netdev);
2766 if (netif_running(netdev))
2767 e100_up(nic);
2769 return 0;
2771 #endif /* CONFIG_PM */
2773 static void e100_shutdown(struct pci_dev *pdev)
2775 struct net_device *netdev = pci_get_drvdata(pdev);
2776 struct nic *nic = netdev_priv(netdev);
2778 if (netif_running(netdev))
2779 netif_poll_disable(nic->netdev);
2780 del_timer_sync(&nic->watchdog);
2781 netif_carrier_off(nic->netdev);
2783 if ((nic->flags & wol_magic) | e100_asf(nic)) {
2784 pci_enable_wake(pdev, PCI_D3hot, 1);
2785 pci_enable_wake(pdev, PCI_D3cold, 1);
2786 } else {
2787 pci_enable_wake(pdev, PCI_D3hot, 0);
2788 pci_enable_wake(pdev, PCI_D3cold, 0);
2791 pci_disable_device(pdev);
2792 pci_set_power_state(pdev, PCI_D3hot);
2795 /* ------------------ PCI Error Recovery infrastructure -------------- */
2797 * e100_io_error_detected - called when PCI error is detected.
2798 * @pdev: Pointer to PCI device
2799 * @state: The current pci conneection state
2801 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2803 struct net_device *netdev = pci_get_drvdata(pdev);
2805 /* Similar to calling e100_down(), but avoids adpater I/O. */
2806 netdev->stop(netdev);
2808 /* Detach; put netif into state similar to hotplug unplug. */
2809 netif_poll_enable(netdev);
2810 netif_device_detach(netdev);
2811 pci_disable_device(pdev);
2813 /* Request a slot reset. */
2814 return PCI_ERS_RESULT_NEED_RESET;
2818 * e100_io_slot_reset - called after the pci bus has been reset.
2819 * @pdev: Pointer to PCI device
2821 * Restart the card from scratch.
2823 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
2825 struct net_device *netdev = pci_get_drvdata(pdev);
2826 struct nic *nic = netdev_priv(netdev);
2828 if (pci_enable_device(pdev)) {
2829 printk(KERN_ERR "e100: Cannot re-enable PCI device after reset.\n");
2830 return PCI_ERS_RESULT_DISCONNECT;
2832 pci_set_master(pdev);
2834 /* Only one device per card can do a reset */
2835 if (0 != PCI_FUNC(pdev->devfn))
2836 return PCI_ERS_RESULT_RECOVERED;
2837 e100_hw_reset(nic);
2838 e100_phy_init(nic);
2840 return PCI_ERS_RESULT_RECOVERED;
2844 * e100_io_resume - resume normal operations
2845 * @pdev: Pointer to PCI device
2847 * Resume normal operations after an error recovery
2848 * sequence has been completed.
2850 static void e100_io_resume(struct pci_dev *pdev)
2852 struct net_device *netdev = pci_get_drvdata(pdev);
2853 struct nic *nic = netdev_priv(netdev);
2855 /* ack any pending wake events, disable PME */
2856 pci_enable_wake(pdev, 0, 0);
2858 netif_device_attach(netdev);
2859 if (netif_running(netdev)) {
2860 e100_open(netdev);
2861 mod_timer(&nic->watchdog, jiffies);
2865 static struct pci_error_handlers e100_err_handler = {
2866 .error_detected = e100_io_error_detected,
2867 .slot_reset = e100_io_slot_reset,
2868 .resume = e100_io_resume,
2871 static struct pci_driver e100_driver = {
2872 .name = DRV_NAME,
2873 .id_table = e100_id_table,
2874 .probe = e100_probe,
2875 .remove = __devexit_p(e100_remove),
2876 #ifdef CONFIG_PM
2877 /* Power Management hooks */
2878 .suspend = e100_suspend,
2879 .resume = e100_resume,
2880 #endif
2881 .shutdown = e100_shutdown,
2882 .err_handler = &e100_err_handler,
2885 static int __init e100_init_module(void)
2887 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2888 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2889 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2891 return pci_register_driver(&e100_driver);
2894 static void __exit e100_cleanup_module(void)
2896 pci_unregister_driver(&e100_driver);
2899 module_init(e100_init_module);
2900 module_exit(e100_cleanup_module);