RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / drivers / md / md.c
blob1c54f3c1cca74fca038b5b4452c9a0504e481e57
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
48 #include <linux/init.h>
50 #include <linux/file.h>
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
56 #include <asm/unaligned.h>
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
75 static void md_print_devices(void);
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
80 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81 * is 1000 KB/sec, so the extra system load does not show up that much.
82 * Increase it if you want to have more _guaranteed_ speed. Note that
83 * the RAID driver will use the maximum available bandwidth if the IO
84 * subsystem is idle. There is also an 'absolute maximum' reconstruction
85 * speed limit - in case reconstruction slows down your system despite
86 * idle IO detection.
88 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89 * or /sys/block/mdX/md/sync_speed_{min,max}
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
96 return mddev->sync_speed_min ?
97 mddev->sync_speed_min : sysctl_speed_limit_min;
100 static inline int speed_max(mddev_t *mddev)
102 return mddev->sync_speed_max ?
103 mddev->sync_speed_max : sysctl_speed_limit_max;
106 static struct ctl_table_header *raid_table_header;
108 static ctl_table raid_table[] = {
110 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
111 .procname = "speed_limit_min",
112 .data = &sysctl_speed_limit_min,
113 .maxlen = sizeof(int),
114 .mode = S_IRUGO|S_IWUSR,
115 .proc_handler = &proc_dointvec,
118 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = &proc_dointvec,
125 { .ctl_name = 0 }
128 static ctl_table raid_dir_table[] = {
130 .ctl_name = DEV_RAID,
131 .procname = "raid",
132 .maxlen = 0,
133 .mode = S_IRUGO|S_IXUGO,
134 .child = raid_table,
136 { .ctl_name = 0 }
139 static ctl_table raid_root_table[] = {
141 .ctl_name = CTL_DEV,
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
147 { .ctl_name = 0 }
150 static struct block_device_operations md_fops;
152 static int start_readonly;
155 * We have a system wide 'event count' that is incremented
156 * on any 'interesting' event, and readers of /proc/mdstat
157 * can use 'poll' or 'select' to find out when the event
158 * count increases.
160 * Events are:
161 * start array, stop array, error, add device, remove device,
162 * start build, activate spare
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
168 atomic_inc(&md_event_count);
169 wake_up(&md_event_waiters);
170 sysfs_notify(&mddev->kobj, NULL, "sync_action");
172 EXPORT_SYMBOL_GPL(md_new_event);
174 /* Alternate version that can be called from interrupts
175 * when calling sysfs_notify isn't needed.
177 static void md_new_event_inintr(mddev_t *mddev)
179 atomic_inc(&md_event_count);
180 wake_up(&md_event_waiters);
184 * Enables to iterate over all existing md arrays
185 * all_mddevs_lock protects this list.
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
192 * iterates through all used mddevs in the system.
193 * We take care to grab the all_mddevs_lock whenever navigating
194 * the list, and to always hold a refcount when unlocked.
195 * Any code which breaks out of this loop while own
196 * a reference to the current mddev and must mddev_put it.
198 #define ITERATE_MDDEV(mddev,tmp) \
200 for (({ spin_lock(&all_mddevs_lock); \
201 tmp = all_mddevs.next; \
202 mddev = NULL;}); \
203 ({ if (tmp != &all_mddevs) \
204 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 spin_unlock(&all_mddevs_lock); \
206 if (mddev) mddev_put(mddev); \
207 mddev = list_entry(tmp, mddev_t, all_mddevs); \
208 tmp != &all_mddevs;}); \
209 ({ spin_lock(&all_mddevs_lock); \
210 tmp = tmp->next;}) \
214 static int md_fail_request (request_queue_t *q, struct bio *bio)
216 bio_io_error(bio, bio->bi_size);
217 return 0;
220 static inline mddev_t *mddev_get(mddev_t *mddev)
222 atomic_inc(&mddev->active);
223 return mddev;
226 static void mddev_put(mddev_t *mddev)
228 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 return;
230 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 list_del(&mddev->all_mddevs);
232 spin_unlock(&all_mddevs_lock);
233 blk_cleanup_queue(mddev->queue);
234 kobject_unregister(&mddev->kobj);
235 } else
236 spin_unlock(&all_mddevs_lock);
239 static mddev_t * mddev_find(dev_t unit)
241 mddev_t *mddev, *new = NULL;
243 retry:
244 spin_lock(&all_mddevs_lock);
245 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 if (mddev->unit == unit) {
247 mddev_get(mddev);
248 spin_unlock(&all_mddevs_lock);
249 kfree(new);
250 return mddev;
253 if (new) {
254 list_add(&new->all_mddevs, &all_mddevs);
255 spin_unlock(&all_mddevs_lock);
256 return new;
258 spin_unlock(&all_mddevs_lock);
260 new = kzalloc(sizeof(*new), GFP_KERNEL);
261 if (!new)
262 return NULL;
264 new->unit = unit;
265 if (MAJOR(unit) == MD_MAJOR)
266 new->md_minor = MINOR(unit);
267 else
268 new->md_minor = MINOR(unit) >> MdpMinorShift;
270 mutex_init(&new->reconfig_mutex);
271 INIT_LIST_HEAD(&new->disks);
272 INIT_LIST_HEAD(&new->all_mddevs);
273 init_timer(&new->safemode_timer);
274 atomic_set(&new->active, 1);
275 spin_lock_init(&new->write_lock);
276 init_waitqueue_head(&new->sb_wait);
277 new->reshape_position = MaxSector;
279 new->queue = blk_alloc_queue(GFP_KERNEL);
280 if (!new->queue) {
281 kfree(new);
282 return NULL;
284 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
286 blk_queue_make_request(new->queue, md_fail_request);
288 goto retry;
291 static inline int mddev_lock(mddev_t * mddev)
293 return mutex_lock_interruptible(&mddev->reconfig_mutex);
296 static inline int mddev_trylock(mddev_t * mddev)
298 return mutex_trylock(&mddev->reconfig_mutex);
301 static inline void mddev_unlock(mddev_t * mddev)
303 mutex_unlock(&mddev->reconfig_mutex);
305 md_wakeup_thread(mddev->thread);
308 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
310 mdk_rdev_t * rdev;
311 struct list_head *tmp;
313 ITERATE_RDEV(mddev,rdev,tmp) {
314 if (rdev->desc_nr == nr)
315 return rdev;
317 return NULL;
320 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
322 struct list_head *tmp;
323 mdk_rdev_t *rdev;
325 ITERATE_RDEV(mddev,rdev,tmp) {
326 if (rdev->bdev->bd_dev == dev)
327 return rdev;
329 return NULL;
332 static struct mdk_personality *find_pers(int level, char *clevel)
334 struct mdk_personality *pers;
335 list_for_each_entry(pers, &pers_list, list) {
336 if (level != LEVEL_NONE && pers->level == level)
337 return pers;
338 if (strcmp(pers->name, clevel)==0)
339 return pers;
341 return NULL;
344 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
346 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
347 return MD_NEW_SIZE_BLOCKS(size);
350 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
352 sector_t size;
354 size = rdev->sb_offset;
356 if (chunk_size)
357 size &= ~((sector_t)chunk_size/1024 - 1);
358 return size;
361 static int alloc_disk_sb(mdk_rdev_t * rdev)
363 if (rdev->sb_page)
364 MD_BUG();
366 rdev->sb_page = alloc_page(GFP_KERNEL);
367 if (!rdev->sb_page) {
368 printk(KERN_ALERT "md: out of memory.\n");
369 return -EINVAL;
372 return 0;
375 static void free_disk_sb(mdk_rdev_t * rdev)
377 if (rdev->sb_page) {
378 put_page(rdev->sb_page);
379 rdev->sb_loaded = 0;
380 rdev->sb_page = NULL;
381 rdev->sb_offset = 0;
382 rdev->size = 0;
387 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
389 mdk_rdev_t *rdev = bio->bi_private;
390 mddev_t *mddev = rdev->mddev;
391 if (bio->bi_size)
392 return 1;
394 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
395 printk("md: super_written gets error=%d, uptodate=%d\n",
396 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
397 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
398 md_error(mddev, rdev);
401 if (atomic_dec_and_test(&mddev->pending_writes))
402 wake_up(&mddev->sb_wait);
403 bio_put(bio);
404 return 0;
407 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
409 struct bio *bio2 = bio->bi_private;
410 mdk_rdev_t *rdev = bio2->bi_private;
411 mddev_t *mddev = rdev->mddev;
412 if (bio->bi_size)
413 return 1;
415 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
416 error == -EOPNOTSUPP) {
417 unsigned long flags;
418 /* barriers don't appear to be supported :-( */
419 set_bit(BarriersNotsupp, &rdev->flags);
420 mddev->barriers_work = 0;
421 spin_lock_irqsave(&mddev->write_lock, flags);
422 bio2->bi_next = mddev->biolist;
423 mddev->biolist = bio2;
424 spin_unlock_irqrestore(&mddev->write_lock, flags);
425 wake_up(&mddev->sb_wait);
426 bio_put(bio);
427 return 0;
429 bio_put(bio2);
430 bio->bi_private = rdev;
431 return super_written(bio, bytes_done, error);
434 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
435 sector_t sector, int size, struct page *page)
437 /* write first size bytes of page to sector of rdev
438 * Increment mddev->pending_writes before returning
439 * and decrement it on completion, waking up sb_wait
440 * if zero is reached.
441 * If an error occurred, call md_error
443 * As we might need to resubmit the request if BIO_RW_BARRIER
444 * causes ENOTSUPP, we allocate a spare bio...
446 struct bio *bio = bio_alloc(GFP_NOIO, 1);
447 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
449 bio->bi_bdev = rdev->bdev;
450 bio->bi_sector = sector;
451 bio_add_page(bio, page, size, 0);
452 bio->bi_private = rdev;
453 bio->bi_end_io = super_written;
454 bio->bi_rw = rw;
456 atomic_inc(&mddev->pending_writes);
457 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
458 struct bio *rbio;
459 rw |= (1<<BIO_RW_BARRIER);
460 rbio = bio_clone(bio, GFP_NOIO);
461 rbio->bi_private = bio;
462 rbio->bi_end_io = super_written_barrier;
463 submit_bio(rw, rbio);
464 } else
465 submit_bio(rw, bio);
468 void md_super_wait(mddev_t *mddev)
470 /* wait for all superblock writes that were scheduled to complete.
471 * if any had to be retried (due to BARRIER problems), retry them
473 DEFINE_WAIT(wq);
474 for(;;) {
475 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
476 if (atomic_read(&mddev->pending_writes)==0)
477 break;
478 while (mddev->biolist) {
479 struct bio *bio;
480 spin_lock_irq(&mddev->write_lock);
481 bio = mddev->biolist;
482 mddev->biolist = bio->bi_next ;
483 bio->bi_next = NULL;
484 spin_unlock_irq(&mddev->write_lock);
485 submit_bio(bio->bi_rw, bio);
487 schedule();
489 finish_wait(&mddev->sb_wait, &wq);
492 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
494 if (bio->bi_size)
495 return 1;
497 complete((struct completion*)bio->bi_private);
498 return 0;
501 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
502 struct page *page, int rw)
504 struct bio *bio = bio_alloc(GFP_NOIO, 1);
505 struct completion event;
506 int ret;
508 rw |= (1 << BIO_RW_SYNC);
510 bio->bi_bdev = bdev;
511 bio->bi_sector = sector;
512 bio_add_page(bio, page, size, 0);
513 init_completion(&event);
514 bio->bi_private = &event;
515 bio->bi_end_io = bi_complete;
516 submit_bio(rw, bio);
517 wait_for_completion(&event);
519 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
520 bio_put(bio);
521 return ret;
523 EXPORT_SYMBOL_GPL(sync_page_io);
525 static int read_disk_sb(mdk_rdev_t * rdev, int size)
527 char b[BDEVNAME_SIZE];
528 if (!rdev->sb_page) {
529 MD_BUG();
530 return -EINVAL;
532 if (rdev->sb_loaded)
533 return 0;
536 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
537 goto fail;
538 rdev->sb_loaded = 1;
539 return 0;
541 fail:
542 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
543 bdevname(rdev->bdev,b));
544 return -EINVAL;
547 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
549 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
550 (sb1->set_uuid1 == sb2->set_uuid1) &&
551 (sb1->set_uuid2 == sb2->set_uuid2) &&
552 (sb1->set_uuid3 == sb2->set_uuid3))
554 return 1;
556 return 0;
560 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
562 int ret;
563 mdp_super_t *tmp1, *tmp2;
565 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
566 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
568 if (!tmp1 || !tmp2) {
569 ret = 0;
570 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
571 goto abort;
574 *tmp1 = *sb1;
575 *tmp2 = *sb2;
578 * nr_disks is not constant
580 tmp1->nr_disks = 0;
581 tmp2->nr_disks = 0;
583 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
584 ret = 0;
585 else
586 ret = 1;
588 abort:
589 kfree(tmp1);
590 kfree(tmp2);
591 return ret;
595 static u32 md_csum_fold(u32 csum)
597 csum = (csum & 0xffff) + (csum >> 16);
598 return (csum & 0xffff) + (csum >> 16);
601 static unsigned int calc_sb_csum(mdp_super_t * sb)
603 u64 newcsum = 0;
604 u32 *sb32 = (u32*)sb;
605 int i;
606 unsigned int disk_csum, csum;
608 disk_csum = sb->sb_csum;
609 sb->sb_csum = 0;
611 for (i = 0; i < MD_SB_BYTES/4 ; i++)
612 newcsum += sb32[i];
613 csum = (newcsum & 0xffffffff) + (newcsum>>32);
616 #ifdef CONFIG_ALPHA
617 /* This used to use csum_partial, which was wrong for several
618 * reasons including that different results are returned on
619 * different architectures. It isn't critical that we get exactly
620 * the same return value as before (we always csum_fold before
621 * testing, and that removes any differences). However as we
622 * know that csum_partial always returned a 16bit value on
623 * alphas, do a fold to maximise conformity to previous behaviour.
625 sb->sb_csum = md_csum_fold(disk_csum);
626 #else
627 sb->sb_csum = disk_csum;
628 #endif
629 return csum;
634 * Handle superblock details.
635 * We want to be able to handle multiple superblock formats
636 * so we have a common interface to them all, and an array of
637 * different handlers.
638 * We rely on user-space to write the initial superblock, and support
639 * reading and updating of superblocks.
640 * Interface methods are:
641 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
642 * loads and validates a superblock on dev.
643 * if refdev != NULL, compare superblocks on both devices
644 * Return:
645 * 0 - dev has a superblock that is compatible with refdev
646 * 1 - dev has a superblock that is compatible and newer than refdev
647 * so dev should be used as the refdev in future
648 * -EINVAL superblock incompatible or invalid
649 * -othererror e.g. -EIO
651 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
652 * Verify that dev is acceptable into mddev.
653 * The first time, mddev->raid_disks will be 0, and data from
654 * dev should be merged in. Subsequent calls check that dev
655 * is new enough. Return 0 or -EINVAL
657 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
658 * Update the superblock for rdev with data in mddev
659 * This does not write to disc.
663 struct super_type {
664 char *name;
665 struct module *owner;
666 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
667 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
668 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
672 * load_super for 0.90.0
674 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
676 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
677 mdp_super_t *sb;
678 int ret;
679 sector_t sb_offset;
682 * Calculate the position of the superblock,
683 * it's at the end of the disk.
685 * It also happens to be a multiple of 4Kb.
687 sb_offset = calc_dev_sboffset(rdev->bdev);
688 rdev->sb_offset = sb_offset;
690 ret = read_disk_sb(rdev, MD_SB_BYTES);
691 if (ret) return ret;
693 ret = -EINVAL;
695 bdevname(rdev->bdev, b);
696 sb = (mdp_super_t*)page_address(rdev->sb_page);
698 if (sb->md_magic != MD_SB_MAGIC) {
699 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
701 goto abort;
704 if (sb->major_version != 0 ||
705 sb->minor_version < 90 ||
706 sb->minor_version > 91) {
707 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
708 sb->major_version, sb->minor_version,
710 goto abort;
713 if (sb->raid_disks <= 0)
714 goto abort;
716 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
717 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
719 goto abort;
722 rdev->preferred_minor = sb->md_minor;
723 rdev->data_offset = 0;
724 rdev->sb_size = MD_SB_BYTES;
726 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
727 if (sb->level != 1 && sb->level != 4
728 && sb->level != 5 && sb->level != 6
729 && sb->level != 10) {
730 /* FIXME use a better test */
731 printk(KERN_WARNING
732 "md: bitmaps not supported for this level.\n");
733 goto abort;
737 if (sb->level == LEVEL_MULTIPATH)
738 rdev->desc_nr = -1;
739 else
740 rdev->desc_nr = sb->this_disk.number;
742 if (refdev == 0)
743 ret = 1;
744 else {
745 __u64 ev1, ev2;
746 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
747 if (!uuid_equal(refsb, sb)) {
748 printk(KERN_WARNING "md: %s has different UUID to %s\n",
749 b, bdevname(refdev->bdev,b2));
750 goto abort;
752 if (!sb_equal(refsb, sb)) {
753 printk(KERN_WARNING "md: %s has same UUID"
754 " but different superblock to %s\n",
755 b, bdevname(refdev->bdev, b2));
756 goto abort;
758 ev1 = md_event(sb);
759 ev2 = md_event(refsb);
760 if (ev1 > ev2)
761 ret = 1;
762 else
763 ret = 0;
765 rdev->size = calc_dev_size(rdev, sb->chunk_size);
767 if (rdev->size < sb->size && sb->level > 1)
768 /* "this cannot possibly happen" ... */
769 ret = -EINVAL;
771 abort:
772 return ret;
776 * validate_super for 0.90.0
778 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
780 mdp_disk_t *desc;
781 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
782 __u64 ev1 = md_event(sb);
784 rdev->raid_disk = -1;
785 rdev->flags = 0;
786 if (mddev->raid_disks == 0) {
787 mddev->major_version = 0;
788 mddev->minor_version = sb->minor_version;
789 mddev->patch_version = sb->patch_version;
790 mddev->persistent = ! sb->not_persistent;
791 mddev->chunk_size = sb->chunk_size;
792 mddev->ctime = sb->ctime;
793 mddev->utime = sb->utime;
794 mddev->level = sb->level;
795 mddev->clevel[0] = 0;
796 mddev->layout = sb->layout;
797 mddev->raid_disks = sb->raid_disks;
798 mddev->size = sb->size;
799 mddev->events = ev1;
800 mddev->bitmap_offset = 0;
801 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
803 if (mddev->minor_version >= 91) {
804 mddev->reshape_position = sb->reshape_position;
805 mddev->delta_disks = sb->delta_disks;
806 mddev->new_level = sb->new_level;
807 mddev->new_layout = sb->new_layout;
808 mddev->new_chunk = sb->new_chunk;
809 } else {
810 mddev->reshape_position = MaxSector;
811 mddev->delta_disks = 0;
812 mddev->new_level = mddev->level;
813 mddev->new_layout = mddev->layout;
814 mddev->new_chunk = mddev->chunk_size;
817 if (sb->state & (1<<MD_SB_CLEAN))
818 mddev->recovery_cp = MaxSector;
819 else {
820 if (sb->events_hi == sb->cp_events_hi &&
821 sb->events_lo == sb->cp_events_lo) {
822 mddev->recovery_cp = sb->recovery_cp;
823 } else
824 mddev->recovery_cp = 0;
827 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
828 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
829 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
830 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
832 mddev->max_disks = MD_SB_DISKS;
834 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
835 mddev->bitmap_file == NULL)
836 mddev->bitmap_offset = mddev->default_bitmap_offset;
838 } else if (mddev->pers == NULL) {
839 /* Insist on good event counter while assembling */
840 ++ev1;
841 if (ev1 < mddev->events)
842 return -EINVAL;
843 } else if (mddev->bitmap) {
844 /* if adding to array with a bitmap, then we can accept an
845 * older device ... but not too old.
847 if (ev1 < mddev->bitmap->events_cleared)
848 return 0;
849 } else {
850 if (ev1 < mddev->events)
851 /* just a hot-add of a new device, leave raid_disk at -1 */
852 return 0;
855 if (mddev->level != LEVEL_MULTIPATH) {
856 desc = sb->disks + rdev->desc_nr;
858 if (desc->state & (1<<MD_DISK_FAULTY))
859 set_bit(Faulty, &rdev->flags);
860 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
861 desc->raid_disk < mddev->raid_disks */) {
862 set_bit(In_sync, &rdev->flags);
863 rdev->raid_disk = desc->raid_disk;
865 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
866 set_bit(WriteMostly, &rdev->flags);
867 } else /* MULTIPATH are always insync */
868 set_bit(In_sync, &rdev->flags);
869 return 0;
873 * sync_super for 0.90.0
875 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
877 mdp_super_t *sb;
878 struct list_head *tmp;
879 mdk_rdev_t *rdev2;
880 int next_spare = mddev->raid_disks;
883 /* make rdev->sb match mddev data..
885 * 1/ zero out disks
886 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
887 * 3/ any empty disks < next_spare become removed
889 * disks[0] gets initialised to REMOVED because
890 * we cannot be sure from other fields if it has
891 * been initialised or not.
893 int i;
894 int active=0, working=0,failed=0,spare=0,nr_disks=0;
896 rdev->sb_size = MD_SB_BYTES;
898 sb = (mdp_super_t*)page_address(rdev->sb_page);
900 memset(sb, 0, sizeof(*sb));
902 sb->md_magic = MD_SB_MAGIC;
903 sb->major_version = mddev->major_version;
904 sb->patch_version = mddev->patch_version;
905 sb->gvalid_words = 0; /* ignored */
906 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
907 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
908 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
909 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
911 sb->ctime = mddev->ctime;
912 sb->level = mddev->level;
913 sb->size = mddev->size;
914 sb->raid_disks = mddev->raid_disks;
915 sb->md_minor = mddev->md_minor;
916 sb->not_persistent = !mddev->persistent;
917 sb->utime = mddev->utime;
918 sb->state = 0;
919 sb->events_hi = (mddev->events>>32);
920 sb->events_lo = (u32)mddev->events;
922 if (mddev->reshape_position == MaxSector)
923 sb->minor_version = 90;
924 else {
925 sb->minor_version = 91;
926 sb->reshape_position = mddev->reshape_position;
927 sb->new_level = mddev->new_level;
928 sb->delta_disks = mddev->delta_disks;
929 sb->new_layout = mddev->new_layout;
930 sb->new_chunk = mddev->new_chunk;
932 mddev->minor_version = sb->minor_version;
933 if (mddev->in_sync)
935 sb->recovery_cp = mddev->recovery_cp;
936 sb->cp_events_hi = (mddev->events>>32);
937 sb->cp_events_lo = (u32)mddev->events;
938 if (mddev->recovery_cp == MaxSector)
939 sb->state = (1<< MD_SB_CLEAN);
940 } else
941 sb->recovery_cp = 0;
943 sb->layout = mddev->layout;
944 sb->chunk_size = mddev->chunk_size;
946 if (mddev->bitmap && mddev->bitmap_file == NULL)
947 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
949 sb->disks[0].state = (1<<MD_DISK_REMOVED);
950 ITERATE_RDEV(mddev,rdev2,tmp) {
951 mdp_disk_t *d;
952 int desc_nr;
953 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
954 && !test_bit(Faulty, &rdev2->flags))
955 desc_nr = rdev2->raid_disk;
956 else
957 desc_nr = next_spare++;
958 rdev2->desc_nr = desc_nr;
959 d = &sb->disks[rdev2->desc_nr];
960 nr_disks++;
961 d->number = rdev2->desc_nr;
962 d->major = MAJOR(rdev2->bdev->bd_dev);
963 d->minor = MINOR(rdev2->bdev->bd_dev);
964 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
965 && !test_bit(Faulty, &rdev2->flags))
966 d->raid_disk = rdev2->raid_disk;
967 else
968 d->raid_disk = rdev2->desc_nr; /* compatibility */
969 if (test_bit(Faulty, &rdev2->flags))
970 d->state = (1<<MD_DISK_FAULTY);
971 else if (test_bit(In_sync, &rdev2->flags)) {
972 d->state = (1<<MD_DISK_ACTIVE);
973 d->state |= (1<<MD_DISK_SYNC);
974 active++;
975 working++;
976 } else {
977 d->state = 0;
978 spare++;
979 working++;
981 if (test_bit(WriteMostly, &rdev2->flags))
982 d->state |= (1<<MD_DISK_WRITEMOSTLY);
984 /* now set the "removed" and "faulty" bits on any missing devices */
985 for (i=0 ; i < mddev->raid_disks ; i++) {
986 mdp_disk_t *d = &sb->disks[i];
987 if (d->state == 0 && d->number == 0) {
988 d->number = i;
989 d->raid_disk = i;
990 d->state = (1<<MD_DISK_REMOVED);
991 d->state |= (1<<MD_DISK_FAULTY);
992 failed++;
995 sb->nr_disks = nr_disks;
996 sb->active_disks = active;
997 sb->working_disks = working;
998 sb->failed_disks = failed;
999 sb->spare_disks = spare;
1001 sb->this_disk = sb->disks[rdev->desc_nr];
1002 sb->sb_csum = calc_sb_csum(sb);
1006 * version 1 superblock
1009 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1011 __le32 disk_csum;
1012 u32 csum;
1013 unsigned long long newcsum;
1014 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1015 __le32 *isuper = (__le32*)sb;
1016 int i;
1018 disk_csum = sb->sb_csum;
1019 sb->sb_csum = 0;
1020 newcsum = 0;
1021 for (i=0; size>=4; size -= 4 )
1022 newcsum += le32_to_cpu(*isuper++);
1024 if (size == 2)
1025 newcsum += le16_to_cpu(*(__le16*) isuper);
1027 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1028 sb->sb_csum = disk_csum;
1029 return cpu_to_le32(csum);
1032 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1034 struct mdp_superblock_1 *sb;
1035 int ret;
1036 sector_t sb_offset;
1037 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1038 int bmask;
1041 * Calculate the position of the superblock.
1042 * It is always aligned to a 4K boundary and
1043 * depeding on minor_version, it can be:
1044 * 0: At least 8K, but less than 12K, from end of device
1045 * 1: At start of device
1046 * 2: 4K from start of device.
1048 switch(minor_version) {
1049 case 0:
1050 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1051 sb_offset -= 8*2;
1052 sb_offset &= ~(sector_t)(4*2-1);
1053 /* convert from sectors to K */
1054 sb_offset /= 2;
1055 break;
1056 case 1:
1057 sb_offset = 0;
1058 break;
1059 case 2:
1060 sb_offset = 4;
1061 break;
1062 default:
1063 return -EINVAL;
1065 rdev->sb_offset = sb_offset;
1067 /* superblock is rarely larger than 1K, but it can be larger,
1068 * and it is safe to read 4k, so we do that
1070 ret = read_disk_sb(rdev, 4096);
1071 if (ret) return ret;
1074 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1076 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1077 sb->major_version != cpu_to_le32(1) ||
1078 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1079 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1080 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1081 return -EINVAL;
1083 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1084 printk("md: invalid superblock checksum on %s\n",
1085 bdevname(rdev->bdev,b));
1086 return -EINVAL;
1088 if (le64_to_cpu(sb->data_size) < 10) {
1089 printk("md: data_size too small on %s\n",
1090 bdevname(rdev->bdev,b));
1091 return -EINVAL;
1093 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1094 if (sb->level != cpu_to_le32(1) &&
1095 sb->level != cpu_to_le32(4) &&
1096 sb->level != cpu_to_le32(5) &&
1097 sb->level != cpu_to_le32(6) &&
1098 sb->level != cpu_to_le32(10)) {
1099 printk(KERN_WARNING
1100 "md: bitmaps not supported for this level.\n");
1101 return -EINVAL;
1105 rdev->preferred_minor = 0xffff;
1106 rdev->data_offset = le64_to_cpu(sb->data_offset);
1107 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1109 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1110 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1111 if (rdev->sb_size & bmask)
1112 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1114 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1115 rdev->desc_nr = -1;
1116 else
1117 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1119 if (refdev == 0)
1120 ret = 1;
1121 else {
1122 __u64 ev1, ev2;
1123 struct mdp_superblock_1 *refsb =
1124 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1126 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1127 sb->level != refsb->level ||
1128 sb->layout != refsb->layout ||
1129 sb->chunksize != refsb->chunksize) {
1130 printk(KERN_WARNING "md: %s has strangely different"
1131 " superblock to %s\n",
1132 bdevname(rdev->bdev,b),
1133 bdevname(refdev->bdev,b2));
1134 return -EINVAL;
1136 ev1 = le64_to_cpu(sb->events);
1137 ev2 = le64_to_cpu(refsb->events);
1139 if (ev1 > ev2)
1140 ret = 1;
1141 else
1142 ret = 0;
1144 if (minor_version)
1145 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1146 else
1147 rdev->size = rdev->sb_offset;
1148 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1149 return -EINVAL;
1150 rdev->size = le64_to_cpu(sb->data_size)/2;
1151 if (le32_to_cpu(sb->chunksize))
1152 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1154 if (le64_to_cpu(sb->size) > rdev->size*2)
1155 return -EINVAL;
1156 return ret;
1159 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1161 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1162 __u64 ev1 = le64_to_cpu(sb->events);
1164 rdev->raid_disk = -1;
1165 rdev->flags = 0;
1166 if (mddev->raid_disks == 0) {
1167 mddev->major_version = 1;
1168 mddev->patch_version = 0;
1169 mddev->persistent = 1;
1170 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1171 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1172 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1173 mddev->level = le32_to_cpu(sb->level);
1174 mddev->clevel[0] = 0;
1175 mddev->layout = le32_to_cpu(sb->layout);
1176 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1177 mddev->size = le64_to_cpu(sb->size)/2;
1178 mddev->events = ev1;
1179 mddev->bitmap_offset = 0;
1180 mddev->default_bitmap_offset = 1024 >> 9;
1182 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1183 memcpy(mddev->uuid, sb->set_uuid, 16);
1185 mddev->max_disks = (4096-256)/2;
1187 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1188 mddev->bitmap_file == NULL )
1189 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1191 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1192 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1193 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1194 mddev->new_level = le32_to_cpu(sb->new_level);
1195 mddev->new_layout = le32_to_cpu(sb->new_layout);
1196 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1197 } else {
1198 mddev->reshape_position = MaxSector;
1199 mddev->delta_disks = 0;
1200 mddev->new_level = mddev->level;
1201 mddev->new_layout = mddev->layout;
1202 mddev->new_chunk = mddev->chunk_size;
1205 } else if (mddev->pers == NULL) {
1206 /* Insist of good event counter while assembling */
1207 ++ev1;
1208 if (ev1 < mddev->events)
1209 return -EINVAL;
1210 } else if (mddev->bitmap) {
1211 /* If adding to array with a bitmap, then we can accept an
1212 * older device, but not too old.
1214 if (ev1 < mddev->bitmap->events_cleared)
1215 return 0;
1216 } else {
1217 if (ev1 < mddev->events)
1218 /* just a hot-add of a new device, leave raid_disk at -1 */
1219 return 0;
1221 if (mddev->level != LEVEL_MULTIPATH) {
1222 int role;
1223 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1224 switch(role) {
1225 case 0xffff: /* spare */
1226 break;
1227 case 0xfffe: /* faulty */
1228 set_bit(Faulty, &rdev->flags);
1229 break;
1230 default:
1231 if ((le32_to_cpu(sb->feature_map) &
1232 MD_FEATURE_RECOVERY_OFFSET))
1233 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1234 else
1235 set_bit(In_sync, &rdev->flags);
1236 rdev->raid_disk = role;
1237 break;
1239 if (sb->devflags & WriteMostly1)
1240 set_bit(WriteMostly, &rdev->flags);
1241 } else /* MULTIPATH are always insync */
1242 set_bit(In_sync, &rdev->flags);
1244 return 0;
1247 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1249 struct mdp_superblock_1 *sb;
1250 struct list_head *tmp;
1251 mdk_rdev_t *rdev2;
1252 int max_dev, i;
1253 /* make rdev->sb match mddev and rdev data. */
1255 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1257 sb->feature_map = 0;
1258 sb->pad0 = 0;
1259 sb->recovery_offset = cpu_to_le64(0);
1260 memset(sb->pad1, 0, sizeof(sb->pad1));
1261 memset(sb->pad2, 0, sizeof(sb->pad2));
1262 memset(sb->pad3, 0, sizeof(sb->pad3));
1264 sb->utime = cpu_to_le64((__u64)mddev->utime);
1265 sb->events = cpu_to_le64(mddev->events);
1266 if (mddev->in_sync)
1267 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1268 else
1269 sb->resync_offset = cpu_to_le64(0);
1271 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1273 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1274 sb->size = cpu_to_le64(mddev->size<<1);
1276 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1277 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1278 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1281 if (rdev->raid_disk >= 0 &&
1282 !test_bit(In_sync, &rdev->flags) &&
1283 rdev->recovery_offset > 0) {
1284 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1285 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1288 if (mddev->reshape_position != MaxSector) {
1289 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1290 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1291 sb->new_layout = cpu_to_le32(mddev->new_layout);
1292 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1293 sb->new_level = cpu_to_le32(mddev->new_level);
1294 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1297 max_dev = 0;
1298 ITERATE_RDEV(mddev,rdev2,tmp)
1299 if (rdev2->desc_nr+1 > max_dev)
1300 max_dev = rdev2->desc_nr+1;
1302 if (max_dev > le32_to_cpu(sb->max_dev))
1303 sb->max_dev = cpu_to_le32(max_dev);
1304 for (i=0; i<max_dev;i++)
1305 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1307 ITERATE_RDEV(mddev,rdev2,tmp) {
1308 i = rdev2->desc_nr;
1309 if (test_bit(Faulty, &rdev2->flags))
1310 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1311 else if (test_bit(In_sync, &rdev2->flags))
1312 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1313 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1314 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1315 else
1316 sb->dev_roles[i] = cpu_to_le16(0xffff);
1319 sb->sb_csum = calc_sb_1_csum(sb);
1323 static struct super_type super_types[] = {
1324 [0] = {
1325 .name = "0.90.0",
1326 .owner = THIS_MODULE,
1327 .load_super = super_90_load,
1328 .validate_super = super_90_validate,
1329 .sync_super = super_90_sync,
1331 [1] = {
1332 .name = "md-1",
1333 .owner = THIS_MODULE,
1334 .load_super = super_1_load,
1335 .validate_super = super_1_validate,
1336 .sync_super = super_1_sync,
1340 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1342 struct list_head *tmp, *tmp2;
1343 mdk_rdev_t *rdev, *rdev2;
1345 ITERATE_RDEV(mddev1,rdev,tmp)
1346 ITERATE_RDEV(mddev2, rdev2, tmp2)
1347 if (rdev->bdev->bd_contains ==
1348 rdev2->bdev->bd_contains)
1349 return 1;
1351 return 0;
1354 static LIST_HEAD(pending_raid_disks);
1356 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1358 char b[BDEVNAME_SIZE];
1359 struct kobject *ko;
1360 char *s;
1361 int err;
1363 if (rdev->mddev) {
1364 MD_BUG();
1365 return -EINVAL;
1367 /* make sure rdev->size exceeds mddev->size */
1368 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1369 if (mddev->pers) {
1370 /* Cannot change size, so fail
1371 * If mddev->level <= 0, then we don't care
1372 * about aligning sizes (e.g. linear)
1374 if (mddev->level > 0)
1375 return -ENOSPC;
1376 } else
1377 mddev->size = rdev->size;
1380 /* Verify rdev->desc_nr is unique.
1381 * If it is -1, assign a free number, else
1382 * check number is not in use
1384 if (rdev->desc_nr < 0) {
1385 int choice = 0;
1386 if (mddev->pers) choice = mddev->raid_disks;
1387 while (find_rdev_nr(mddev, choice))
1388 choice++;
1389 rdev->desc_nr = choice;
1390 } else {
1391 if (find_rdev_nr(mddev, rdev->desc_nr))
1392 return -EBUSY;
1394 bdevname(rdev->bdev,b);
1395 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1396 return -ENOMEM;
1397 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1398 *s = '!';
1400 rdev->mddev = mddev;
1401 printk(KERN_INFO "md: bind<%s>\n", b);
1403 rdev->kobj.parent = &mddev->kobj;
1404 if ((err = kobject_add(&rdev->kobj)))
1405 goto fail;
1407 if (rdev->bdev->bd_part)
1408 ko = &rdev->bdev->bd_part->kobj;
1409 else
1410 ko = &rdev->bdev->bd_disk->kobj;
1411 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1412 kobject_del(&rdev->kobj);
1413 goto fail;
1415 list_add(&rdev->same_set, &mddev->disks);
1416 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1417 return 0;
1419 fail:
1420 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1421 b, mdname(mddev));
1422 return err;
1425 static void delayed_delete(struct work_struct *ws)
1427 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1428 kobject_del(&rdev->kobj);
1431 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1433 char b[BDEVNAME_SIZE];
1434 if (!rdev->mddev) {
1435 MD_BUG();
1436 return;
1438 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1439 list_del_init(&rdev->same_set);
1440 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1441 rdev->mddev = NULL;
1442 sysfs_remove_link(&rdev->kobj, "block");
1444 /* We need to delay this, otherwise we can deadlock when
1445 * writing to 'remove' to "dev/state"
1447 INIT_WORK(&rdev->del_work, delayed_delete);
1448 schedule_work(&rdev->del_work);
1452 * prevent the device from being mounted, repartitioned or
1453 * otherwise reused by a RAID array (or any other kernel
1454 * subsystem), by bd_claiming the device.
1456 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1458 int err = 0;
1459 struct block_device *bdev;
1460 char b[BDEVNAME_SIZE];
1462 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1463 if (IS_ERR(bdev)) {
1464 printk(KERN_ERR "md: could not open %s.\n",
1465 __bdevname(dev, b));
1466 return PTR_ERR(bdev);
1468 err = bd_claim(bdev, rdev);
1469 if (err) {
1470 printk(KERN_ERR "md: could not bd_claim %s.\n",
1471 bdevname(bdev, b));
1472 blkdev_put(bdev);
1473 return err;
1475 rdev->bdev = bdev;
1476 return err;
1479 static void unlock_rdev(mdk_rdev_t *rdev)
1481 struct block_device *bdev = rdev->bdev;
1482 rdev->bdev = NULL;
1483 if (!bdev)
1484 MD_BUG();
1485 bd_release(bdev);
1486 blkdev_put(bdev);
1489 void md_autodetect_dev(dev_t dev);
1491 static void export_rdev(mdk_rdev_t * rdev)
1493 char b[BDEVNAME_SIZE];
1494 printk(KERN_INFO "md: export_rdev(%s)\n",
1495 bdevname(rdev->bdev,b));
1496 if (rdev->mddev)
1497 MD_BUG();
1498 free_disk_sb(rdev);
1499 list_del_init(&rdev->same_set);
1500 #ifndef MODULE
1501 md_autodetect_dev(rdev->bdev->bd_dev);
1502 #endif
1503 unlock_rdev(rdev);
1504 kobject_put(&rdev->kobj);
1507 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1509 unbind_rdev_from_array(rdev);
1510 export_rdev(rdev);
1513 static void export_array(mddev_t *mddev)
1515 struct list_head *tmp;
1516 mdk_rdev_t *rdev;
1518 ITERATE_RDEV(mddev,rdev,tmp) {
1519 if (!rdev->mddev) {
1520 MD_BUG();
1521 continue;
1523 kick_rdev_from_array(rdev);
1525 if (!list_empty(&mddev->disks))
1526 MD_BUG();
1527 mddev->raid_disks = 0;
1528 mddev->major_version = 0;
1531 static void print_desc(mdp_disk_t *desc)
1533 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1534 desc->major,desc->minor,desc->raid_disk,desc->state);
1537 static void print_sb(mdp_super_t *sb)
1539 int i;
1541 printk(KERN_INFO
1542 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1543 sb->major_version, sb->minor_version, sb->patch_version,
1544 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1545 sb->ctime);
1546 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1547 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1548 sb->md_minor, sb->layout, sb->chunk_size);
1549 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1550 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1551 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1552 sb->failed_disks, sb->spare_disks,
1553 sb->sb_csum, (unsigned long)sb->events_lo);
1555 printk(KERN_INFO);
1556 for (i = 0; i < MD_SB_DISKS; i++) {
1557 mdp_disk_t *desc;
1559 desc = sb->disks + i;
1560 if (desc->number || desc->major || desc->minor ||
1561 desc->raid_disk || (desc->state && (desc->state != 4))) {
1562 printk(" D %2d: ", i);
1563 print_desc(desc);
1566 printk(KERN_INFO "md: THIS: ");
1567 print_desc(&sb->this_disk);
1571 static void print_rdev(mdk_rdev_t *rdev)
1573 char b[BDEVNAME_SIZE];
1574 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1575 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1576 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1577 rdev->desc_nr);
1578 if (rdev->sb_loaded) {
1579 printk(KERN_INFO "md: rdev superblock:\n");
1580 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1581 } else
1582 printk(KERN_INFO "md: no rdev superblock!\n");
1585 static void md_print_devices(void)
1587 struct list_head *tmp, *tmp2;
1588 mdk_rdev_t *rdev;
1589 mddev_t *mddev;
1590 char b[BDEVNAME_SIZE];
1592 printk("\n");
1593 printk("md: **********************************\n");
1594 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1595 printk("md: **********************************\n");
1596 ITERATE_MDDEV(mddev,tmp) {
1598 if (mddev->bitmap)
1599 bitmap_print_sb(mddev->bitmap);
1600 else
1601 printk("%s: ", mdname(mddev));
1602 ITERATE_RDEV(mddev,rdev,tmp2)
1603 printk("<%s>", bdevname(rdev->bdev,b));
1604 printk("\n");
1606 ITERATE_RDEV(mddev,rdev,tmp2)
1607 print_rdev(rdev);
1609 printk("md: **********************************\n");
1610 printk("\n");
1614 static void sync_sbs(mddev_t * mddev, int nospares)
1616 /* Update each superblock (in-memory image), but
1617 * if we are allowed to, skip spares which already
1618 * have the right event counter, or have one earlier
1619 * (which would mean they aren't being marked as dirty
1620 * with the rest of the array)
1622 mdk_rdev_t *rdev;
1623 struct list_head *tmp;
1625 ITERATE_RDEV(mddev,rdev,tmp) {
1626 if (rdev->sb_events == mddev->events ||
1627 (nospares &&
1628 rdev->raid_disk < 0 &&
1629 (rdev->sb_events&1)==0 &&
1630 rdev->sb_events+1 == mddev->events)) {
1631 /* Don't update this superblock */
1632 rdev->sb_loaded = 2;
1633 } else {
1634 super_types[mddev->major_version].
1635 sync_super(mddev, rdev);
1636 rdev->sb_loaded = 1;
1641 static void md_update_sb(mddev_t * mddev, int force_change)
1643 int err;
1644 struct list_head *tmp;
1645 mdk_rdev_t *rdev;
1646 int sync_req;
1647 int nospares = 0;
1649 repeat:
1650 spin_lock_irq(&mddev->write_lock);
1652 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1653 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1654 force_change = 1;
1655 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1656 /* just a clean<-> dirty transition, possibly leave spares alone,
1657 * though if events isn't the right even/odd, we will have to do
1658 * spares after all
1660 nospares = 1;
1661 if (force_change)
1662 nospares = 0;
1663 if (mddev->degraded)
1664 /* If the array is degraded, then skipping spares is both
1665 * dangerous and fairly pointless.
1666 * Dangerous because a device that was removed from the array
1667 * might have a event_count that still looks up-to-date,
1668 * so it can be re-added without a resync.
1669 * Pointless because if there are any spares to skip,
1670 * then a recovery will happen and soon that array won't
1671 * be degraded any more and the spare can go back to sleep then.
1673 nospares = 0;
1675 sync_req = mddev->in_sync;
1676 mddev->utime = get_seconds();
1678 /* If this is just a dirty<->clean transition, and the array is clean
1679 * and 'events' is odd, we can roll back to the previous clean state */
1680 if (nospares
1681 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1682 && (mddev->events & 1)
1683 && mddev->events != 1)
1684 mddev->events--;
1685 else {
1686 /* otherwise we have to go forward and ... */
1687 mddev->events ++;
1688 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1689 /* .. if the array isn't clean, insist on an odd 'events' */
1690 if ((mddev->events&1)==0) {
1691 mddev->events++;
1692 nospares = 0;
1694 } else {
1695 /* otherwise insist on an even 'events' (for clean states) */
1696 if ((mddev->events&1)) {
1697 mddev->events++;
1698 nospares = 0;
1703 if (!mddev->events) {
1705 * oops, this 64-bit counter should never wrap.
1706 * Either we are in around ~1 trillion A.C., assuming
1707 * 1 reboot per second, or we have a bug:
1709 MD_BUG();
1710 mddev->events --;
1712 sync_sbs(mddev, nospares);
1715 * do not write anything to disk if using
1716 * nonpersistent superblocks
1718 if (!mddev->persistent) {
1719 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1720 spin_unlock_irq(&mddev->write_lock);
1721 wake_up(&mddev->sb_wait);
1722 return;
1724 spin_unlock_irq(&mddev->write_lock);
1726 dprintk(KERN_INFO
1727 "md: updating %s RAID superblock on device (in sync %d)\n",
1728 mdname(mddev),mddev->in_sync);
1730 err = bitmap_update_sb(mddev->bitmap);
1731 ITERATE_RDEV(mddev,rdev,tmp) {
1732 char b[BDEVNAME_SIZE];
1733 dprintk(KERN_INFO "md: ");
1734 if (rdev->sb_loaded != 1)
1735 continue; /* no noise on spare devices */
1736 if (test_bit(Faulty, &rdev->flags))
1737 dprintk("(skipping faulty ");
1739 dprintk("%s ", bdevname(rdev->bdev,b));
1740 if (!test_bit(Faulty, &rdev->flags)) {
1741 md_super_write(mddev,rdev,
1742 rdev->sb_offset<<1, rdev->sb_size,
1743 rdev->sb_page);
1744 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1745 bdevname(rdev->bdev,b),
1746 (unsigned long long)rdev->sb_offset);
1747 rdev->sb_events = mddev->events;
1749 } else
1750 dprintk(")\n");
1751 if (mddev->level == LEVEL_MULTIPATH)
1752 /* only need to write one superblock... */
1753 break;
1755 md_super_wait(mddev);
1756 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1758 spin_lock_irq(&mddev->write_lock);
1759 if (mddev->in_sync != sync_req ||
1760 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1761 /* have to write it out again */
1762 spin_unlock_irq(&mddev->write_lock);
1763 goto repeat;
1765 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1766 spin_unlock_irq(&mddev->write_lock);
1767 wake_up(&mddev->sb_wait);
1771 /* words written to sysfs files may, or my not, be \n terminated.
1772 * We want to accept with case. For this we use cmd_match.
1774 static int cmd_match(const char *cmd, const char *str)
1776 /* See if cmd, written into a sysfs file, matches
1777 * str. They must either be the same, or cmd can
1778 * have a trailing newline
1780 while (*cmd && *str && *cmd == *str) {
1781 cmd++;
1782 str++;
1784 if (*cmd == '\n')
1785 cmd++;
1786 if (*str || *cmd)
1787 return 0;
1788 return 1;
1791 struct rdev_sysfs_entry {
1792 struct attribute attr;
1793 ssize_t (*show)(mdk_rdev_t *, char *);
1794 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1797 static ssize_t
1798 state_show(mdk_rdev_t *rdev, char *page)
1800 char *sep = "";
1801 int len=0;
1803 if (test_bit(Faulty, &rdev->flags)) {
1804 len+= sprintf(page+len, "%sfaulty",sep);
1805 sep = ",";
1807 if (test_bit(In_sync, &rdev->flags)) {
1808 len += sprintf(page+len, "%sin_sync",sep);
1809 sep = ",";
1811 if (test_bit(WriteMostly, &rdev->flags)) {
1812 len += sprintf(page+len, "%swrite_mostly",sep);
1813 sep = ",";
1815 if (!test_bit(Faulty, &rdev->flags) &&
1816 !test_bit(In_sync, &rdev->flags)) {
1817 len += sprintf(page+len, "%sspare", sep);
1818 sep = ",";
1820 return len+sprintf(page+len, "\n");
1823 static ssize_t
1824 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1826 /* can write
1827 * faulty - simulates and error
1828 * remove - disconnects the device
1829 * writemostly - sets write_mostly
1830 * -writemostly - clears write_mostly
1832 int err = -EINVAL;
1833 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1834 md_error(rdev->mddev, rdev);
1835 err = 0;
1836 } else if (cmd_match(buf, "remove")) {
1837 if (rdev->raid_disk >= 0)
1838 err = -EBUSY;
1839 else {
1840 mddev_t *mddev = rdev->mddev;
1841 kick_rdev_from_array(rdev);
1842 if (mddev->pers)
1843 md_update_sb(mddev, 1);
1844 md_new_event(mddev);
1845 err = 0;
1847 } else if (cmd_match(buf, "writemostly")) {
1848 set_bit(WriteMostly, &rdev->flags);
1849 err = 0;
1850 } else if (cmd_match(buf, "-writemostly")) {
1851 clear_bit(WriteMostly, &rdev->flags);
1852 err = 0;
1854 return err ? err : len;
1856 static struct rdev_sysfs_entry rdev_state =
1857 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1859 static ssize_t
1860 super_show(mdk_rdev_t *rdev, char *page)
1862 if (rdev->sb_loaded && rdev->sb_size) {
1863 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1864 return rdev->sb_size;
1865 } else
1866 return 0;
1868 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1870 static ssize_t
1871 errors_show(mdk_rdev_t *rdev, char *page)
1873 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1876 static ssize_t
1877 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1879 char *e;
1880 unsigned long n = simple_strtoul(buf, &e, 10);
1881 if (*buf && (*e == 0 || *e == '\n')) {
1882 atomic_set(&rdev->corrected_errors, n);
1883 return len;
1885 return -EINVAL;
1887 static struct rdev_sysfs_entry rdev_errors =
1888 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1890 static ssize_t
1891 slot_show(mdk_rdev_t *rdev, char *page)
1893 if (rdev->raid_disk < 0)
1894 return sprintf(page, "none\n");
1895 else
1896 return sprintf(page, "%d\n", rdev->raid_disk);
1899 static ssize_t
1900 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1902 char *e;
1903 int slot = simple_strtoul(buf, &e, 10);
1904 if (strncmp(buf, "none", 4)==0)
1905 slot = -1;
1906 else if (e==buf || (*e && *e!= '\n'))
1907 return -EINVAL;
1908 if (rdev->mddev->pers)
1909 /* Cannot set slot in active array (yet) */
1910 return -EBUSY;
1911 if (slot >= rdev->mddev->raid_disks)
1912 return -ENOSPC;
1913 rdev->raid_disk = slot;
1914 /* assume it is working */
1915 rdev->flags = 0;
1916 set_bit(In_sync, &rdev->flags);
1917 return len;
1921 static struct rdev_sysfs_entry rdev_slot =
1922 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1924 static ssize_t
1925 offset_show(mdk_rdev_t *rdev, char *page)
1927 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1930 static ssize_t
1931 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1933 char *e;
1934 unsigned long long offset = simple_strtoull(buf, &e, 10);
1935 if (e==buf || (*e && *e != '\n'))
1936 return -EINVAL;
1937 if (rdev->mddev->pers)
1938 return -EBUSY;
1939 rdev->data_offset = offset;
1940 return len;
1943 static struct rdev_sysfs_entry rdev_offset =
1944 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1946 static ssize_t
1947 rdev_size_show(mdk_rdev_t *rdev, char *page)
1949 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1952 static ssize_t
1953 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1955 char *e;
1956 unsigned long long size = simple_strtoull(buf, &e, 10);
1957 if (e==buf || (*e && *e != '\n'))
1958 return -EINVAL;
1959 if (rdev->mddev->pers)
1960 return -EBUSY;
1961 rdev->size = size;
1962 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1963 rdev->mddev->size = size;
1964 return len;
1967 static struct rdev_sysfs_entry rdev_size =
1968 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1970 static struct attribute *rdev_default_attrs[] = {
1971 &rdev_state.attr,
1972 &rdev_super.attr,
1973 &rdev_errors.attr,
1974 &rdev_slot.attr,
1975 &rdev_offset.attr,
1976 &rdev_size.attr,
1977 NULL,
1979 static ssize_t
1980 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1982 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1983 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1985 if (!entry->show)
1986 return -EIO;
1987 return entry->show(rdev, page);
1990 static ssize_t
1991 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1992 const char *page, size_t length)
1994 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1995 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1997 if (!entry->store)
1998 return -EIO;
1999 if (!capable(CAP_SYS_ADMIN))
2000 return -EACCES;
2001 return entry->store(rdev, page, length);
2004 static void rdev_free(struct kobject *ko)
2006 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2007 kfree(rdev);
2009 static struct sysfs_ops rdev_sysfs_ops = {
2010 .show = rdev_attr_show,
2011 .store = rdev_attr_store,
2013 static struct kobj_type rdev_ktype = {
2014 .release = rdev_free,
2015 .sysfs_ops = &rdev_sysfs_ops,
2016 .default_attrs = rdev_default_attrs,
2020 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2022 * mark the device faulty if:
2024 * - the device is nonexistent (zero size)
2025 * - the device has no valid superblock
2027 * a faulty rdev _never_ has rdev->sb set.
2029 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2031 char b[BDEVNAME_SIZE];
2032 int err;
2033 mdk_rdev_t *rdev;
2034 sector_t size;
2036 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2037 if (!rdev) {
2038 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2039 return ERR_PTR(-ENOMEM);
2042 if ((err = alloc_disk_sb(rdev)))
2043 goto abort_free;
2045 err = lock_rdev(rdev, newdev);
2046 if (err)
2047 goto abort_free;
2049 rdev->kobj.parent = NULL;
2050 rdev->kobj.ktype = &rdev_ktype;
2051 kobject_init(&rdev->kobj);
2053 rdev->desc_nr = -1;
2054 rdev->saved_raid_disk = -1;
2055 rdev->raid_disk = -1;
2056 rdev->flags = 0;
2057 rdev->data_offset = 0;
2058 rdev->sb_events = 0;
2059 atomic_set(&rdev->nr_pending, 0);
2060 atomic_set(&rdev->read_errors, 0);
2061 atomic_set(&rdev->corrected_errors, 0);
2063 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2064 if (!size) {
2065 printk(KERN_WARNING
2066 "md: %s has zero or unknown size, marking faulty!\n",
2067 bdevname(rdev->bdev,b));
2068 err = -EINVAL;
2069 goto abort_free;
2072 if (super_format >= 0) {
2073 err = super_types[super_format].
2074 load_super(rdev, NULL, super_minor);
2075 if (err == -EINVAL) {
2076 printk(KERN_WARNING
2077 "md: %s has invalid sb, not importing!\n",
2078 bdevname(rdev->bdev,b));
2079 goto abort_free;
2081 if (err < 0) {
2082 printk(KERN_WARNING
2083 "md: could not read %s's sb, not importing!\n",
2084 bdevname(rdev->bdev,b));
2085 goto abort_free;
2088 INIT_LIST_HEAD(&rdev->same_set);
2090 return rdev;
2092 abort_free:
2093 if (rdev->sb_page) {
2094 if (rdev->bdev)
2095 unlock_rdev(rdev);
2096 free_disk_sb(rdev);
2098 kfree(rdev);
2099 return ERR_PTR(err);
2103 * Check a full RAID array for plausibility
2107 static void analyze_sbs(mddev_t * mddev)
2109 int i;
2110 struct list_head *tmp;
2111 mdk_rdev_t *rdev, *freshest;
2112 char b[BDEVNAME_SIZE];
2114 freshest = NULL;
2115 ITERATE_RDEV(mddev,rdev,tmp)
2116 switch (super_types[mddev->major_version].
2117 load_super(rdev, freshest, mddev->minor_version)) {
2118 case 1:
2119 freshest = rdev;
2120 break;
2121 case 0:
2122 break;
2123 default:
2124 printk( KERN_ERR \
2125 "md: fatal superblock inconsistency in %s"
2126 " -- removing from array\n",
2127 bdevname(rdev->bdev,b));
2128 kick_rdev_from_array(rdev);
2132 super_types[mddev->major_version].
2133 validate_super(mddev, freshest);
2135 i = 0;
2136 ITERATE_RDEV(mddev,rdev,tmp) {
2137 if (rdev != freshest)
2138 if (super_types[mddev->major_version].
2139 validate_super(mddev, rdev)) {
2140 printk(KERN_WARNING "md: kicking non-fresh %s"
2141 " from array!\n",
2142 bdevname(rdev->bdev,b));
2143 kick_rdev_from_array(rdev);
2144 continue;
2146 if (mddev->level == LEVEL_MULTIPATH) {
2147 rdev->desc_nr = i++;
2148 rdev->raid_disk = rdev->desc_nr;
2149 set_bit(In_sync, &rdev->flags);
2150 } else if (rdev->raid_disk >= mddev->raid_disks) {
2151 rdev->raid_disk = -1;
2152 clear_bit(In_sync, &rdev->flags);
2158 if (mddev->recovery_cp != MaxSector &&
2159 mddev->level >= 1)
2160 printk(KERN_ERR "md: %s: raid array is not clean"
2161 " -- starting background reconstruction\n",
2162 mdname(mddev));
2166 static ssize_t
2167 safe_delay_show(mddev_t *mddev, char *page)
2169 int msec = (mddev->safemode_delay*1000)/HZ;
2170 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2172 static ssize_t
2173 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2175 int scale=1;
2176 int dot=0;
2177 int i;
2178 unsigned long msec;
2179 char buf[30];
2180 char *e;
2181 /* remove a period, and count digits after it */
2182 if (len >= sizeof(buf))
2183 return -EINVAL;
2184 strlcpy(buf, cbuf, len);
2185 buf[len] = 0;
2186 for (i=0; i<len; i++) {
2187 if (dot) {
2188 if (isdigit(buf[i])) {
2189 buf[i-1] = buf[i];
2190 scale *= 10;
2192 buf[i] = 0;
2193 } else if (buf[i] == '.') {
2194 dot=1;
2195 buf[i] = 0;
2198 msec = simple_strtoul(buf, &e, 10);
2199 if (e == buf || (*e && *e != '\n'))
2200 return -EINVAL;
2201 msec = (msec * 1000) / scale;
2202 if (msec == 0)
2203 mddev->safemode_delay = 0;
2204 else {
2205 mddev->safemode_delay = (msec*HZ)/1000;
2206 if (mddev->safemode_delay == 0)
2207 mddev->safemode_delay = 1;
2209 return len;
2211 static struct md_sysfs_entry md_safe_delay =
2212 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2214 static ssize_t
2215 level_show(mddev_t *mddev, char *page)
2217 struct mdk_personality *p = mddev->pers;
2218 if (p)
2219 return sprintf(page, "%s\n", p->name);
2220 else if (mddev->clevel[0])
2221 return sprintf(page, "%s\n", mddev->clevel);
2222 else if (mddev->level != LEVEL_NONE)
2223 return sprintf(page, "%d\n", mddev->level);
2224 else
2225 return 0;
2228 static ssize_t
2229 level_store(mddev_t *mddev, const char *buf, size_t len)
2231 int rv = len;
2232 if (mddev->pers)
2233 return -EBUSY;
2234 if (len == 0)
2235 return 0;
2236 if (len >= sizeof(mddev->clevel))
2237 return -ENOSPC;
2238 strncpy(mddev->clevel, buf, len);
2239 if (mddev->clevel[len-1] == '\n')
2240 len--;
2241 mddev->clevel[len] = 0;
2242 mddev->level = LEVEL_NONE;
2243 return rv;
2246 static struct md_sysfs_entry md_level =
2247 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2250 static ssize_t
2251 layout_show(mddev_t *mddev, char *page)
2253 /* just a number, not meaningful for all levels */
2254 if (mddev->reshape_position != MaxSector &&
2255 mddev->layout != mddev->new_layout)
2256 return sprintf(page, "%d (%d)\n",
2257 mddev->new_layout, mddev->layout);
2258 return sprintf(page, "%d\n", mddev->layout);
2261 static ssize_t
2262 layout_store(mddev_t *mddev, const char *buf, size_t len)
2264 char *e;
2265 unsigned long n = simple_strtoul(buf, &e, 10);
2267 if (!*buf || (*e && *e != '\n'))
2268 return -EINVAL;
2270 if (mddev->pers)
2271 return -EBUSY;
2272 if (mddev->reshape_position != MaxSector)
2273 mddev->new_layout = n;
2274 else
2275 mddev->layout = n;
2276 return len;
2278 static struct md_sysfs_entry md_layout =
2279 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2282 static ssize_t
2283 raid_disks_show(mddev_t *mddev, char *page)
2285 if (mddev->raid_disks == 0)
2286 return 0;
2287 if (mddev->reshape_position != MaxSector &&
2288 mddev->delta_disks != 0)
2289 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2290 mddev->raid_disks - mddev->delta_disks);
2291 return sprintf(page, "%d\n", mddev->raid_disks);
2294 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2296 static ssize_t
2297 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2299 char *e;
2300 int rv = 0;
2301 unsigned long n = simple_strtoul(buf, &e, 10);
2303 if (!*buf || (*e && *e != '\n'))
2304 return -EINVAL;
2306 if (mddev->pers)
2307 rv = update_raid_disks(mddev, n);
2308 else if (mddev->reshape_position != MaxSector) {
2309 int olddisks = mddev->raid_disks - mddev->delta_disks;
2310 mddev->delta_disks = n - olddisks;
2311 mddev->raid_disks = n;
2312 } else
2313 mddev->raid_disks = n;
2314 return rv ? rv : len;
2316 static struct md_sysfs_entry md_raid_disks =
2317 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2319 static ssize_t
2320 chunk_size_show(mddev_t *mddev, char *page)
2322 if (mddev->reshape_position != MaxSector &&
2323 mddev->chunk_size != mddev->new_chunk)
2324 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2325 mddev->chunk_size);
2326 return sprintf(page, "%d\n", mddev->chunk_size);
2329 static ssize_t
2330 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2332 /* can only set chunk_size if array is not yet active */
2333 char *e;
2334 unsigned long n = simple_strtoul(buf, &e, 10);
2336 if (!*buf || (*e && *e != '\n'))
2337 return -EINVAL;
2339 if (mddev->pers)
2340 return -EBUSY;
2341 else if (mddev->reshape_position != MaxSector)
2342 mddev->new_chunk = n;
2343 else
2344 mddev->chunk_size = n;
2345 return len;
2347 static struct md_sysfs_entry md_chunk_size =
2348 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2350 static ssize_t
2351 resync_start_show(mddev_t *mddev, char *page)
2353 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2356 static ssize_t
2357 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2359 /* can only set chunk_size if array is not yet active */
2360 char *e;
2361 unsigned long long n = simple_strtoull(buf, &e, 10);
2363 if (mddev->pers)
2364 return -EBUSY;
2365 if (!*buf || (*e && *e != '\n'))
2366 return -EINVAL;
2368 mddev->recovery_cp = n;
2369 return len;
2371 static struct md_sysfs_entry md_resync_start =
2372 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2375 * The array state can be:
2377 * clear
2378 * No devices, no size, no level
2379 * Equivalent to STOP_ARRAY ioctl
2380 * inactive
2381 * May have some settings, but array is not active
2382 * all IO results in error
2383 * When written, doesn't tear down array, but just stops it
2384 * suspended (not supported yet)
2385 * All IO requests will block. The array can be reconfigured.
2386 * Writing this, if accepted, will block until array is quiessent
2387 * readonly
2388 * no resync can happen. no superblocks get written.
2389 * write requests fail
2390 * read-auto
2391 * like readonly, but behaves like 'clean' on a write request.
2393 * clean - no pending writes, but otherwise active.
2394 * When written to inactive array, starts without resync
2395 * If a write request arrives then
2396 * if metadata is known, mark 'dirty' and switch to 'active'.
2397 * if not known, block and switch to write-pending
2398 * If written to an active array that has pending writes, then fails.
2399 * active
2400 * fully active: IO and resync can be happening.
2401 * When written to inactive array, starts with resync
2403 * write-pending
2404 * clean, but writes are blocked waiting for 'active' to be written.
2406 * active-idle
2407 * like active, but no writes have been seen for a while (100msec).
2410 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2411 write_pending, active_idle, bad_word};
2412 static char *array_states[] = {
2413 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2414 "write-pending", "active-idle", NULL };
2416 static int match_word(const char *word, char **list)
2418 int n;
2419 for (n=0; list[n]; n++)
2420 if (cmd_match(word, list[n]))
2421 break;
2422 return n;
2425 static ssize_t
2426 array_state_show(mddev_t *mddev, char *page)
2428 enum array_state st = inactive;
2430 if (mddev->pers)
2431 switch(mddev->ro) {
2432 case 1:
2433 st = readonly;
2434 break;
2435 case 2:
2436 st = read_auto;
2437 break;
2438 case 0:
2439 if (mddev->in_sync)
2440 st = clean;
2441 else if (mddev->safemode)
2442 st = active_idle;
2443 else
2444 st = active;
2446 else {
2447 if (list_empty(&mddev->disks) &&
2448 mddev->raid_disks == 0 &&
2449 mddev->size == 0)
2450 st = clear;
2451 else
2452 st = inactive;
2454 return sprintf(page, "%s\n", array_states[st]);
2457 static int do_md_stop(mddev_t * mddev, int ro);
2458 static int do_md_run(mddev_t * mddev);
2459 static int restart_array(mddev_t *mddev);
2461 static ssize_t
2462 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2464 int err = -EINVAL;
2465 enum array_state st = match_word(buf, array_states);
2466 switch(st) {
2467 case bad_word:
2468 break;
2469 case clear:
2470 /* stopping an active array */
2471 if (mddev->pers) {
2472 if (atomic_read(&mddev->active) > 1)
2473 return -EBUSY;
2474 err = do_md_stop(mddev, 0);
2476 break;
2477 case inactive:
2478 /* stopping an active array */
2479 if (mddev->pers) {
2480 if (atomic_read(&mddev->active) > 1)
2481 return -EBUSY;
2482 err = do_md_stop(mddev, 2);
2484 break;
2485 case suspended:
2486 break; /* not supported yet */
2487 case readonly:
2488 if (mddev->pers)
2489 err = do_md_stop(mddev, 1);
2490 else {
2491 mddev->ro = 1;
2492 err = do_md_run(mddev);
2494 break;
2495 case read_auto:
2496 /* stopping an active array */
2497 if (mddev->pers) {
2498 err = do_md_stop(mddev, 1);
2499 if (err == 0)
2500 mddev->ro = 2; /* FIXME mark devices writable */
2501 } else {
2502 mddev->ro = 2;
2503 err = do_md_run(mddev);
2505 break;
2506 case clean:
2507 if (mddev->pers) {
2508 restart_array(mddev);
2509 spin_lock_irq(&mddev->write_lock);
2510 if (atomic_read(&mddev->writes_pending) == 0) {
2511 mddev->in_sync = 1;
2512 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2514 spin_unlock_irq(&mddev->write_lock);
2515 } else {
2516 mddev->ro = 0;
2517 mddev->recovery_cp = MaxSector;
2518 err = do_md_run(mddev);
2520 break;
2521 case active:
2522 if (mddev->pers) {
2523 restart_array(mddev);
2524 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2525 wake_up(&mddev->sb_wait);
2526 err = 0;
2527 } else {
2528 mddev->ro = 0;
2529 err = do_md_run(mddev);
2531 break;
2532 case write_pending:
2533 case active_idle:
2534 /* these cannot be set */
2535 break;
2537 if (err)
2538 return err;
2539 else
2540 return len;
2542 static struct md_sysfs_entry md_array_state =
2543 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2545 static ssize_t
2546 null_show(mddev_t *mddev, char *page)
2548 return -EINVAL;
2551 static ssize_t
2552 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2554 /* buf must be %d:%d\n? giving major and minor numbers */
2555 /* The new device is added to the array.
2556 * If the array has a persistent superblock, we read the
2557 * superblock to initialise info and check validity.
2558 * Otherwise, only checking done is that in bind_rdev_to_array,
2559 * which mainly checks size.
2561 char *e;
2562 int major = simple_strtoul(buf, &e, 10);
2563 int minor;
2564 dev_t dev;
2565 mdk_rdev_t *rdev;
2566 int err;
2568 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2569 return -EINVAL;
2570 minor = simple_strtoul(e+1, &e, 10);
2571 if (*e && *e != '\n')
2572 return -EINVAL;
2573 dev = MKDEV(major, minor);
2574 if (major != MAJOR(dev) ||
2575 minor != MINOR(dev))
2576 return -EOVERFLOW;
2579 if (mddev->persistent) {
2580 rdev = md_import_device(dev, mddev->major_version,
2581 mddev->minor_version);
2582 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2583 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2584 mdk_rdev_t, same_set);
2585 err = super_types[mddev->major_version]
2586 .load_super(rdev, rdev0, mddev->minor_version);
2587 if (err < 0)
2588 goto out;
2590 } else
2591 rdev = md_import_device(dev, -1, -1);
2593 if (IS_ERR(rdev))
2594 return PTR_ERR(rdev);
2595 err = bind_rdev_to_array(rdev, mddev);
2596 out:
2597 if (err)
2598 export_rdev(rdev);
2599 return err ? err : len;
2602 static struct md_sysfs_entry md_new_device =
2603 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2605 static ssize_t
2606 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2608 char *end;
2609 unsigned long chunk, end_chunk;
2611 if (!mddev->bitmap)
2612 goto out;
2613 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2614 while (*buf) {
2615 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2616 if (buf == end) break;
2617 if (*end == '-') { /* range */
2618 buf = end + 1;
2619 end_chunk = simple_strtoul(buf, &end, 0);
2620 if (buf == end) break;
2622 if (*end && !isspace(*end)) break;
2623 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2624 buf = end;
2625 while (isspace(*buf)) buf++;
2627 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2628 out:
2629 return len;
2632 static struct md_sysfs_entry md_bitmap =
2633 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2635 static ssize_t
2636 size_show(mddev_t *mddev, char *page)
2638 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2641 static int update_size(mddev_t *mddev, unsigned long size);
2643 static ssize_t
2644 size_store(mddev_t *mddev, const char *buf, size_t len)
2646 /* If array is inactive, we can reduce the component size, but
2647 * not increase it (except from 0).
2648 * If array is active, we can try an on-line resize
2650 char *e;
2651 int err = 0;
2652 unsigned long long size = simple_strtoull(buf, &e, 10);
2653 if (!*buf || *buf == '\n' ||
2654 (*e && *e != '\n'))
2655 return -EINVAL;
2657 if (mddev->pers) {
2658 err = update_size(mddev, size);
2659 md_update_sb(mddev, 1);
2660 } else {
2661 if (mddev->size == 0 ||
2662 mddev->size > size)
2663 mddev->size = size;
2664 else
2665 err = -ENOSPC;
2667 return err ? err : len;
2670 static struct md_sysfs_entry md_size =
2671 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2674 /* Metdata version.
2675 * This is either 'none' for arrays with externally managed metadata,
2676 * or N.M for internally known formats
2678 static ssize_t
2679 metadata_show(mddev_t *mddev, char *page)
2681 if (mddev->persistent)
2682 return sprintf(page, "%d.%d\n",
2683 mddev->major_version, mddev->minor_version);
2684 else
2685 return sprintf(page, "none\n");
2688 static ssize_t
2689 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2691 int major, minor;
2692 char *e;
2693 if (!list_empty(&mddev->disks))
2694 return -EBUSY;
2696 if (cmd_match(buf, "none")) {
2697 mddev->persistent = 0;
2698 mddev->major_version = 0;
2699 mddev->minor_version = 90;
2700 return len;
2702 major = simple_strtoul(buf, &e, 10);
2703 if (e==buf || *e != '.')
2704 return -EINVAL;
2705 buf = e+1;
2706 minor = simple_strtoul(buf, &e, 10);
2707 if (e==buf || (*e && *e != '\n') )
2708 return -EINVAL;
2709 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2710 return -ENOENT;
2711 mddev->major_version = major;
2712 mddev->minor_version = minor;
2713 mddev->persistent = 1;
2714 return len;
2717 static struct md_sysfs_entry md_metadata =
2718 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2720 static ssize_t
2721 action_show(mddev_t *mddev, char *page)
2723 char *type = "idle";
2724 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2725 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2726 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2727 type = "reshape";
2728 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2729 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2730 type = "resync";
2731 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2732 type = "check";
2733 else
2734 type = "repair";
2735 } else
2736 type = "recover";
2738 return sprintf(page, "%s\n", type);
2741 static ssize_t
2742 action_store(mddev_t *mddev, const char *page, size_t len)
2744 if (!mddev->pers || !mddev->pers->sync_request)
2745 return -EINVAL;
2747 if (cmd_match(page, "idle")) {
2748 if (mddev->sync_thread) {
2749 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2750 md_unregister_thread(mddev->sync_thread);
2751 mddev->sync_thread = NULL;
2752 mddev->recovery = 0;
2754 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2755 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2756 return -EBUSY;
2757 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2758 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2759 else if (cmd_match(page, "reshape")) {
2760 int err;
2761 if (mddev->pers->start_reshape == NULL)
2762 return -EINVAL;
2763 err = mddev->pers->start_reshape(mddev);
2764 if (err)
2765 return err;
2766 } else {
2767 if (cmd_match(page, "check"))
2768 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2769 else if (!cmd_match(page, "repair"))
2770 return -EINVAL;
2771 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2772 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2774 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2775 md_wakeup_thread(mddev->thread);
2776 return len;
2779 static ssize_t
2780 mismatch_cnt_show(mddev_t *mddev, char *page)
2782 return sprintf(page, "%llu\n",
2783 (unsigned long long) mddev->resync_mismatches);
2786 static struct md_sysfs_entry md_scan_mode =
2787 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2790 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2792 static ssize_t
2793 sync_min_show(mddev_t *mddev, char *page)
2795 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2796 mddev->sync_speed_min ? "local": "system");
2799 static ssize_t
2800 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2802 int min;
2803 char *e;
2804 if (strncmp(buf, "system", 6)==0) {
2805 mddev->sync_speed_min = 0;
2806 return len;
2808 min = simple_strtoul(buf, &e, 10);
2809 if (buf == e || (*e && *e != '\n') || min <= 0)
2810 return -EINVAL;
2811 mddev->sync_speed_min = min;
2812 return len;
2815 static struct md_sysfs_entry md_sync_min =
2816 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2818 static ssize_t
2819 sync_max_show(mddev_t *mddev, char *page)
2821 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2822 mddev->sync_speed_max ? "local": "system");
2825 static ssize_t
2826 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2828 int max;
2829 char *e;
2830 if (strncmp(buf, "system", 6)==0) {
2831 mddev->sync_speed_max = 0;
2832 return len;
2834 max = simple_strtoul(buf, &e, 10);
2835 if (buf == e || (*e && *e != '\n') || max <= 0)
2836 return -EINVAL;
2837 mddev->sync_speed_max = max;
2838 return len;
2841 static struct md_sysfs_entry md_sync_max =
2842 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2845 static ssize_t
2846 sync_speed_show(mddev_t *mddev, char *page)
2848 unsigned long resync, dt, db;
2849 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2850 dt = ((jiffies - mddev->resync_mark) / HZ);
2851 if (!dt) dt++;
2852 db = resync - (mddev->resync_mark_cnt);
2853 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2856 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2858 static ssize_t
2859 sync_completed_show(mddev_t *mddev, char *page)
2861 unsigned long max_blocks, resync;
2863 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2864 max_blocks = mddev->resync_max_sectors;
2865 else
2866 max_blocks = mddev->size << 1;
2868 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2869 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2872 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2874 static ssize_t
2875 suspend_lo_show(mddev_t *mddev, char *page)
2877 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2880 static ssize_t
2881 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2883 char *e;
2884 unsigned long long new = simple_strtoull(buf, &e, 10);
2886 if (mddev->pers->quiesce == NULL)
2887 return -EINVAL;
2888 if (buf == e || (*e && *e != '\n'))
2889 return -EINVAL;
2890 if (new >= mddev->suspend_hi ||
2891 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2892 mddev->suspend_lo = new;
2893 mddev->pers->quiesce(mddev, 2);
2894 return len;
2895 } else
2896 return -EINVAL;
2898 static struct md_sysfs_entry md_suspend_lo =
2899 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2902 static ssize_t
2903 suspend_hi_show(mddev_t *mddev, char *page)
2905 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2908 static ssize_t
2909 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2911 char *e;
2912 unsigned long long new = simple_strtoull(buf, &e, 10);
2914 if (mddev->pers->quiesce == NULL)
2915 return -EINVAL;
2916 if (buf == e || (*e && *e != '\n'))
2917 return -EINVAL;
2918 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2919 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2920 mddev->suspend_hi = new;
2921 mddev->pers->quiesce(mddev, 1);
2922 mddev->pers->quiesce(mddev, 0);
2923 return len;
2924 } else
2925 return -EINVAL;
2927 static struct md_sysfs_entry md_suspend_hi =
2928 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2930 static ssize_t
2931 reshape_position_show(mddev_t *mddev, char *page)
2933 if (mddev->reshape_position != MaxSector)
2934 return sprintf(page, "%llu\n",
2935 (unsigned long long)mddev->reshape_position);
2936 strcpy(page, "none\n");
2937 return 5;
2940 static ssize_t
2941 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
2943 char *e;
2944 unsigned long long new = simple_strtoull(buf, &e, 10);
2945 if (mddev->pers)
2946 return -EBUSY;
2947 if (buf == e || (*e && *e != '\n'))
2948 return -EINVAL;
2949 mddev->reshape_position = new;
2950 mddev->delta_disks = 0;
2951 mddev->new_level = mddev->level;
2952 mddev->new_layout = mddev->layout;
2953 mddev->new_chunk = mddev->chunk_size;
2954 return len;
2957 static struct md_sysfs_entry md_reshape_position =
2958 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
2959 reshape_position_store);
2962 static struct attribute *md_default_attrs[] = {
2963 &md_level.attr,
2964 &md_layout.attr,
2965 &md_raid_disks.attr,
2966 &md_chunk_size.attr,
2967 &md_size.attr,
2968 &md_resync_start.attr,
2969 &md_metadata.attr,
2970 &md_new_device.attr,
2971 &md_safe_delay.attr,
2972 &md_array_state.attr,
2973 &md_reshape_position.attr,
2974 NULL,
2977 static struct attribute *md_redundancy_attrs[] = {
2978 &md_scan_mode.attr,
2979 &md_mismatches.attr,
2980 &md_sync_min.attr,
2981 &md_sync_max.attr,
2982 &md_sync_speed.attr,
2983 &md_sync_completed.attr,
2984 &md_suspend_lo.attr,
2985 &md_suspend_hi.attr,
2986 &md_bitmap.attr,
2987 NULL,
2989 static struct attribute_group md_redundancy_group = {
2990 .name = NULL,
2991 .attrs = md_redundancy_attrs,
2995 static ssize_t
2996 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2998 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2999 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3000 ssize_t rv;
3002 if (!entry->show)
3003 return -EIO;
3004 rv = mddev_lock(mddev);
3005 if (!rv) {
3006 rv = entry->show(mddev, page);
3007 mddev_unlock(mddev);
3009 return rv;
3012 static ssize_t
3013 md_attr_store(struct kobject *kobj, struct attribute *attr,
3014 const char *page, size_t length)
3016 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3017 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3018 ssize_t rv;
3020 if (!entry->store)
3021 return -EIO;
3022 if (!capable(CAP_SYS_ADMIN))
3023 return -EACCES;
3024 rv = mddev_lock(mddev);
3025 if (!rv) {
3026 rv = entry->store(mddev, page, length);
3027 mddev_unlock(mddev);
3029 return rv;
3032 static void md_free(struct kobject *ko)
3034 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3035 kfree(mddev);
3038 static struct sysfs_ops md_sysfs_ops = {
3039 .show = md_attr_show,
3040 .store = md_attr_store,
3042 static struct kobj_type md_ktype = {
3043 .release = md_free,
3044 .sysfs_ops = &md_sysfs_ops,
3045 .default_attrs = md_default_attrs,
3048 int mdp_major = 0;
3050 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3052 static DEFINE_MUTEX(disks_mutex);
3053 mddev_t *mddev = mddev_find(dev);
3054 struct gendisk *disk;
3055 int partitioned = (MAJOR(dev) != MD_MAJOR);
3056 int shift = partitioned ? MdpMinorShift : 0;
3057 int unit = MINOR(dev) >> shift;
3059 if (!mddev)
3060 return NULL;
3062 mutex_lock(&disks_mutex);
3063 if (mddev->gendisk) {
3064 mutex_unlock(&disks_mutex);
3065 mddev_put(mddev);
3066 return NULL;
3068 disk = alloc_disk(1 << shift);
3069 if (!disk) {
3070 mutex_unlock(&disks_mutex);
3071 mddev_put(mddev);
3072 return NULL;
3074 disk->major = MAJOR(dev);
3075 disk->first_minor = unit << shift;
3076 if (partitioned)
3077 sprintf(disk->disk_name, "md_d%d", unit);
3078 else
3079 sprintf(disk->disk_name, "md%d", unit);
3080 disk->fops = &md_fops;
3081 disk->private_data = mddev;
3082 disk->queue = mddev->queue;
3083 add_disk(disk);
3084 mddev->gendisk = disk;
3085 mutex_unlock(&disks_mutex);
3086 mddev->kobj.parent = &disk->kobj;
3087 mddev->kobj.k_name = NULL;
3088 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
3089 mddev->kobj.ktype = &md_ktype;
3090 if (kobject_register(&mddev->kobj))
3091 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3092 disk->disk_name);
3093 return NULL;
3096 static void md_safemode_timeout(unsigned long data)
3098 mddev_t *mddev = (mddev_t *) data;
3100 mddev->safemode = 1;
3101 md_wakeup_thread(mddev->thread);
3104 static int start_dirty_degraded;
3106 static int do_md_run(mddev_t * mddev)
3108 int err;
3109 int chunk_size;
3110 struct list_head *tmp;
3111 mdk_rdev_t *rdev;
3112 struct gendisk *disk;
3113 struct mdk_personality *pers;
3114 char b[BDEVNAME_SIZE];
3116 if (list_empty(&mddev->disks))
3117 /* cannot run an array with no devices.. */
3118 return -EINVAL;
3120 if (mddev->pers)
3121 return -EBUSY;
3124 * Analyze all RAID superblock(s)
3126 if (!mddev->raid_disks)
3127 analyze_sbs(mddev);
3129 chunk_size = mddev->chunk_size;
3131 if (chunk_size) {
3132 if (chunk_size > MAX_CHUNK_SIZE) {
3133 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3134 chunk_size, MAX_CHUNK_SIZE);
3135 return -EINVAL;
3138 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3140 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3141 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3142 return -EINVAL;
3144 if (chunk_size < PAGE_SIZE) {
3145 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3146 chunk_size, PAGE_SIZE);
3147 return -EINVAL;
3150 /* devices must have minimum size of one chunk */
3151 ITERATE_RDEV(mddev,rdev,tmp) {
3152 if (test_bit(Faulty, &rdev->flags))
3153 continue;
3154 if (rdev->size < chunk_size / 1024) {
3155 printk(KERN_WARNING
3156 "md: Dev %s smaller than chunk_size:"
3157 " %lluk < %dk\n",
3158 bdevname(rdev->bdev,b),
3159 (unsigned long long)rdev->size,
3160 chunk_size / 1024);
3161 return -EINVAL;
3166 #ifdef CONFIG_KMOD
3167 if (mddev->level != LEVEL_NONE)
3168 request_module("md-level-%d", mddev->level);
3169 else if (mddev->clevel[0])
3170 request_module("md-%s", mddev->clevel);
3171 #endif
3174 * Drop all container device buffers, from now on
3175 * the only valid external interface is through the md
3176 * device.
3177 * Also find largest hardsector size
3179 ITERATE_RDEV(mddev,rdev,tmp) {
3180 if (test_bit(Faulty, &rdev->flags))
3181 continue;
3182 sync_blockdev(rdev->bdev);
3183 invalidate_bdev(rdev->bdev);
3186 md_probe(mddev->unit, NULL, NULL);
3187 disk = mddev->gendisk;
3188 if (!disk)
3189 return -ENOMEM;
3191 spin_lock(&pers_lock);
3192 pers = find_pers(mddev->level, mddev->clevel);
3193 if (!pers || !try_module_get(pers->owner)) {
3194 spin_unlock(&pers_lock);
3195 if (mddev->level != LEVEL_NONE)
3196 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3197 mddev->level);
3198 else
3199 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3200 mddev->clevel);
3201 return -EINVAL;
3203 mddev->pers = pers;
3204 spin_unlock(&pers_lock);
3205 mddev->level = pers->level;
3206 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3208 if (mddev->reshape_position != MaxSector &&
3209 pers->start_reshape == NULL) {
3210 /* This personality cannot handle reshaping... */
3211 mddev->pers = NULL;
3212 module_put(pers->owner);
3213 return -EINVAL;
3216 if (pers->sync_request) {
3217 /* Warn if this is a potentially silly
3218 * configuration.
3220 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3221 mdk_rdev_t *rdev2;
3222 struct list_head *tmp2;
3223 int warned = 0;
3224 ITERATE_RDEV(mddev, rdev, tmp) {
3225 ITERATE_RDEV(mddev, rdev2, tmp2) {
3226 if (rdev < rdev2 &&
3227 rdev->bdev->bd_contains ==
3228 rdev2->bdev->bd_contains) {
3229 printk(KERN_WARNING
3230 "%s: WARNING: %s appears to be"
3231 " on the same physical disk as"
3232 " %s.\n",
3233 mdname(mddev),
3234 bdevname(rdev->bdev,b),
3235 bdevname(rdev2->bdev,b2));
3236 warned = 1;
3240 if (warned)
3241 printk(KERN_WARNING
3242 "True protection against single-disk"
3243 " failure might be compromised.\n");
3246 mddev->recovery = 0;
3247 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3248 mddev->barriers_work = 1;
3249 mddev->ok_start_degraded = start_dirty_degraded;
3251 if (start_readonly)
3252 mddev->ro = 2; /* read-only, but switch on first write */
3254 err = mddev->pers->run(mddev);
3255 if (!err && mddev->pers->sync_request) {
3256 err = bitmap_create(mddev);
3257 if (err) {
3258 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3259 mdname(mddev), err);
3260 mddev->pers->stop(mddev);
3263 if (err) {
3264 printk(KERN_ERR "md: pers->run() failed ...\n");
3265 module_put(mddev->pers->owner);
3266 mddev->pers = NULL;
3267 bitmap_destroy(mddev);
3268 return err;
3270 if (mddev->pers->sync_request) {
3271 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3272 printk(KERN_WARNING
3273 "md: cannot register extra attributes for %s\n",
3274 mdname(mddev));
3275 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
3276 mddev->ro = 0;
3278 atomic_set(&mddev->writes_pending,0);
3279 mddev->safemode = 0;
3280 mddev->safemode_timer.function = md_safemode_timeout;
3281 mddev->safemode_timer.data = (unsigned long) mddev;
3282 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3283 mddev->in_sync = 1;
3285 ITERATE_RDEV(mddev,rdev,tmp)
3286 if (rdev->raid_disk >= 0) {
3287 char nm[20];
3288 sprintf(nm, "rd%d", rdev->raid_disk);
3289 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3290 printk("md: cannot register %s for %s\n",
3291 nm, mdname(mddev));
3294 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3296 if (mddev->flags)
3297 md_update_sb(mddev, 0);
3299 set_capacity(disk, mddev->array_size<<1);
3301 /* If we call blk_queue_make_request here, it will
3302 * re-initialise max_sectors etc which may have been
3303 * refined inside -> run. So just set the bits we need to set.
3304 * Most initialisation happended when we called
3305 * blk_queue_make_request(..., md_fail_request)
3306 * earlier.
3308 mddev->queue->queuedata = mddev;
3309 mddev->queue->make_request_fn = mddev->pers->make_request;
3311 /* If there is a partially-recovered drive we need to
3312 * start recovery here. If we leave it to md_check_recovery,
3313 * it will remove the drives and not do the right thing
3315 if (mddev->degraded && !mddev->sync_thread) {
3316 struct list_head *rtmp;
3317 int spares = 0;
3318 ITERATE_RDEV(mddev,rdev,rtmp)
3319 if (rdev->raid_disk >= 0 &&
3320 !test_bit(In_sync, &rdev->flags) &&
3321 !test_bit(Faulty, &rdev->flags))
3322 /* complete an interrupted recovery */
3323 spares++;
3324 if (spares && mddev->pers->sync_request) {
3325 mddev->recovery = 0;
3326 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3327 mddev->sync_thread = md_register_thread(md_do_sync,
3328 mddev,
3329 "%s_resync");
3330 if (!mddev->sync_thread) {
3331 printk(KERN_ERR "%s: could not start resync"
3332 " thread...\n",
3333 mdname(mddev));
3334 /* leave the spares where they are, it shouldn't hurt */
3335 mddev->recovery = 0;
3339 md_wakeup_thread(mddev->thread);
3340 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3342 mddev->changed = 1;
3343 md_new_event(mddev);
3344 kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3345 return 0;
3348 static int restart_array(mddev_t *mddev)
3350 struct gendisk *disk = mddev->gendisk;
3351 int err;
3354 * Complain if it has no devices
3356 err = -ENXIO;
3357 if (list_empty(&mddev->disks))
3358 goto out;
3360 if (mddev->pers) {
3361 err = -EBUSY;
3362 if (!mddev->ro)
3363 goto out;
3365 mddev->safemode = 0;
3366 mddev->ro = 0;
3367 set_disk_ro(disk, 0);
3369 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3370 mdname(mddev));
3372 * Kick recovery or resync if necessary
3374 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3375 md_wakeup_thread(mddev->thread);
3376 md_wakeup_thread(mddev->sync_thread);
3377 err = 0;
3378 } else
3379 err = -EINVAL;
3381 out:
3382 return err;
3385 /* similar to deny_write_access, but accounts for our holding a reference
3386 * to the file ourselves */
3387 static int deny_bitmap_write_access(struct file * file)
3389 struct inode *inode = file->f_mapping->host;
3391 spin_lock(&inode->i_lock);
3392 if (atomic_read(&inode->i_writecount) > 1) {
3393 spin_unlock(&inode->i_lock);
3394 return -ETXTBSY;
3396 atomic_set(&inode->i_writecount, -1);
3397 spin_unlock(&inode->i_lock);
3399 return 0;
3402 static void restore_bitmap_write_access(struct file *file)
3404 struct inode *inode = file->f_mapping->host;
3406 spin_lock(&inode->i_lock);
3407 atomic_set(&inode->i_writecount, 1);
3408 spin_unlock(&inode->i_lock);
3411 /* mode:
3412 * 0 - completely stop and dis-assemble array
3413 * 1 - switch to readonly
3414 * 2 - stop but do not disassemble array
3416 static int do_md_stop(mddev_t * mddev, int mode)
3418 int err = 0;
3419 struct gendisk *disk = mddev->gendisk;
3421 if (mddev->pers) {
3422 if (atomic_read(&mddev->active)>2) {
3423 printk("md: %s still in use.\n",mdname(mddev));
3424 return -EBUSY;
3427 if (mddev->sync_thread) {
3428 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3429 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3430 md_unregister_thread(mddev->sync_thread);
3431 mddev->sync_thread = NULL;
3434 del_timer_sync(&mddev->safemode_timer);
3436 invalidate_partition(disk, 0);
3438 switch(mode) {
3439 case 1: /* readonly */
3440 err = -ENXIO;
3441 if (mddev->ro==1)
3442 goto out;
3443 mddev->ro = 1;
3444 break;
3445 case 0: /* disassemble */
3446 case 2: /* stop */
3447 bitmap_flush(mddev);
3448 md_super_wait(mddev);
3449 if (mddev->ro)
3450 set_disk_ro(disk, 0);
3451 blk_queue_make_request(mddev->queue, md_fail_request);
3452 mddev->pers->stop(mddev);
3453 mddev->queue->merge_bvec_fn = NULL;
3454 mddev->queue->unplug_fn = NULL;
3455 mddev->queue->issue_flush_fn = NULL;
3456 mddev->queue->backing_dev_info.congested_fn = NULL;
3457 if (mddev->pers->sync_request)
3458 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3460 module_put(mddev->pers->owner);
3461 mddev->pers = NULL;
3463 set_capacity(disk, 0);
3464 mddev->changed = 1;
3466 if (mddev->ro)
3467 mddev->ro = 0;
3469 if (!mddev->in_sync || mddev->flags) {
3470 /* mark array as shutdown cleanly */
3471 mddev->in_sync = 1;
3472 md_update_sb(mddev, 1);
3474 if (mode == 1)
3475 set_disk_ro(disk, 1);
3476 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3480 * Free resources if final stop
3482 if (mode == 0) {
3483 mdk_rdev_t *rdev;
3484 struct list_head *tmp;
3486 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3488 bitmap_destroy(mddev);
3489 if (mddev->bitmap_file) {
3490 restore_bitmap_write_access(mddev->bitmap_file);
3491 fput(mddev->bitmap_file);
3492 mddev->bitmap_file = NULL;
3494 mddev->bitmap_offset = 0;
3496 ITERATE_RDEV(mddev,rdev,tmp)
3497 if (rdev->raid_disk >= 0) {
3498 char nm[20];
3499 sprintf(nm, "rd%d", rdev->raid_disk);
3500 sysfs_remove_link(&mddev->kobj, nm);
3503 /* make sure all delayed_delete calls have finished */
3504 flush_scheduled_work();
3506 export_array(mddev);
3508 mddev->array_size = 0;
3509 mddev->size = 0;
3510 mddev->raid_disks = 0;
3511 mddev->recovery_cp = 0;
3512 mddev->reshape_position = MaxSector;
3514 } else if (mddev->pers)
3515 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3516 mdname(mddev));
3517 err = 0;
3518 md_new_event(mddev);
3519 out:
3520 return err;
3523 #ifndef MODULE
3524 static void autorun_array(mddev_t *mddev)
3526 mdk_rdev_t *rdev;
3527 struct list_head *tmp;
3528 int err;
3530 if (list_empty(&mddev->disks))
3531 return;
3533 printk(KERN_INFO "md: running: ");
3535 ITERATE_RDEV(mddev,rdev,tmp) {
3536 char b[BDEVNAME_SIZE];
3537 printk("<%s>", bdevname(rdev->bdev,b));
3539 printk("\n");
3541 err = do_md_run (mddev);
3542 if (err) {
3543 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3544 do_md_stop (mddev, 0);
3549 * lets try to run arrays based on all disks that have arrived
3550 * until now. (those are in pending_raid_disks)
3552 * the method: pick the first pending disk, collect all disks with
3553 * the same UUID, remove all from the pending list and put them into
3554 * the 'same_array' list. Then order this list based on superblock
3555 * update time (freshest comes first), kick out 'old' disks and
3556 * compare superblocks. If everything's fine then run it.
3558 * If "unit" is allocated, then bump its reference count
3560 static void autorun_devices(int part)
3562 struct list_head *tmp;
3563 mdk_rdev_t *rdev0, *rdev;
3564 mddev_t *mddev;
3565 char b[BDEVNAME_SIZE];
3567 printk(KERN_INFO "md: autorun ...\n");
3568 while (!list_empty(&pending_raid_disks)) {
3569 int unit;
3570 dev_t dev;
3571 LIST_HEAD(candidates);
3572 rdev0 = list_entry(pending_raid_disks.next,
3573 mdk_rdev_t, same_set);
3575 printk(KERN_INFO "md: considering %s ...\n",
3576 bdevname(rdev0->bdev,b));
3577 INIT_LIST_HEAD(&candidates);
3578 ITERATE_RDEV_PENDING(rdev,tmp)
3579 if (super_90_load(rdev, rdev0, 0) >= 0) {
3580 printk(KERN_INFO "md: adding %s ...\n",
3581 bdevname(rdev->bdev,b));
3582 list_move(&rdev->same_set, &candidates);
3585 * now we have a set of devices, with all of them having
3586 * mostly sane superblocks. It's time to allocate the
3587 * mddev.
3589 if (part) {
3590 dev = MKDEV(mdp_major,
3591 rdev0->preferred_minor << MdpMinorShift);
3592 unit = MINOR(dev) >> MdpMinorShift;
3593 } else {
3594 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3595 unit = MINOR(dev);
3597 if (rdev0->preferred_minor != unit) {
3598 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3599 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3600 break;
3603 md_probe(dev, NULL, NULL);
3604 mddev = mddev_find(dev);
3605 if (!mddev) {
3606 printk(KERN_ERR
3607 "md: cannot allocate memory for md drive.\n");
3608 break;
3610 if (mddev_lock(mddev))
3611 printk(KERN_WARNING "md: %s locked, cannot run\n",
3612 mdname(mddev));
3613 else if (mddev->raid_disks || mddev->major_version
3614 || !list_empty(&mddev->disks)) {
3615 printk(KERN_WARNING
3616 "md: %s already running, cannot run %s\n",
3617 mdname(mddev), bdevname(rdev0->bdev,b));
3618 mddev_unlock(mddev);
3619 } else {
3620 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3621 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3622 list_del_init(&rdev->same_set);
3623 if (bind_rdev_to_array(rdev, mddev))
3624 export_rdev(rdev);
3626 autorun_array(mddev);
3627 mddev_unlock(mddev);
3629 /* on success, candidates will be empty, on error
3630 * it won't...
3632 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3633 export_rdev(rdev);
3634 mddev_put(mddev);
3636 printk(KERN_INFO "md: ... autorun DONE.\n");
3638 #endif /* !MODULE */
3640 static int get_version(void __user * arg)
3642 mdu_version_t ver;
3644 ver.major = MD_MAJOR_VERSION;
3645 ver.minor = MD_MINOR_VERSION;
3646 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3648 if (copy_to_user(arg, &ver, sizeof(ver)))
3649 return -EFAULT;
3651 return 0;
3654 static int get_array_info(mddev_t * mddev, void __user * arg)
3656 mdu_array_info_t info;
3657 int nr,working,active,failed,spare;
3658 mdk_rdev_t *rdev;
3659 struct list_head *tmp;
3661 nr=working=active=failed=spare=0;
3662 ITERATE_RDEV(mddev,rdev,tmp) {
3663 nr++;
3664 if (test_bit(Faulty, &rdev->flags))
3665 failed++;
3666 else {
3667 working++;
3668 if (test_bit(In_sync, &rdev->flags))
3669 active++;
3670 else
3671 spare++;
3675 info.major_version = mddev->major_version;
3676 info.minor_version = mddev->minor_version;
3677 info.patch_version = MD_PATCHLEVEL_VERSION;
3678 info.ctime = mddev->ctime;
3679 info.level = mddev->level;
3680 info.size = mddev->size;
3681 if (info.size != mddev->size) /* overflow */
3682 info.size = -1;
3683 info.nr_disks = nr;
3684 info.raid_disks = mddev->raid_disks;
3685 info.md_minor = mddev->md_minor;
3686 info.not_persistent= !mddev->persistent;
3688 info.utime = mddev->utime;
3689 info.state = 0;
3690 if (mddev->in_sync)
3691 info.state = (1<<MD_SB_CLEAN);
3692 if (mddev->bitmap && mddev->bitmap_offset)
3693 info.state = (1<<MD_SB_BITMAP_PRESENT);
3694 info.active_disks = active;
3695 info.working_disks = working;
3696 info.failed_disks = failed;
3697 info.spare_disks = spare;
3699 info.layout = mddev->layout;
3700 info.chunk_size = mddev->chunk_size;
3702 if (copy_to_user(arg, &info, sizeof(info)))
3703 return -EFAULT;
3705 return 0;
3708 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3710 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3711 char *ptr, *buf = NULL;
3712 int err = -ENOMEM;
3714 md_allow_write(mddev);
3716 file = kmalloc(sizeof(*file), GFP_KERNEL);
3717 if (!file)
3718 goto out;
3720 /* bitmap disabled, zero the first byte and copy out */
3721 if (!mddev->bitmap || !mddev->bitmap->file) {
3722 file->pathname[0] = '\0';
3723 goto copy_out;
3726 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3727 if (!buf)
3728 goto out;
3730 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3731 if (!ptr)
3732 goto out;
3734 strcpy(file->pathname, ptr);
3736 copy_out:
3737 err = 0;
3738 if (copy_to_user(arg, file, sizeof(*file)))
3739 err = -EFAULT;
3740 out:
3741 kfree(buf);
3742 kfree(file);
3743 return err;
3746 static int get_disk_info(mddev_t * mddev, void __user * arg)
3748 mdu_disk_info_t info;
3749 unsigned int nr;
3750 mdk_rdev_t *rdev;
3752 if (copy_from_user(&info, arg, sizeof(info)))
3753 return -EFAULT;
3755 nr = info.number;
3757 rdev = find_rdev_nr(mddev, nr);
3758 if (rdev) {
3759 info.major = MAJOR(rdev->bdev->bd_dev);
3760 info.minor = MINOR(rdev->bdev->bd_dev);
3761 info.raid_disk = rdev->raid_disk;
3762 info.state = 0;
3763 if (test_bit(Faulty, &rdev->flags))
3764 info.state |= (1<<MD_DISK_FAULTY);
3765 else if (test_bit(In_sync, &rdev->flags)) {
3766 info.state |= (1<<MD_DISK_ACTIVE);
3767 info.state |= (1<<MD_DISK_SYNC);
3769 if (test_bit(WriteMostly, &rdev->flags))
3770 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3771 } else {
3772 info.major = info.minor = 0;
3773 info.raid_disk = -1;
3774 info.state = (1<<MD_DISK_REMOVED);
3777 if (copy_to_user(arg, &info, sizeof(info)))
3778 return -EFAULT;
3780 return 0;
3783 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3785 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3786 mdk_rdev_t *rdev;
3787 dev_t dev = MKDEV(info->major,info->minor);
3789 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3790 return -EOVERFLOW;
3792 if (!mddev->raid_disks) {
3793 int err;
3794 /* expecting a device which has a superblock */
3795 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3796 if (IS_ERR(rdev)) {
3797 printk(KERN_WARNING
3798 "md: md_import_device returned %ld\n",
3799 PTR_ERR(rdev));
3800 return PTR_ERR(rdev);
3802 if (!list_empty(&mddev->disks)) {
3803 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3804 mdk_rdev_t, same_set);
3805 int err = super_types[mddev->major_version]
3806 .load_super(rdev, rdev0, mddev->minor_version);
3807 if (err < 0) {
3808 printk(KERN_WARNING
3809 "md: %s has different UUID to %s\n",
3810 bdevname(rdev->bdev,b),
3811 bdevname(rdev0->bdev,b2));
3812 export_rdev(rdev);
3813 return -EINVAL;
3816 err = bind_rdev_to_array(rdev, mddev);
3817 if (err)
3818 export_rdev(rdev);
3819 return err;
3823 * add_new_disk can be used once the array is assembled
3824 * to add "hot spares". They must already have a superblock
3825 * written
3827 if (mddev->pers) {
3828 int err;
3829 if (!mddev->pers->hot_add_disk) {
3830 printk(KERN_WARNING
3831 "%s: personality does not support diskops!\n",
3832 mdname(mddev));
3833 return -EINVAL;
3835 if (mddev->persistent)
3836 rdev = md_import_device(dev, mddev->major_version,
3837 mddev->minor_version);
3838 else
3839 rdev = md_import_device(dev, -1, -1);
3840 if (IS_ERR(rdev)) {
3841 printk(KERN_WARNING
3842 "md: md_import_device returned %ld\n",
3843 PTR_ERR(rdev));
3844 return PTR_ERR(rdev);
3846 /* set save_raid_disk if appropriate */
3847 if (!mddev->persistent) {
3848 if (info->state & (1<<MD_DISK_SYNC) &&
3849 info->raid_disk < mddev->raid_disks)
3850 rdev->raid_disk = info->raid_disk;
3851 else
3852 rdev->raid_disk = -1;
3853 } else
3854 super_types[mddev->major_version].
3855 validate_super(mddev, rdev);
3856 rdev->saved_raid_disk = rdev->raid_disk;
3858 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3859 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3860 set_bit(WriteMostly, &rdev->flags);
3862 rdev->raid_disk = -1;
3863 err = bind_rdev_to_array(rdev, mddev);
3864 if (!err && !mddev->pers->hot_remove_disk) {
3865 /* If there is hot_add_disk but no hot_remove_disk
3866 * then added disks for geometry changes,
3867 * and should be added immediately.
3869 super_types[mddev->major_version].
3870 validate_super(mddev, rdev);
3871 err = mddev->pers->hot_add_disk(mddev, rdev);
3872 if (err)
3873 unbind_rdev_from_array(rdev);
3875 if (err)
3876 export_rdev(rdev);
3878 md_update_sb(mddev, 1);
3879 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3880 md_wakeup_thread(mddev->thread);
3881 return err;
3884 /* otherwise, add_new_disk is only allowed
3885 * for major_version==0 superblocks
3887 if (mddev->major_version != 0) {
3888 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3889 mdname(mddev));
3890 return -EINVAL;
3893 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3894 int err;
3895 rdev = md_import_device (dev, -1, 0);
3896 if (IS_ERR(rdev)) {
3897 printk(KERN_WARNING
3898 "md: error, md_import_device() returned %ld\n",
3899 PTR_ERR(rdev));
3900 return PTR_ERR(rdev);
3902 rdev->desc_nr = info->number;
3903 if (info->raid_disk < mddev->raid_disks)
3904 rdev->raid_disk = info->raid_disk;
3905 else
3906 rdev->raid_disk = -1;
3908 rdev->flags = 0;
3910 if (rdev->raid_disk < mddev->raid_disks)
3911 if (info->state & (1<<MD_DISK_SYNC))
3912 set_bit(In_sync, &rdev->flags);
3914 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3915 set_bit(WriteMostly, &rdev->flags);
3917 if (!mddev->persistent) {
3918 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3919 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3920 } else
3921 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3922 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3924 err = bind_rdev_to_array(rdev, mddev);
3925 if (err) {
3926 export_rdev(rdev);
3927 return err;
3931 return 0;
3934 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3936 char b[BDEVNAME_SIZE];
3937 mdk_rdev_t *rdev;
3939 if (!mddev->pers)
3940 return -ENODEV;
3942 rdev = find_rdev(mddev, dev);
3943 if (!rdev)
3944 return -ENXIO;
3946 if (rdev->raid_disk >= 0)
3947 goto busy;
3949 kick_rdev_from_array(rdev);
3950 md_update_sb(mddev, 1);
3951 md_new_event(mddev);
3953 return 0;
3954 busy:
3955 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3956 bdevname(rdev->bdev,b), mdname(mddev));
3957 return -EBUSY;
3960 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3962 char b[BDEVNAME_SIZE];
3963 int err;
3964 unsigned int size;
3965 mdk_rdev_t *rdev;
3967 if (!mddev->pers)
3968 return -ENODEV;
3970 if (mddev->major_version != 0) {
3971 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3972 " version-0 superblocks.\n",
3973 mdname(mddev));
3974 return -EINVAL;
3976 if (!mddev->pers->hot_add_disk) {
3977 printk(KERN_WARNING
3978 "%s: personality does not support diskops!\n",
3979 mdname(mddev));
3980 return -EINVAL;
3983 rdev = md_import_device (dev, -1, 0);
3984 if (IS_ERR(rdev)) {
3985 printk(KERN_WARNING
3986 "md: error, md_import_device() returned %ld\n",
3987 PTR_ERR(rdev));
3988 return -EINVAL;
3991 if (mddev->persistent)
3992 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3993 else
3994 rdev->sb_offset =
3995 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3997 size = calc_dev_size(rdev, mddev->chunk_size);
3998 rdev->size = size;
4000 if (test_bit(Faulty, &rdev->flags)) {
4001 printk(KERN_WARNING
4002 "md: can not hot-add faulty %s disk to %s!\n",
4003 bdevname(rdev->bdev,b), mdname(mddev));
4004 err = -EINVAL;
4005 goto abort_export;
4007 clear_bit(In_sync, &rdev->flags);
4008 rdev->desc_nr = -1;
4009 rdev->saved_raid_disk = -1;
4010 err = bind_rdev_to_array(rdev, mddev);
4011 if (err)
4012 goto abort_export;
4015 * The rest should better be atomic, we can have disk failures
4016 * noticed in interrupt contexts ...
4019 if (rdev->desc_nr == mddev->max_disks) {
4020 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4021 mdname(mddev));
4022 err = -EBUSY;
4023 goto abort_unbind_export;
4026 rdev->raid_disk = -1;
4028 md_update_sb(mddev, 1);
4031 * Kick recovery, maybe this spare has to be added to the
4032 * array immediately.
4034 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4035 md_wakeup_thread(mddev->thread);
4036 md_new_event(mddev);
4037 return 0;
4039 abort_unbind_export:
4040 unbind_rdev_from_array(rdev);
4042 abort_export:
4043 export_rdev(rdev);
4044 return err;
4047 static int set_bitmap_file(mddev_t *mddev, int fd)
4049 int err;
4051 if (mddev->pers) {
4052 if (!mddev->pers->quiesce)
4053 return -EBUSY;
4054 if (mddev->recovery || mddev->sync_thread)
4055 return -EBUSY;
4056 /* we should be able to change the bitmap.. */
4060 if (fd >= 0) {
4061 if (mddev->bitmap)
4062 return -EEXIST; /* cannot add when bitmap is present */
4063 mddev->bitmap_file = fget(fd);
4065 if (mddev->bitmap_file == NULL) {
4066 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4067 mdname(mddev));
4068 return -EBADF;
4071 err = deny_bitmap_write_access(mddev->bitmap_file);
4072 if (err) {
4073 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4074 mdname(mddev));
4075 fput(mddev->bitmap_file);
4076 mddev->bitmap_file = NULL;
4077 return err;
4079 mddev->bitmap_offset = 0; /* file overrides offset */
4080 } else if (mddev->bitmap == NULL)
4081 return -ENOENT; /* cannot remove what isn't there */
4082 err = 0;
4083 if (mddev->pers) {
4084 mddev->pers->quiesce(mddev, 1);
4085 if (fd >= 0)
4086 err = bitmap_create(mddev);
4087 if (fd < 0 || err) {
4088 bitmap_destroy(mddev);
4089 fd = -1; /* make sure to put the file */
4091 mddev->pers->quiesce(mddev, 0);
4093 if (fd < 0) {
4094 if (mddev->bitmap_file) {
4095 restore_bitmap_write_access(mddev->bitmap_file);
4096 fput(mddev->bitmap_file);
4098 mddev->bitmap_file = NULL;
4101 return err;
4105 * set_array_info is used two different ways
4106 * The original usage is when creating a new array.
4107 * In this usage, raid_disks is > 0 and it together with
4108 * level, size, not_persistent,layout,chunksize determine the
4109 * shape of the array.
4110 * This will always create an array with a type-0.90.0 superblock.
4111 * The newer usage is when assembling an array.
4112 * In this case raid_disks will be 0, and the major_version field is
4113 * use to determine which style super-blocks are to be found on the devices.
4114 * The minor and patch _version numbers are also kept incase the
4115 * super_block handler wishes to interpret them.
4117 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4120 if (info->raid_disks == 0) {
4121 /* just setting version number for superblock loading */
4122 if (info->major_version < 0 ||
4123 info->major_version >= ARRAY_SIZE(super_types) ||
4124 super_types[info->major_version].name == NULL) {
4125 /* maybe try to auto-load a module? */
4126 printk(KERN_INFO
4127 "md: superblock version %d not known\n",
4128 info->major_version);
4129 return -EINVAL;
4131 mddev->major_version = info->major_version;
4132 mddev->minor_version = info->minor_version;
4133 mddev->patch_version = info->patch_version;
4134 mddev->persistent = !info->not_persistent;
4135 return 0;
4137 mddev->major_version = MD_MAJOR_VERSION;
4138 mddev->minor_version = MD_MINOR_VERSION;
4139 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4140 mddev->ctime = get_seconds();
4142 mddev->level = info->level;
4143 mddev->clevel[0] = 0;
4144 mddev->size = info->size;
4145 mddev->raid_disks = info->raid_disks;
4146 /* don't set md_minor, it is determined by which /dev/md* was
4147 * openned
4149 if (info->state & (1<<MD_SB_CLEAN))
4150 mddev->recovery_cp = MaxSector;
4151 else
4152 mddev->recovery_cp = 0;
4153 mddev->persistent = ! info->not_persistent;
4155 mddev->layout = info->layout;
4156 mddev->chunk_size = info->chunk_size;
4158 mddev->max_disks = MD_SB_DISKS;
4160 mddev->flags = 0;
4161 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4163 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4164 mddev->bitmap_offset = 0;
4166 mddev->reshape_position = MaxSector;
4169 * Generate a 128 bit UUID
4171 get_random_bytes(mddev->uuid, 16);
4173 mddev->new_level = mddev->level;
4174 mddev->new_chunk = mddev->chunk_size;
4175 mddev->new_layout = mddev->layout;
4176 mddev->delta_disks = 0;
4178 return 0;
4181 static int update_size(mddev_t *mddev, unsigned long size)
4183 mdk_rdev_t * rdev;
4184 int rv;
4185 struct list_head *tmp;
4186 int fit = (size == 0);
4188 if (mddev->pers->resize == NULL)
4189 return -EINVAL;
4190 /* The "size" is the amount of each device that is used.
4191 * This can only make sense for arrays with redundancy.
4192 * linear and raid0 always use whatever space is available
4193 * We can only consider changing the size if no resync
4194 * or reconstruction is happening, and if the new size
4195 * is acceptable. It must fit before the sb_offset or,
4196 * if that is <data_offset, it must fit before the
4197 * size of each device.
4198 * If size is zero, we find the largest size that fits.
4200 if (mddev->sync_thread)
4201 return -EBUSY;
4202 ITERATE_RDEV(mddev,rdev,tmp) {
4203 sector_t avail;
4204 avail = rdev->size * 2;
4206 if (fit && (size == 0 || size > avail/2))
4207 size = avail/2;
4208 if (avail < ((sector_t)size << 1))
4209 return -ENOSPC;
4211 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4212 if (!rv) {
4213 struct block_device *bdev;
4215 bdev = bdget_disk(mddev->gendisk, 0);
4216 if (bdev) {
4217 mutex_lock(&bdev->bd_inode->i_mutex);
4218 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4219 mutex_unlock(&bdev->bd_inode->i_mutex);
4220 bdput(bdev);
4223 return rv;
4226 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4228 int rv;
4229 /* change the number of raid disks */
4230 if (mddev->pers->check_reshape == NULL)
4231 return -EINVAL;
4232 if (raid_disks <= 0 ||
4233 raid_disks >= mddev->max_disks)
4234 return -EINVAL;
4235 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4236 return -EBUSY;
4237 mddev->delta_disks = raid_disks - mddev->raid_disks;
4239 rv = mddev->pers->check_reshape(mddev);
4240 return rv;
4245 * update_array_info is used to change the configuration of an
4246 * on-line array.
4247 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4248 * fields in the info are checked against the array.
4249 * Any differences that cannot be handled will cause an error.
4250 * Normally, only one change can be managed at a time.
4252 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4254 int rv = 0;
4255 int cnt = 0;
4256 int state = 0;
4258 /* calculate expected state,ignoring low bits */
4259 if (mddev->bitmap && mddev->bitmap_offset)
4260 state |= (1 << MD_SB_BITMAP_PRESENT);
4262 if (mddev->major_version != info->major_version ||
4263 mddev->minor_version != info->minor_version ||
4264 /* mddev->patch_version != info->patch_version || */
4265 mddev->ctime != info->ctime ||
4266 mddev->level != info->level ||
4267 /* mddev->layout != info->layout || */
4268 !mddev->persistent != info->not_persistent||
4269 mddev->chunk_size != info->chunk_size ||
4270 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4271 ((state^info->state) & 0xfffffe00)
4273 return -EINVAL;
4274 /* Check there is only one change */
4275 if (info->size >= 0 && mddev->size != info->size) cnt++;
4276 if (mddev->raid_disks != info->raid_disks) cnt++;
4277 if (mddev->layout != info->layout) cnt++;
4278 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4279 if (cnt == 0) return 0;
4280 if (cnt > 1) return -EINVAL;
4282 if (mddev->layout != info->layout) {
4283 /* Change layout
4284 * we don't need to do anything at the md level, the
4285 * personality will take care of it all.
4287 if (mddev->pers->reconfig == NULL)
4288 return -EINVAL;
4289 else
4290 return mddev->pers->reconfig(mddev, info->layout, -1);
4292 if (info->size >= 0 && mddev->size != info->size)
4293 rv = update_size(mddev, info->size);
4295 if (mddev->raid_disks != info->raid_disks)
4296 rv = update_raid_disks(mddev, info->raid_disks);
4298 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4299 if (mddev->pers->quiesce == NULL)
4300 return -EINVAL;
4301 if (mddev->recovery || mddev->sync_thread)
4302 return -EBUSY;
4303 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4304 /* add the bitmap */
4305 if (mddev->bitmap)
4306 return -EEXIST;
4307 if (mddev->default_bitmap_offset == 0)
4308 return -EINVAL;
4309 mddev->bitmap_offset = mddev->default_bitmap_offset;
4310 mddev->pers->quiesce(mddev, 1);
4311 rv = bitmap_create(mddev);
4312 if (rv)
4313 bitmap_destroy(mddev);
4314 mddev->pers->quiesce(mddev, 0);
4315 } else {
4316 /* remove the bitmap */
4317 if (!mddev->bitmap)
4318 return -ENOENT;
4319 if (mddev->bitmap->file)
4320 return -EINVAL;
4321 mddev->pers->quiesce(mddev, 1);
4322 bitmap_destroy(mddev);
4323 mddev->pers->quiesce(mddev, 0);
4324 mddev->bitmap_offset = 0;
4327 md_update_sb(mddev, 1);
4328 return rv;
4331 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4333 mdk_rdev_t *rdev;
4335 if (mddev->pers == NULL)
4336 return -ENODEV;
4338 rdev = find_rdev(mddev, dev);
4339 if (!rdev)
4340 return -ENODEV;
4342 md_error(mddev, rdev);
4343 return 0;
4346 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4348 mddev_t *mddev = bdev->bd_disk->private_data;
4350 geo->heads = 2;
4351 geo->sectors = 4;
4352 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4353 return 0;
4356 static int md_ioctl(struct inode *inode, struct file *file,
4357 unsigned int cmd, unsigned long arg)
4359 int err = 0;
4360 void __user *argp = (void __user *)arg;
4361 mddev_t *mddev = NULL;
4363 if (!capable(CAP_SYS_ADMIN))
4364 return -EACCES;
4367 * Commands dealing with the RAID driver but not any
4368 * particular array:
4370 switch (cmd)
4372 case RAID_VERSION:
4373 err = get_version(argp);
4374 goto done;
4376 case PRINT_RAID_DEBUG:
4377 err = 0;
4378 md_print_devices();
4379 goto done;
4381 #ifndef MODULE
4382 case RAID_AUTORUN:
4383 err = 0;
4384 autostart_arrays(arg);
4385 goto done;
4386 #endif
4387 default:;
4391 * Commands creating/starting a new array:
4394 mddev = inode->i_bdev->bd_disk->private_data;
4396 if (!mddev) {
4397 BUG();
4398 goto abort;
4401 err = mddev_lock(mddev);
4402 if (err) {
4403 printk(KERN_INFO
4404 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4405 err, cmd);
4406 goto abort;
4409 switch (cmd)
4411 case SET_ARRAY_INFO:
4413 mdu_array_info_t info;
4414 if (!arg)
4415 memset(&info, 0, sizeof(info));
4416 else if (copy_from_user(&info, argp, sizeof(info))) {
4417 err = -EFAULT;
4418 goto abort_unlock;
4420 if (mddev->pers) {
4421 err = update_array_info(mddev, &info);
4422 if (err) {
4423 printk(KERN_WARNING "md: couldn't update"
4424 " array info. %d\n", err);
4425 goto abort_unlock;
4427 goto done_unlock;
4429 if (!list_empty(&mddev->disks)) {
4430 printk(KERN_WARNING
4431 "md: array %s already has disks!\n",
4432 mdname(mddev));
4433 err = -EBUSY;
4434 goto abort_unlock;
4436 if (mddev->raid_disks) {
4437 printk(KERN_WARNING
4438 "md: array %s already initialised!\n",
4439 mdname(mddev));
4440 err = -EBUSY;
4441 goto abort_unlock;
4443 err = set_array_info(mddev, &info);
4444 if (err) {
4445 printk(KERN_WARNING "md: couldn't set"
4446 " array info. %d\n", err);
4447 goto abort_unlock;
4450 goto done_unlock;
4452 default:;
4456 * Commands querying/configuring an existing array:
4458 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4459 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4460 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4461 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4462 && cmd != GET_BITMAP_FILE) {
4463 err = -ENODEV;
4464 goto abort_unlock;
4468 * Commands even a read-only array can execute:
4470 switch (cmd)
4472 case GET_ARRAY_INFO:
4473 err = get_array_info(mddev, argp);
4474 goto done_unlock;
4476 case GET_BITMAP_FILE:
4477 err = get_bitmap_file(mddev, argp);
4478 goto done_unlock;
4480 case GET_DISK_INFO:
4481 err = get_disk_info(mddev, argp);
4482 goto done_unlock;
4484 case RESTART_ARRAY_RW:
4485 err = restart_array(mddev);
4486 goto done_unlock;
4488 case STOP_ARRAY:
4489 err = do_md_stop (mddev, 0);
4490 goto done_unlock;
4492 case STOP_ARRAY_RO:
4493 err = do_md_stop (mddev, 1);
4494 goto done_unlock;
4497 * We have a problem here : there is no easy way to give a CHS
4498 * virtual geometry. We currently pretend that we have a 2 heads
4499 * 4 sectors (with a BIG number of cylinders...). This drives
4500 * dosfs just mad... ;-)
4505 * The remaining ioctls are changing the state of the
4506 * superblock, so we do not allow them on read-only arrays.
4507 * However non-MD ioctls (e.g. get-size) will still come through
4508 * here and hit the 'default' below, so only disallow
4509 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4511 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4512 mddev->ro && mddev->pers) {
4513 if (mddev->ro == 2) {
4514 mddev->ro = 0;
4515 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4516 md_wakeup_thread(mddev->thread);
4518 } else {
4519 err = -EROFS;
4520 goto abort_unlock;
4524 switch (cmd)
4526 case ADD_NEW_DISK:
4528 mdu_disk_info_t info;
4529 if (copy_from_user(&info, argp, sizeof(info)))
4530 err = -EFAULT;
4531 else
4532 err = add_new_disk(mddev, &info);
4533 goto done_unlock;
4536 case HOT_REMOVE_DISK:
4537 err = hot_remove_disk(mddev, new_decode_dev(arg));
4538 goto done_unlock;
4540 case HOT_ADD_DISK:
4541 err = hot_add_disk(mddev, new_decode_dev(arg));
4542 goto done_unlock;
4544 case SET_DISK_FAULTY:
4545 err = set_disk_faulty(mddev, new_decode_dev(arg));
4546 goto done_unlock;
4548 case RUN_ARRAY:
4549 err = do_md_run (mddev);
4550 goto done_unlock;
4552 case SET_BITMAP_FILE:
4553 err = set_bitmap_file(mddev, (int)arg);
4554 goto done_unlock;
4556 default:
4557 err = -EINVAL;
4558 goto abort_unlock;
4561 done_unlock:
4562 abort_unlock:
4563 mddev_unlock(mddev);
4565 return err;
4566 done:
4567 if (err)
4568 MD_BUG();
4569 abort:
4570 return err;
4573 static int md_open(struct inode *inode, struct file *file)
4576 * Succeed if we can lock the mddev, which confirms that
4577 * it isn't being stopped right now.
4579 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4580 int err;
4582 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4583 goto out;
4585 err = 0;
4586 mddev_get(mddev);
4587 mddev_unlock(mddev);
4589 check_disk_change(inode->i_bdev);
4590 out:
4591 return err;
4594 static int md_release(struct inode *inode, struct file * file)
4596 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4598 BUG_ON(!mddev);
4599 mddev_put(mddev);
4601 return 0;
4604 static int md_media_changed(struct gendisk *disk)
4606 mddev_t *mddev = disk->private_data;
4608 return mddev->changed;
4611 static int md_revalidate(struct gendisk *disk)
4613 mddev_t *mddev = disk->private_data;
4615 mddev->changed = 0;
4616 return 0;
4618 static struct block_device_operations md_fops =
4620 .owner = THIS_MODULE,
4621 .open = md_open,
4622 .release = md_release,
4623 .ioctl = md_ioctl,
4624 .getgeo = md_getgeo,
4625 .media_changed = md_media_changed,
4626 .revalidate_disk= md_revalidate,
4629 static int md_thread(void * arg)
4631 mdk_thread_t *thread = arg;
4634 * md_thread is a 'system-thread', it's priority should be very
4635 * high. We avoid resource deadlocks individually in each
4636 * raid personality. (RAID5 does preallocation) We also use RR and
4637 * the very same RT priority as kswapd, thus we will never get
4638 * into a priority inversion deadlock.
4640 * we definitely have to have equal or higher priority than
4641 * bdflush, otherwise bdflush will deadlock if there are too
4642 * many dirty RAID5 blocks.
4645 current->flags |= PF_NOFREEZE;
4646 allow_signal(SIGKILL);
4647 while (!kthread_should_stop()) {
4649 /* We need to wait INTERRUPTIBLE so that
4650 * we don't add to the load-average.
4651 * That means we need to be sure no signals are
4652 * pending
4654 if (signal_pending(current))
4655 flush_signals(current);
4657 wait_event_interruptible_timeout
4658 (thread->wqueue,
4659 test_bit(THREAD_WAKEUP, &thread->flags)
4660 || kthread_should_stop(),
4661 thread->timeout);
4663 clear_bit(THREAD_WAKEUP, &thread->flags);
4665 thread->run(thread->mddev);
4668 return 0;
4671 void md_wakeup_thread(mdk_thread_t *thread)
4673 if (thread) {
4674 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4675 set_bit(THREAD_WAKEUP, &thread->flags);
4676 wake_up(&thread->wqueue);
4680 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4681 const char *name)
4683 mdk_thread_t *thread;
4685 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4686 if (!thread)
4687 return NULL;
4689 init_waitqueue_head(&thread->wqueue);
4691 thread->run = run;
4692 thread->mddev = mddev;
4693 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4694 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4695 if (IS_ERR(thread->tsk)) {
4696 kfree(thread);
4697 return NULL;
4699 return thread;
4702 void md_unregister_thread(mdk_thread_t *thread)
4704 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4706 kthread_stop(thread->tsk);
4707 kfree(thread);
4710 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4712 if (!mddev) {
4713 MD_BUG();
4714 return;
4717 if (!rdev || test_bit(Faulty, &rdev->flags))
4718 return;
4720 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4721 mdname(mddev),
4722 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4723 __builtin_return_address(0),__builtin_return_address(1),
4724 __builtin_return_address(2),__builtin_return_address(3));
4726 if (!mddev->pers)
4727 return;
4728 if (!mddev->pers->error_handler)
4729 return;
4730 mddev->pers->error_handler(mddev,rdev);
4731 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4732 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4733 md_wakeup_thread(mddev->thread);
4734 md_new_event_inintr(mddev);
4737 /* seq_file implementation /proc/mdstat */
4739 static void status_unused(struct seq_file *seq)
4741 int i = 0;
4742 mdk_rdev_t *rdev;
4743 struct list_head *tmp;
4745 seq_printf(seq, "unused devices: ");
4747 ITERATE_RDEV_PENDING(rdev,tmp) {
4748 char b[BDEVNAME_SIZE];
4749 i++;
4750 seq_printf(seq, "%s ",
4751 bdevname(rdev->bdev,b));
4753 if (!i)
4754 seq_printf(seq, "<none>");
4756 seq_printf(seq, "\n");
4760 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4762 sector_t max_blocks, resync, res;
4763 unsigned long dt, db, rt;
4764 int scale;
4765 unsigned int per_milli;
4767 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4769 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4770 max_blocks = mddev->resync_max_sectors >> 1;
4771 else
4772 max_blocks = mddev->size;
4775 * Should not happen.
4777 if (!max_blocks) {
4778 MD_BUG();
4779 return;
4781 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4782 * in a sector_t, and (max_blocks>>scale) will fit in a
4783 * u32, as those are the requirements for sector_div.
4784 * Thus 'scale' must be at least 10
4786 scale = 10;
4787 if (sizeof(sector_t) > sizeof(unsigned long)) {
4788 while ( max_blocks/2 > (1ULL<<(scale+32)))
4789 scale++;
4791 res = (resync>>scale)*1000;
4792 sector_div(res, (u32)((max_blocks>>scale)+1));
4794 per_milli = res;
4796 int i, x = per_milli/50, y = 20-x;
4797 seq_printf(seq, "[");
4798 for (i = 0; i < x; i++)
4799 seq_printf(seq, "=");
4800 seq_printf(seq, ">");
4801 for (i = 0; i < y; i++)
4802 seq_printf(seq, ".");
4803 seq_printf(seq, "] ");
4805 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4806 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4807 "reshape" :
4808 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4809 "check" :
4810 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4811 "resync" : "recovery"))),
4812 per_milli/10, per_milli % 10,
4813 (unsigned long long) resync,
4814 (unsigned long long) max_blocks);
4817 * We do not want to overflow, so the order of operands and
4818 * the * 100 / 100 trick are important. We do a +1 to be
4819 * safe against division by zero. We only estimate anyway.
4821 * dt: time from mark until now
4822 * db: blocks written from mark until now
4823 * rt: remaining time
4825 dt = ((jiffies - mddev->resync_mark) / HZ);
4826 if (!dt) dt++;
4827 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4828 - mddev->resync_mark_cnt;
4829 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4831 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4833 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4836 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4838 struct list_head *tmp;
4839 loff_t l = *pos;
4840 mddev_t *mddev;
4842 if (l >= 0x10000)
4843 return NULL;
4844 if (!l--)
4845 /* header */
4846 return (void*)1;
4848 spin_lock(&all_mddevs_lock);
4849 list_for_each(tmp,&all_mddevs)
4850 if (!l--) {
4851 mddev = list_entry(tmp, mddev_t, all_mddevs);
4852 mddev_get(mddev);
4853 spin_unlock(&all_mddevs_lock);
4854 return mddev;
4856 spin_unlock(&all_mddevs_lock);
4857 if (!l--)
4858 return (void*)2;/* tail */
4859 return NULL;
4862 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4864 struct list_head *tmp;
4865 mddev_t *next_mddev, *mddev = v;
4867 ++*pos;
4868 if (v == (void*)2)
4869 return NULL;
4871 spin_lock(&all_mddevs_lock);
4872 if (v == (void*)1)
4873 tmp = all_mddevs.next;
4874 else
4875 tmp = mddev->all_mddevs.next;
4876 if (tmp != &all_mddevs)
4877 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4878 else {
4879 next_mddev = (void*)2;
4880 *pos = 0x10000;
4882 spin_unlock(&all_mddevs_lock);
4884 if (v != (void*)1)
4885 mddev_put(mddev);
4886 return next_mddev;
4890 static void md_seq_stop(struct seq_file *seq, void *v)
4892 mddev_t *mddev = v;
4894 if (mddev && v != (void*)1 && v != (void*)2)
4895 mddev_put(mddev);
4898 struct mdstat_info {
4899 int event;
4902 static int md_seq_show(struct seq_file *seq, void *v)
4904 mddev_t *mddev = v;
4905 sector_t size;
4906 struct list_head *tmp2;
4907 mdk_rdev_t *rdev;
4908 struct mdstat_info *mi = seq->private;
4909 struct bitmap *bitmap;
4911 if (v == (void*)1) {
4912 struct mdk_personality *pers;
4913 seq_printf(seq, "Personalities : ");
4914 spin_lock(&pers_lock);
4915 list_for_each_entry(pers, &pers_list, list)
4916 seq_printf(seq, "[%s] ", pers->name);
4918 spin_unlock(&pers_lock);
4919 seq_printf(seq, "\n");
4920 mi->event = atomic_read(&md_event_count);
4921 return 0;
4923 if (v == (void*)2) {
4924 status_unused(seq);
4925 return 0;
4928 if (mddev_lock(mddev) < 0)
4929 return -EINTR;
4931 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4932 seq_printf(seq, "%s : %sactive", mdname(mddev),
4933 mddev->pers ? "" : "in");
4934 if (mddev->pers) {
4935 if (mddev->ro==1)
4936 seq_printf(seq, " (read-only)");
4937 if (mddev->ro==2)
4938 seq_printf(seq, "(auto-read-only)");
4939 seq_printf(seq, " %s", mddev->pers->name);
4942 size = 0;
4943 ITERATE_RDEV(mddev,rdev,tmp2) {
4944 char b[BDEVNAME_SIZE];
4945 seq_printf(seq, " %s[%d]",
4946 bdevname(rdev->bdev,b), rdev->desc_nr);
4947 if (test_bit(WriteMostly, &rdev->flags))
4948 seq_printf(seq, "(W)");
4949 if (test_bit(Faulty, &rdev->flags)) {
4950 seq_printf(seq, "(F)");
4951 continue;
4952 } else if (rdev->raid_disk < 0)
4953 seq_printf(seq, "(S)"); /* spare */
4954 size += rdev->size;
4957 if (!list_empty(&mddev->disks)) {
4958 if (mddev->pers)
4959 seq_printf(seq, "\n %llu blocks",
4960 (unsigned long long)mddev->array_size);
4961 else
4962 seq_printf(seq, "\n %llu blocks",
4963 (unsigned long long)size);
4965 if (mddev->persistent) {
4966 if (mddev->major_version != 0 ||
4967 mddev->minor_version != 90) {
4968 seq_printf(seq," super %d.%d",
4969 mddev->major_version,
4970 mddev->minor_version);
4972 } else
4973 seq_printf(seq, " super non-persistent");
4975 if (mddev->pers) {
4976 mddev->pers->status (seq, mddev);
4977 seq_printf(seq, "\n ");
4978 if (mddev->pers->sync_request) {
4979 if (mddev->curr_resync > 2) {
4980 status_resync (seq, mddev);
4981 seq_printf(seq, "\n ");
4982 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4983 seq_printf(seq, "\tresync=DELAYED\n ");
4984 else if (mddev->recovery_cp < MaxSector)
4985 seq_printf(seq, "\tresync=PENDING\n ");
4987 } else
4988 seq_printf(seq, "\n ");
4990 if ((bitmap = mddev->bitmap)) {
4991 unsigned long chunk_kb;
4992 unsigned long flags;
4993 spin_lock_irqsave(&bitmap->lock, flags);
4994 chunk_kb = bitmap->chunksize >> 10;
4995 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4996 "%lu%s chunk",
4997 bitmap->pages - bitmap->missing_pages,
4998 bitmap->pages,
4999 (bitmap->pages - bitmap->missing_pages)
5000 << (PAGE_SHIFT - 10),
5001 chunk_kb ? chunk_kb : bitmap->chunksize,
5002 chunk_kb ? "KB" : "B");
5003 if (bitmap->file) {
5004 seq_printf(seq, ", file: ");
5005 seq_path(seq, bitmap->file->f_path.mnt,
5006 bitmap->file->f_path.dentry," \t\n");
5009 seq_printf(seq, "\n");
5010 spin_unlock_irqrestore(&bitmap->lock, flags);
5013 seq_printf(seq, "\n");
5015 mddev_unlock(mddev);
5017 return 0;
5020 static struct seq_operations md_seq_ops = {
5021 .start = md_seq_start,
5022 .next = md_seq_next,
5023 .stop = md_seq_stop,
5024 .show = md_seq_show,
5027 static int md_seq_open(struct inode *inode, struct file *file)
5029 int error;
5030 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5031 if (mi == NULL)
5032 return -ENOMEM;
5034 error = seq_open(file, &md_seq_ops);
5035 if (error)
5036 kfree(mi);
5037 else {
5038 struct seq_file *p = file->private_data;
5039 p->private = mi;
5040 mi->event = atomic_read(&md_event_count);
5042 return error;
5045 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5047 struct seq_file *m = filp->private_data;
5048 struct mdstat_info *mi = m->private;
5049 int mask;
5051 poll_wait(filp, &md_event_waiters, wait);
5053 /* always allow read */
5054 mask = POLLIN | POLLRDNORM;
5056 if (mi->event != atomic_read(&md_event_count))
5057 mask |= POLLERR | POLLPRI;
5058 return mask;
5061 static const struct file_operations md_seq_fops = {
5062 .owner = THIS_MODULE,
5063 .open = md_seq_open,
5064 .read = seq_read,
5065 .llseek = seq_lseek,
5066 .release = seq_release_private,
5067 .poll = mdstat_poll,
5070 int register_md_personality(struct mdk_personality *p)
5072 spin_lock(&pers_lock);
5073 list_add_tail(&p->list, &pers_list);
5074 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5075 spin_unlock(&pers_lock);
5076 return 0;
5079 int unregister_md_personality(struct mdk_personality *p)
5081 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5082 spin_lock(&pers_lock);
5083 list_del_init(&p->list);
5084 spin_unlock(&pers_lock);
5085 return 0;
5088 static int is_mddev_idle(mddev_t *mddev)
5090 mdk_rdev_t * rdev;
5091 struct list_head *tmp;
5092 int idle;
5093 unsigned long curr_events;
5095 idle = 1;
5096 ITERATE_RDEV(mddev,rdev,tmp) {
5097 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5098 curr_events = disk_stat_read(disk, sectors[0]) +
5099 disk_stat_read(disk, sectors[1]) -
5100 atomic_read(&disk->sync_io);
5101 /* The difference between curr_events and last_events
5102 * will be affected by any new non-sync IO (making
5103 * curr_events bigger) and any difference in the amount of
5104 * in-flight syncio (making current_events bigger or smaller)
5105 * The amount in-flight is currently limited to
5106 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
5107 * which is at most 4096 sectors.
5108 * These numbers are fairly fragile and should be made
5109 * more robust, probably by enforcing the
5110 * 'window size' that md_do_sync sort-of uses.
5112 * Note: the following is an unsigned comparison.
5114 if ((long)curr_events - (long)rdev->last_events > 4096) {
5115 rdev->last_events = curr_events;
5116 idle = 0;
5119 return idle;
5122 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5124 /* another "blocks" (512byte) blocks have been synced */
5125 atomic_sub(blocks, &mddev->recovery_active);
5126 wake_up(&mddev->recovery_wait);
5127 if (!ok) {
5128 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5129 md_wakeup_thread(mddev->thread);
5130 // stop recovery, signal do_sync ....
5135 /* md_write_start(mddev, bi)
5136 * If we need to update some array metadata (e.g. 'active' flag
5137 * in superblock) before writing, schedule a superblock update
5138 * and wait for it to complete.
5140 void md_write_start(mddev_t *mddev, struct bio *bi)
5142 if (bio_data_dir(bi) != WRITE)
5143 return;
5145 BUG_ON(mddev->ro == 1);
5146 if (mddev->ro == 2) {
5147 /* need to switch to read/write */
5148 mddev->ro = 0;
5149 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5150 md_wakeup_thread(mddev->thread);
5152 atomic_inc(&mddev->writes_pending);
5153 if (mddev->in_sync) {
5154 spin_lock_irq(&mddev->write_lock);
5155 if (mddev->in_sync) {
5156 mddev->in_sync = 0;
5157 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5158 md_wakeup_thread(mddev->thread);
5160 spin_unlock_irq(&mddev->write_lock);
5162 wait_event(mddev->sb_wait, mddev->flags==0);
5165 void md_write_end(mddev_t *mddev)
5167 if (atomic_dec_and_test(&mddev->writes_pending)) {
5168 if (mddev->safemode == 2)
5169 md_wakeup_thread(mddev->thread);
5170 else if (mddev->safemode_delay)
5171 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5175 /* md_allow_write(mddev)
5176 * Calling this ensures that the array is marked 'active' so that writes
5177 * may proceed without blocking. It is important to call this before
5178 * attempting a GFP_KERNEL allocation while holding the mddev lock.
5179 * Must be called with mddev_lock held.
5181 void md_allow_write(mddev_t *mddev)
5183 if (!mddev->pers)
5184 return;
5185 if (mddev->ro)
5186 return;
5188 spin_lock_irq(&mddev->write_lock);
5189 if (mddev->in_sync) {
5190 mddev->in_sync = 0;
5191 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5192 if (mddev->safemode_delay &&
5193 mddev->safemode == 0)
5194 mddev->safemode = 1;
5195 spin_unlock_irq(&mddev->write_lock);
5196 md_update_sb(mddev, 0);
5197 } else
5198 spin_unlock_irq(&mddev->write_lock);
5200 EXPORT_SYMBOL_GPL(md_allow_write);
5202 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5204 #define SYNC_MARKS 10
5205 #define SYNC_MARK_STEP (3*HZ)
5206 void md_do_sync(mddev_t *mddev)
5208 mddev_t *mddev2;
5209 unsigned int currspeed = 0,
5210 window;
5211 sector_t max_sectors,j, io_sectors;
5212 unsigned long mark[SYNC_MARKS];
5213 sector_t mark_cnt[SYNC_MARKS];
5214 int last_mark,m;
5215 struct list_head *tmp;
5216 sector_t last_check;
5217 int skipped = 0;
5218 struct list_head *rtmp;
5219 mdk_rdev_t *rdev;
5220 char *desc;
5222 /* just incase thread restarts... */
5223 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5224 return;
5225 if (mddev->ro) /* never try to sync a read-only array */
5226 return;
5228 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5229 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5230 desc = "data-check";
5231 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5232 desc = "requested-resync";
5233 else
5234 desc = "resync";
5235 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5236 desc = "reshape";
5237 else
5238 desc = "recovery";
5240 /* we overload curr_resync somewhat here.
5241 * 0 == not engaged in resync at all
5242 * 2 == checking that there is no conflict with another sync
5243 * 1 == like 2, but have yielded to allow conflicting resync to
5244 * commense
5245 * other == active in resync - this many blocks
5247 * Before starting a resync we must have set curr_resync to
5248 * 2, and then checked that every "conflicting" array has curr_resync
5249 * less than ours. When we find one that is the same or higher
5250 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5251 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5252 * This will mean we have to start checking from the beginning again.
5256 do {
5257 mddev->curr_resync = 2;
5259 try_again:
5260 if (kthread_should_stop()) {
5261 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5262 goto skip;
5264 ITERATE_MDDEV(mddev2,tmp) {
5265 if (mddev2 == mddev)
5266 continue;
5267 if (mddev2->curr_resync &&
5268 match_mddev_units(mddev,mddev2)) {
5269 DEFINE_WAIT(wq);
5270 if (mddev < mddev2 && mddev->curr_resync == 2) {
5271 /* arbitrarily yield */
5272 mddev->curr_resync = 1;
5273 wake_up(&resync_wait);
5275 if (mddev > mddev2 && mddev->curr_resync == 1)
5276 /* no need to wait here, we can wait the next
5277 * time 'round when curr_resync == 2
5279 continue;
5280 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5281 if (!kthread_should_stop() &&
5282 mddev2->curr_resync >= mddev->curr_resync) {
5283 printk(KERN_INFO "md: delaying %s of %s"
5284 " until %s has finished (they"
5285 " share one or more physical units)\n",
5286 desc, mdname(mddev), mdname(mddev2));
5287 mddev_put(mddev2);
5288 schedule();
5289 finish_wait(&resync_wait, &wq);
5290 goto try_again;
5292 finish_wait(&resync_wait, &wq);
5295 } while (mddev->curr_resync < 2);
5297 j = 0;
5298 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5299 /* resync follows the size requested by the personality,
5300 * which defaults to physical size, but can be virtual size
5302 max_sectors = mddev->resync_max_sectors;
5303 mddev->resync_mismatches = 0;
5304 /* we don't use the checkpoint if there's a bitmap */
5305 if (!mddev->bitmap &&
5306 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5307 j = mddev->recovery_cp;
5308 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5309 max_sectors = mddev->size << 1;
5310 else {
5311 /* recovery follows the physical size of devices */
5312 max_sectors = mddev->size << 1;
5313 j = MaxSector;
5314 ITERATE_RDEV(mddev,rdev,rtmp)
5315 if (rdev->raid_disk >= 0 &&
5316 !test_bit(Faulty, &rdev->flags) &&
5317 !test_bit(In_sync, &rdev->flags) &&
5318 rdev->recovery_offset < j)
5319 j = rdev->recovery_offset;
5322 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5323 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5324 " %d KB/sec/disk.\n", speed_min(mddev));
5325 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5326 "(but not more than %d KB/sec) for %s.\n",
5327 speed_max(mddev), desc);
5329 is_mddev_idle(mddev); /* this also initializes IO event counters */
5331 io_sectors = 0;
5332 for (m = 0; m < SYNC_MARKS; m++) {
5333 mark[m] = jiffies;
5334 mark_cnt[m] = io_sectors;
5336 last_mark = 0;
5337 mddev->resync_mark = mark[last_mark];
5338 mddev->resync_mark_cnt = mark_cnt[last_mark];
5341 * Tune reconstruction:
5343 window = 32*(PAGE_SIZE/512);
5344 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5345 window/2,(unsigned long long) max_sectors/2);
5347 atomic_set(&mddev->recovery_active, 0);
5348 init_waitqueue_head(&mddev->recovery_wait);
5349 last_check = 0;
5351 if (j>2) {
5352 printk(KERN_INFO
5353 "md: resuming %s of %s from checkpoint.\n",
5354 desc, mdname(mddev));
5355 mddev->curr_resync = j;
5358 while (j < max_sectors) {
5359 sector_t sectors;
5361 skipped = 0;
5362 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5363 currspeed < speed_min(mddev));
5364 if (sectors == 0) {
5365 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5366 goto out;
5369 if (!skipped) { /* actual IO requested */
5370 io_sectors += sectors;
5371 atomic_add(sectors, &mddev->recovery_active);
5374 j += sectors;
5375 if (j>1) mddev->curr_resync = j;
5376 mddev->curr_mark_cnt = io_sectors;
5377 if (last_check == 0)
5378 /* this is the earliers that rebuilt will be
5379 * visible in /proc/mdstat
5381 md_new_event(mddev);
5383 if (last_check + window > io_sectors || j == max_sectors)
5384 continue;
5386 last_check = io_sectors;
5388 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5389 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5390 break;
5392 repeat:
5393 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5394 /* step marks */
5395 int next = (last_mark+1) % SYNC_MARKS;
5397 mddev->resync_mark = mark[next];
5398 mddev->resync_mark_cnt = mark_cnt[next];
5399 mark[next] = jiffies;
5400 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5401 last_mark = next;
5405 if (kthread_should_stop()) {
5407 * got a signal, exit.
5409 printk(KERN_INFO
5410 "md: md_do_sync() got signal ... exiting\n");
5411 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5412 goto out;
5416 * this loop exits only if either when we are slower than
5417 * the 'hard' speed limit, or the system was IO-idle for
5418 * a jiffy.
5419 * the system might be non-idle CPU-wise, but we only care
5420 * about not overloading the IO subsystem. (things like an
5421 * e2fsck being done on the RAID array should execute fast)
5423 mddev->queue->unplug_fn(mddev->queue);
5424 cond_resched();
5426 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5427 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5429 if (currspeed > speed_min(mddev)) {
5430 if ((currspeed > speed_max(mddev)) ||
5431 !is_mddev_idle(mddev)) {
5432 msleep(500);
5433 goto repeat;
5437 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5439 * this also signals 'finished resyncing' to md_stop
5441 out:
5442 mddev->queue->unplug_fn(mddev->queue);
5444 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5446 /* tell personality that we are finished */
5447 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5449 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5450 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5451 mddev->curr_resync > 2) {
5452 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5453 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5454 if (mddev->curr_resync >= mddev->recovery_cp) {
5455 printk(KERN_INFO
5456 "md: checkpointing %s of %s.\n",
5457 desc, mdname(mddev));
5458 mddev->recovery_cp = mddev->curr_resync;
5460 } else
5461 mddev->recovery_cp = MaxSector;
5462 } else {
5463 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5464 mddev->curr_resync = MaxSector;
5465 ITERATE_RDEV(mddev,rdev,rtmp)
5466 if (rdev->raid_disk >= 0 &&
5467 !test_bit(Faulty, &rdev->flags) &&
5468 !test_bit(In_sync, &rdev->flags) &&
5469 rdev->recovery_offset < mddev->curr_resync)
5470 rdev->recovery_offset = mddev->curr_resync;
5473 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5475 skip:
5476 mddev->curr_resync = 0;
5477 wake_up(&resync_wait);
5478 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5479 md_wakeup_thread(mddev->thread);
5481 EXPORT_SYMBOL_GPL(md_do_sync);
5484 static int remove_and_add_spares(mddev_t *mddev)
5486 mdk_rdev_t *rdev;
5487 struct list_head *rtmp;
5488 int spares = 0;
5490 ITERATE_RDEV(mddev,rdev,rtmp)
5491 if (rdev->raid_disk >= 0 &&
5492 (test_bit(Faulty, &rdev->flags) ||
5493 ! test_bit(In_sync, &rdev->flags)) &&
5494 atomic_read(&rdev->nr_pending)==0) {
5495 if (mddev->pers->hot_remove_disk(
5496 mddev, rdev->raid_disk)==0) {
5497 char nm[20];
5498 sprintf(nm,"rd%d", rdev->raid_disk);
5499 sysfs_remove_link(&mddev->kobj, nm);
5500 rdev->raid_disk = -1;
5504 if (mddev->degraded) {
5505 ITERATE_RDEV(mddev,rdev,rtmp)
5506 if (rdev->raid_disk < 0
5507 && !test_bit(Faulty, &rdev->flags)) {
5508 rdev->recovery_offset = 0;
5509 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5510 char nm[20];
5511 sprintf(nm, "rd%d", rdev->raid_disk);
5512 if (sysfs_create_link(&mddev->kobj,
5513 &rdev->kobj, nm))
5514 printk(KERN_WARNING
5515 "md: cannot register "
5516 "%s for %s\n",
5517 nm, mdname(mddev));
5518 spares++;
5519 md_new_event(mddev);
5520 } else
5521 break;
5524 return spares;
5527 * This routine is regularly called by all per-raid-array threads to
5528 * deal with generic issues like resync and super-block update.
5529 * Raid personalities that don't have a thread (linear/raid0) do not
5530 * need this as they never do any recovery or update the superblock.
5532 * It does not do any resync itself, but rather "forks" off other threads
5533 * to do that as needed.
5534 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5535 * "->recovery" and create a thread at ->sync_thread.
5536 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5537 * and wakeups up this thread which will reap the thread and finish up.
5538 * This thread also removes any faulty devices (with nr_pending == 0).
5540 * The overall approach is:
5541 * 1/ if the superblock needs updating, update it.
5542 * 2/ If a recovery thread is running, don't do anything else.
5543 * 3/ If recovery has finished, clean up, possibly marking spares active.
5544 * 4/ If there are any faulty devices, remove them.
5545 * 5/ If array is degraded, try to add spares devices
5546 * 6/ If array has spares or is not in-sync, start a resync thread.
5548 void md_check_recovery(mddev_t *mddev)
5550 mdk_rdev_t *rdev;
5551 struct list_head *rtmp;
5554 if (mddev->bitmap)
5555 bitmap_daemon_work(mddev->bitmap);
5557 if (mddev->ro)
5558 return;
5560 if (signal_pending(current)) {
5561 if (mddev->pers->sync_request) {
5562 printk(KERN_INFO "md: %s in immediate safe mode\n",
5563 mdname(mddev));
5564 mddev->safemode = 2;
5566 flush_signals(current);
5569 if ( ! (
5570 mddev->flags ||
5571 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5572 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5573 (mddev->safemode == 1) ||
5574 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5575 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5577 return;
5579 if (mddev_trylock(mddev)) {
5580 int spares = 0;
5582 spin_lock_irq(&mddev->write_lock);
5583 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5584 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5585 mddev->in_sync = 1;
5586 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5588 if (mddev->safemode == 1)
5589 mddev->safemode = 0;
5590 spin_unlock_irq(&mddev->write_lock);
5592 if (mddev->flags)
5593 md_update_sb(mddev, 0);
5596 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5597 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5598 /* resync/recovery still happening */
5599 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5600 goto unlock;
5602 if (mddev->sync_thread) {
5603 /* resync has finished, collect result */
5604 md_unregister_thread(mddev->sync_thread);
5605 mddev->sync_thread = NULL;
5606 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5607 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5608 /* success...*/
5609 /* activate any spares */
5610 mddev->pers->spare_active(mddev);
5612 md_update_sb(mddev, 1);
5614 /* if array is no-longer degraded, then any saved_raid_disk
5615 * information must be scrapped
5617 if (!mddev->degraded)
5618 ITERATE_RDEV(mddev,rdev,rtmp)
5619 rdev->saved_raid_disk = -1;
5621 mddev->recovery = 0;
5622 /* flag recovery needed just to double check */
5623 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5624 md_new_event(mddev);
5625 goto unlock;
5627 /* Clear some bits that don't mean anything, but
5628 * might be left set
5630 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5631 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5632 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5633 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5635 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5636 goto unlock;
5637 /* no recovery is running.
5638 * remove any failed drives, then
5639 * add spares if possible.
5640 * Spare are also removed and re-added, to allow
5641 * the personality to fail the re-add.
5644 if (mddev->reshape_position != MaxSector) {
5645 if (mddev->pers->check_reshape(mddev) != 0)
5646 /* Cannot proceed */
5647 goto unlock;
5648 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5649 } else if ((spares = remove_and_add_spares(mddev))) {
5650 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5651 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5652 } else if (mddev->recovery_cp < MaxSector) {
5653 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5654 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5655 /* nothing to be done ... */
5656 goto unlock;
5658 if (mddev->pers->sync_request) {
5659 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5660 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5661 /* We are adding a device or devices to an array
5662 * which has the bitmap stored on all devices.
5663 * So make sure all bitmap pages get written
5665 bitmap_write_all(mddev->bitmap);
5667 mddev->sync_thread = md_register_thread(md_do_sync,
5668 mddev,
5669 "%s_resync");
5670 if (!mddev->sync_thread) {
5671 printk(KERN_ERR "%s: could not start resync"
5672 " thread...\n",
5673 mdname(mddev));
5674 /* leave the spares where they are, it shouldn't hurt */
5675 mddev->recovery = 0;
5676 } else
5677 md_wakeup_thread(mddev->sync_thread);
5678 md_new_event(mddev);
5680 unlock:
5681 mddev_unlock(mddev);
5685 static int md_notify_reboot(struct notifier_block *this,
5686 unsigned long code, void *x)
5688 struct list_head *tmp;
5689 mddev_t *mddev;
5691 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5693 printk(KERN_INFO "md: stopping all md devices.\n");
5695 ITERATE_MDDEV(mddev,tmp)
5696 if (mddev_trylock(mddev)) {
5697 do_md_stop (mddev, 1);
5698 mddev_unlock(mddev);
5701 * certain more exotic SCSI devices are known to be
5702 * volatile wrt too early system reboots. While the
5703 * right place to handle this issue is the given
5704 * driver, we do want to have a safe RAID driver ...
5706 mdelay(1000*1);
5708 return NOTIFY_DONE;
5711 static struct notifier_block md_notifier = {
5712 .notifier_call = md_notify_reboot,
5713 .next = NULL,
5714 .priority = INT_MAX, /* before any real devices */
5717 static void md_geninit(void)
5719 struct proc_dir_entry *p;
5721 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5723 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5724 if (p)
5725 p->proc_fops = &md_seq_fops;
5728 static int __init md_init(void)
5730 if (register_blkdev(MAJOR_NR, "md"))
5731 return -1;
5732 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5733 unregister_blkdev(MAJOR_NR, "md");
5734 return -1;
5736 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5737 md_probe, NULL, NULL);
5738 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5739 md_probe, NULL, NULL);
5741 register_reboot_notifier(&md_notifier);
5742 raid_table_header = register_sysctl_table(raid_root_table);
5744 md_geninit();
5745 return (0);
5749 #ifndef MODULE
5752 * Searches all registered partitions for autorun RAID arrays
5753 * at boot time.
5755 static dev_t detected_devices[128];
5756 static int dev_cnt;
5758 void md_autodetect_dev(dev_t dev)
5760 if (dev_cnt >= 0 && dev_cnt < 127)
5761 detected_devices[dev_cnt++] = dev;
5765 static void autostart_arrays(int part)
5767 mdk_rdev_t *rdev;
5768 int i;
5770 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5772 for (i = 0; i < dev_cnt; i++) {
5773 dev_t dev = detected_devices[i];
5775 rdev = md_import_device(dev,0, 0);
5776 if (IS_ERR(rdev))
5777 continue;
5779 if (test_bit(Faulty, &rdev->flags)) {
5780 MD_BUG();
5781 continue;
5783 list_add(&rdev->same_set, &pending_raid_disks);
5785 dev_cnt = 0;
5787 autorun_devices(part);
5790 #endif /* !MODULE */
5792 static __exit void md_exit(void)
5794 mddev_t *mddev;
5795 struct list_head *tmp;
5797 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5798 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5800 unregister_blkdev(MAJOR_NR,"md");
5801 unregister_blkdev(mdp_major, "mdp");
5802 unregister_reboot_notifier(&md_notifier);
5803 unregister_sysctl_table(raid_table_header);
5804 remove_proc_entry("mdstat", NULL);
5805 ITERATE_MDDEV(mddev,tmp) {
5806 struct gendisk *disk = mddev->gendisk;
5807 if (!disk)
5808 continue;
5809 export_array(mddev);
5810 del_gendisk(disk);
5811 put_disk(disk);
5812 mddev->gendisk = NULL;
5813 mddev_put(mddev);
5817 module_init(md_init)
5818 module_exit(md_exit)
5820 static int get_ro(char *buffer, struct kernel_param *kp)
5822 return sprintf(buffer, "%d", start_readonly);
5824 static int set_ro(const char *val, struct kernel_param *kp)
5826 char *e;
5827 int num = simple_strtoul(val, &e, 10);
5828 if (*val && (*e == '\0' || *e == '\n')) {
5829 start_readonly = num;
5830 return 0;
5832 return -EINVAL;
5835 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5836 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5839 EXPORT_SYMBOL(register_md_personality);
5840 EXPORT_SYMBOL(unregister_md_personality);
5841 EXPORT_SYMBOL(md_error);
5842 EXPORT_SYMBOL(md_done_sync);
5843 EXPORT_SYMBOL(md_write_start);
5844 EXPORT_SYMBOL(md_write_end);
5845 EXPORT_SYMBOL(md_register_thread);
5846 EXPORT_SYMBOL(md_unregister_thread);
5847 EXPORT_SYMBOL(md_wakeup_thread);
5848 EXPORT_SYMBOL(md_check_recovery);
5849 MODULE_LICENSE("GPL");
5850 MODULE_ALIAS("md");
5851 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);