RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / drivers / ieee1394 / eth1394.c
blob7c13fb3c167b02b541834283d272d1a5a17f5860
1 /*
2 * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 * This driver intends to support RFC 2734, which describes a method for
27 * transporting IPv4 datagrams over IEEE-1394 serial busses.
29 * TODO:
30 * RFC 2734 related:
31 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33 * Non-RFC 2734 related:
34 * - Handle fragmented skb's coming from the networking layer.
35 * - Move generic GASP reception to core 1394 code
36 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37 * - Stability improvements
38 * - Performance enhancements
39 * - Consider garbage collecting old partial datagrams after X amount of time
42 #include <linux/module.h>
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80 printk(level "%s: " fmt, driver_name, ## args)
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
85 struct fragment_info {
86 struct list_head list;
87 int offset;
88 int len;
91 struct partial_datagram {
92 struct list_head list;
93 u16 dgl;
94 u16 dg_size;
95 u16 ether_type;
96 struct sk_buff *skb;
97 char *pbuf;
98 struct list_head frag_info;
101 struct pdg_list {
102 struct list_head list; /* partial datagram list per node */
103 unsigned int sz; /* partial datagram list size per node */
104 spinlock_t lock; /* partial datagram lock */
107 struct eth1394_host_info {
108 struct hpsb_host *host;
109 struct net_device *dev;
112 struct eth1394_node_ref {
113 struct unit_directory *ud;
114 struct list_head list;
117 struct eth1394_node_info {
118 u16 maxpayload; /* max payload */
119 u8 sspd; /* max speed */
120 u64 fifo; /* FIFO address */
121 struct pdg_list pdg; /* partial RX datagram lists */
122 int dgl; /* outgoing datagram label */
125 static const char driver_name[] = "eth1394";
127 static struct kmem_cache *packet_task_cache;
129 static struct hpsb_highlevel eth1394_highlevel;
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133 sizeof(struct eth1394_uf_hdr),
134 sizeof(struct eth1394_ff_hdr),
135 sizeof(struct eth1394_sf_hdr),
136 sizeof(struct eth1394_sf_hdr)
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /* S100, S200, S400, S800, S1600, S3200 */
141 512, 1024, 2048, 4096, 4096, 4096
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
149 * The max_partial_datagrams parameter is the maximum number of fragmented
150 * datagrams per node that eth1394 will keep in memory. Providing an upper
151 * bound allows us to limit the amount of memory that partial datagrams
152 * consume in the event that some partial datagrams are never completed.
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157 "Maximum number of partially received fragmented datagrams "
158 "(default = 25).");
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162 unsigned short type, void *daddr, void *saddr,
163 unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
166 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
167 static void ether1394_header_cache_update(struct hh_cache *hh,
168 struct net_device *dev,
169 unsigned char *haddr);
170 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
171 static void ether1394_iso(struct hpsb_iso *iso);
173 static struct ethtool_ops ethtool_ops;
175 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
176 quadlet_t *data, u64 addr, size_t len, u16 flags);
177 static void ether1394_add_host(struct hpsb_host *host);
178 static void ether1394_remove_host(struct hpsb_host *host);
179 static void ether1394_host_reset(struct hpsb_host *host);
181 /* Function for incoming 1394 packets */
182 static struct hpsb_address_ops addr_ops = {
183 .write = ether1394_write,
186 /* Ieee1394 highlevel driver functions */
187 static struct hpsb_highlevel eth1394_highlevel = {
188 .name = driver_name,
189 .add_host = ether1394_add_host,
190 .remove_host = ether1394_remove_host,
191 .host_reset = ether1394_host_reset,
194 static int ether1394_recv_init(struct eth1394_priv *priv)
196 unsigned int iso_buf_size;
198 /* FIXME: rawiso limits us to PAGE_SIZE */
199 iso_buf_size = min((unsigned int)PAGE_SIZE,
200 2 * (1U << (priv->host->csr.max_rec + 1)));
202 priv->iso = hpsb_iso_recv_init(priv->host,
203 ETHER1394_GASP_BUFFERS * iso_buf_size,
204 ETHER1394_GASP_BUFFERS,
205 priv->broadcast_channel,
206 HPSB_ISO_DMA_PACKET_PER_BUFFER,
207 1, ether1394_iso);
208 if (priv->iso == NULL) {
209 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
210 priv->bc_state = ETHER1394_BC_ERROR;
211 return -EAGAIN;
214 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
215 priv->bc_state = ETHER1394_BC_STOPPED;
216 else
217 priv->bc_state = ETHER1394_BC_RUNNING;
218 return 0;
221 /* This is called after an "ifup" */
222 static int ether1394_open(struct net_device *dev)
224 struct eth1394_priv *priv = netdev_priv(dev);
225 int ret;
227 if (priv->bc_state == ETHER1394_BC_ERROR) {
228 ret = ether1394_recv_init(priv);
229 if (ret)
230 return ret;
232 netif_start_queue(dev);
233 return 0;
236 /* This is called after an "ifdown" */
237 static int ether1394_stop(struct net_device *dev)
239 /* flush priv->wake */
240 flush_scheduled_work();
242 netif_stop_queue(dev);
243 return 0;
246 /* Return statistics to the caller */
247 static struct net_device_stats *ether1394_stats(struct net_device *dev)
249 return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
252 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
253 * so that's what we do. Should we increment the stat counters too? */
254 static void ether1394_tx_timeout(struct net_device *dev)
256 struct hpsb_host *host =
257 ((struct eth1394_priv *)netdev_priv(dev))->host;
259 ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
260 ether1394_host_reset(host);
263 static inline int ether1394_max_mtu(struct hpsb_host* host)
265 return (1 << (host->csr.max_rec + 1))
266 - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
269 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
271 int max_mtu;
273 if (new_mtu < 68)
274 return -EINVAL;
276 max_mtu = ether1394_max_mtu(
277 ((struct eth1394_priv *)netdev_priv(dev))->host);
278 if (new_mtu > max_mtu) {
279 ETH1394_PRINT(KERN_INFO, dev->name,
280 "Local node constrains MTU to %d\n", max_mtu);
281 return -ERANGE;
284 dev->mtu = new_mtu;
285 return 0;
288 static void purge_partial_datagram(struct list_head *old)
290 struct partial_datagram *pd;
291 struct list_head *lh, *n;
292 struct fragment_info *fi;
294 pd = list_entry(old, struct partial_datagram, list);
296 list_for_each_safe(lh, n, &pd->frag_info) {
297 fi = list_entry(lh, struct fragment_info, list);
298 list_del(lh);
299 kfree(fi);
301 list_del(old);
302 kfree_skb(pd->skb);
303 kfree(pd);
306 /******************************************
307 * 1394 bus activity functions
308 ******************************************/
310 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
311 struct unit_directory *ud)
313 struct eth1394_node_ref *node;
315 list_for_each_entry(node, inl, list)
316 if (node->ud == ud)
317 return node;
319 return NULL;
322 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
323 u64 guid)
325 struct eth1394_node_ref *node;
327 list_for_each_entry(node, inl, list)
328 if (node->ud->ne->guid == guid)
329 return node;
331 return NULL;
334 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
335 nodeid_t nodeid)
337 struct eth1394_node_ref *node;
339 list_for_each_entry(node, inl, list)
340 if (node->ud->ne->nodeid == nodeid)
341 return node;
343 return NULL;
346 static int eth1394_new_node(struct eth1394_host_info *hi,
347 struct unit_directory *ud)
349 struct eth1394_priv *priv;
350 struct eth1394_node_ref *new_node;
351 struct eth1394_node_info *node_info;
353 new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
354 if (!new_node)
355 return -ENOMEM;
357 node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
358 if (!node_info) {
359 kfree(new_node);
360 return -ENOMEM;
363 spin_lock_init(&node_info->pdg.lock);
364 INIT_LIST_HEAD(&node_info->pdg.list);
365 node_info->pdg.sz = 0;
366 node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
368 ud->device.driver_data = node_info;
369 new_node->ud = ud;
371 priv = netdev_priv(hi->dev);
372 list_add_tail(&new_node->list, &priv->ip_node_list);
373 return 0;
376 static int eth1394_probe(struct device *dev)
378 struct unit_directory *ud;
379 struct eth1394_host_info *hi;
381 ud = container_of(dev, struct unit_directory, device);
382 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
383 if (!hi)
384 return -ENOENT;
386 return eth1394_new_node(hi, ud);
389 static int eth1394_remove(struct device *dev)
391 struct unit_directory *ud;
392 struct eth1394_host_info *hi;
393 struct eth1394_priv *priv;
394 struct eth1394_node_ref *old_node;
395 struct eth1394_node_info *node_info;
396 struct list_head *lh, *n;
397 unsigned long flags;
399 ud = container_of(dev, struct unit_directory, device);
400 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
401 if (!hi)
402 return -ENOENT;
404 priv = netdev_priv(hi->dev);
406 old_node = eth1394_find_node(&priv->ip_node_list, ud);
407 if (!old_node)
408 return 0;
410 list_del(&old_node->list);
411 kfree(old_node);
413 node_info = (struct eth1394_node_info*)ud->device.driver_data;
415 spin_lock_irqsave(&node_info->pdg.lock, flags);
416 /* The partial datagram list should be empty, but we'll just
417 * make sure anyway... */
418 list_for_each_safe(lh, n, &node_info->pdg.list)
419 purge_partial_datagram(lh);
420 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
422 kfree(node_info);
423 ud->device.driver_data = NULL;
424 return 0;
427 static int eth1394_update(struct unit_directory *ud)
429 struct eth1394_host_info *hi;
430 struct eth1394_priv *priv;
431 struct eth1394_node_ref *node;
433 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
434 if (!hi)
435 return -ENOENT;
437 priv = netdev_priv(hi->dev);
438 node = eth1394_find_node(&priv->ip_node_list, ud);
439 if (node)
440 return 0;
442 return eth1394_new_node(hi, ud);
445 static struct ieee1394_device_id eth1394_id_table[] = {
447 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
448 IEEE1394_MATCH_VERSION),
449 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
450 .version = ETHER1394_GASP_VERSION,
455 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
457 static struct hpsb_protocol_driver eth1394_proto_driver = {
458 .name = driver_name,
459 .id_table = eth1394_id_table,
460 .update = eth1394_update,
461 .driver = {
462 .probe = eth1394_probe,
463 .remove = eth1394_remove,
467 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
469 unsigned long flags;
470 int i;
471 struct eth1394_priv *priv = netdev_priv(dev);
472 struct hpsb_host *host = priv->host;
473 u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
474 int max_speed = IEEE1394_SPEED_MAX;
476 spin_lock_irqsave(&priv->lock, flags);
478 memset(priv->ud_list, 0, sizeof(priv->ud_list));
479 priv->bc_maxpayload = 512;
481 /* Determine speed limit */
482 /* FIXME: This is broken for nodes with link speed < PHY speed,
483 * and it is suboptimal for S200B...S800B hardware.
484 * The result of nodemgr's speed probe should be used somehow. */
485 for (i = 0; i < host->node_count; i++) {
486 /* take care of S100B...S400B PHY ports */
487 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
488 max_speed = IEEE1394_SPEED_100;
489 break;
491 if (max_speed > host->speed[i])
492 max_speed = host->speed[i];
494 priv->bc_sspd = max_speed;
496 if (set_mtu) {
497 /* Use the RFC 2734 default 1500 octets or the maximum payload
498 * as initial MTU */
499 dev->mtu = min(1500, ether1394_max_mtu(host));
501 /* Set our hardware address while we're at it */
502 memcpy(dev->dev_addr, &guid, sizeof(u64));
503 memset(dev->broadcast, 0xff, sizeof(u64));
506 spin_unlock_irqrestore(&priv->lock, flags);
509 static void ether1394_init_dev(struct net_device *dev)
511 dev->open = ether1394_open;
512 dev->stop = ether1394_stop;
513 dev->hard_start_xmit = ether1394_tx;
514 dev->get_stats = ether1394_stats;
515 dev->tx_timeout = ether1394_tx_timeout;
516 dev->change_mtu = ether1394_change_mtu;
518 dev->hard_header = ether1394_header;
519 dev->rebuild_header = ether1394_rebuild_header;
520 dev->hard_header_cache = ether1394_header_cache;
521 dev->header_cache_update= ether1394_header_cache_update;
522 dev->hard_header_parse = ether1394_header_parse;
524 SET_ETHTOOL_OPS(dev, &ethtool_ops);
526 dev->watchdog_timeo = ETHER1394_TIMEOUT;
527 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
528 dev->features = NETIF_F_HIGHDMA;
529 dev->addr_len = ETH1394_ALEN;
530 dev->hard_header_len = ETH1394_HLEN;
531 dev->type = ARPHRD_IEEE1394;
533 /* FIXME: This value was copied from ether_setup(). Is it too much? */
534 dev->tx_queue_len = 1000;
538 * Wake the queue up after commonly encountered transmit failure conditions are
539 * hopefully over. Currently only tlabel exhaustion is accounted for.
541 static void ether1394_wake_queue(struct work_struct *work)
543 struct eth1394_priv *priv;
544 struct hpsb_packet *packet;
546 priv = container_of(work, struct eth1394_priv, wake);
547 packet = hpsb_alloc_packet(0);
549 /* This is really bad, but unjam the queue anyway. */
550 if (!packet)
551 goto out;
553 packet->host = priv->host;
554 packet->node_id = priv->wake_node;
556 * A transaction label is all we really want. If we get one, it almost
557 * always means we can get a lot more because the ieee1394 core recycled
558 * a whole batch of tlabels, at last.
560 if (hpsb_get_tlabel(packet) == 0)
561 hpsb_free_tlabel(packet);
563 hpsb_free_packet(packet);
564 out:
565 netif_wake_queue(priv->wake_dev);
569 * This function is called every time a card is found. It is generally called
570 * when the module is installed. This is where we add all of our ethernet
571 * devices. One for each host.
573 static void ether1394_add_host(struct hpsb_host *host)
575 struct eth1394_host_info *hi = NULL;
576 struct net_device *dev = NULL;
577 struct eth1394_priv *priv;
578 u64 fifo_addr;
580 if (hpsb_config_rom_ip1394_add(host) != 0) {
581 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
582 return;
585 fifo_addr = hpsb_allocate_and_register_addrspace(
586 &eth1394_highlevel, host, &addr_ops,
587 ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
588 CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
589 if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
590 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
591 hpsb_config_rom_ip1394_remove(host);
592 return;
595 dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
596 if (dev == NULL) {
597 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
598 goto out;
601 SET_MODULE_OWNER(dev);
603 /* This used to be &host->device in Linux 2.6.20 and before. */
604 SET_NETDEV_DEV(dev, host->device.parent);
606 priv = netdev_priv(dev);
607 INIT_LIST_HEAD(&priv->ip_node_list);
608 spin_lock_init(&priv->lock);
609 priv->host = host;
610 priv->local_fifo = fifo_addr;
611 INIT_WORK(&priv->wake, ether1394_wake_queue);
612 priv->wake_dev = dev;
614 hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
615 if (hi == NULL) {
616 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
617 goto out;
620 ether1394_reset_priv(dev, 1);
622 if (register_netdev(dev)) {
623 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
624 goto out;
627 ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
628 host->id);
630 hi->host = host;
631 hi->dev = dev;
633 /* Ignore validity in hopes that it will be set in the future. It'll
634 * be checked when the eth device is opened. */
635 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
637 ether1394_recv_init(priv);
638 return;
639 out:
640 if (dev)
641 free_netdev(dev);
642 if (hi)
643 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
644 hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
645 hpsb_config_rom_ip1394_remove(host);
648 /* Remove a card from our list */
649 static void ether1394_remove_host(struct hpsb_host *host)
651 struct eth1394_host_info *hi;
652 struct eth1394_priv *priv;
654 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
655 if (!hi)
656 return;
657 priv = netdev_priv(hi->dev);
658 hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
659 hpsb_config_rom_ip1394_remove(host);
660 if (priv->iso)
661 hpsb_iso_shutdown(priv->iso);
662 unregister_netdev(hi->dev);
663 free_netdev(hi->dev);
666 /* A bus reset happened */
667 static void ether1394_host_reset(struct hpsb_host *host)
669 struct eth1394_host_info *hi;
670 struct eth1394_priv *priv;
671 struct net_device *dev;
672 struct list_head *lh, *n;
673 struct eth1394_node_ref *node;
674 struct eth1394_node_info *node_info;
675 unsigned long flags;
677 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
679 /* This can happen for hosts that we don't use */
680 if (!hi)
681 return;
683 dev = hi->dev;
684 priv = netdev_priv(dev);
686 /* Reset our private host data, but not our MTU */
687 netif_stop_queue(dev);
688 ether1394_reset_priv(dev, 0);
690 list_for_each_entry(node, &priv->ip_node_list, list) {
691 node_info = node->ud->device.driver_data;
693 spin_lock_irqsave(&node_info->pdg.lock, flags);
695 list_for_each_safe(lh, n, &node_info->pdg.list)
696 purge_partial_datagram(lh);
698 INIT_LIST_HEAD(&(node_info->pdg.list));
699 node_info->pdg.sz = 0;
701 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
704 netif_wake_queue(dev);
707 /******************************************
708 * HW Header net device functions
709 ******************************************/
710 /* These functions have been adapted from net/ethernet/eth.c */
712 /* Create a fake MAC header for an arbitrary protocol layer.
713 * saddr=NULL means use device source address
714 * daddr=NULL means leave destination address (eg unresolved arp). */
715 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
716 unsigned short type, void *daddr, void *saddr,
717 unsigned len)
719 struct eth1394hdr *eth =
720 (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
722 eth->h_proto = htons(type);
724 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
725 memset(eth->h_dest, 0, dev->addr_len);
726 return dev->hard_header_len;
729 if (daddr) {
730 memcpy(eth->h_dest, daddr, dev->addr_len);
731 return dev->hard_header_len;
734 return -dev->hard_header_len;
737 /* Rebuild the faked MAC header. This is called after an ARP
738 * (or in future other address resolution) has completed on this
739 * sk_buff. We now let ARP fill in the other fields.
741 * This routine CANNOT use cached dst->neigh!
742 * Really, it is used only when dst->neigh is wrong.
744 static int ether1394_rebuild_header(struct sk_buff *skb)
746 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
748 if (eth->h_proto == htons(ETH_P_IP))
749 return arp_find((unsigned char *)&eth->h_dest, skb);
751 ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
752 "unable to resolve type %04x addresses\n",
753 ntohs(eth->h_proto));
754 return 0;
757 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
759 struct net_device *dev = skb->dev;
761 memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
762 return ETH1394_ALEN;
765 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
767 unsigned short type = hh->hh_type;
768 struct net_device *dev = neigh->dev;
769 struct eth1394hdr *eth =
770 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
772 if (type == htons(ETH_P_802_3))
773 return -1;
775 eth->h_proto = type;
776 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
778 hh->hh_len = ETH1394_HLEN;
779 return 0;
782 /* Called by Address Resolution module to notify changes in address. */
783 static void ether1394_header_cache_update(struct hh_cache *hh,
784 struct net_device *dev,
785 unsigned char * haddr)
787 memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
790 /******************************************
791 * Datagram reception code
792 ******************************************/
794 /* Copied from net/ethernet/eth.c */
795 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
797 struct eth1394hdr *eth;
798 unsigned char *rawp;
800 skb_reset_mac_header(skb);
801 skb_pull(skb, ETH1394_HLEN);
802 eth = eth1394_hdr(skb);
804 if (*eth->h_dest & 1) {
805 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
806 skb->pkt_type = PACKET_BROADCAST;
807 #if 0
808 else
809 skb->pkt_type = PACKET_MULTICAST;
810 #endif
811 } else {
812 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
813 skb->pkt_type = PACKET_OTHERHOST;
816 if (ntohs(eth->h_proto) >= 1536)
817 return eth->h_proto;
819 rawp = skb->data;
821 if (*(unsigned short *)rawp == 0xFFFF)
822 return htons(ETH_P_802_3);
824 return htons(ETH_P_802_2);
827 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
828 * We also perform ARP translation here, if need be. */
829 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
830 nodeid_t srcid, nodeid_t destid,
831 u16 ether_type)
833 struct eth1394_priv *priv = netdev_priv(dev);
834 u64 dest_hw;
835 unsigned short ret = 0;
837 /* Setup our hw addresses. We use these to build the ethernet header. */
838 if (destid == (LOCAL_BUS | ALL_NODES))
839 dest_hw = ~0ULL; /* broadcast */
840 else
841 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
842 priv->host->csr.guid_lo);
844 /* If this is an ARP packet, convert it. First, we want to make
845 * use of some of the fields, since they tell us a little bit
846 * about the sending machine. */
847 if (ether_type == htons(ETH_P_ARP)) {
848 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
849 struct arphdr *arp = (struct arphdr *)skb->data;
850 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
851 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
852 ntohl(arp1394->fifo_lo);
853 u8 max_rec = min(priv->host->csr.max_rec,
854 (u8)(arp1394->max_rec));
855 int sspd = arp1394->sspd;
856 u16 maxpayload;
857 struct eth1394_node_ref *node;
858 struct eth1394_node_info *node_info;
859 __be64 guid;
861 /* Sanity check. MacOSX seems to be sending us 131 in this
862 * field (atleast on my Panther G5). Not sure why. */
863 if (sspd > 5 || sspd < 0)
864 sspd = 0;
866 maxpayload = min(eth1394_speedto_maxpayload[sspd],
867 (u16)(1 << (max_rec + 1)));
869 guid = get_unaligned(&arp1394->s_uniq_id);
870 node = eth1394_find_node_guid(&priv->ip_node_list,
871 be64_to_cpu(guid));
872 if (!node)
873 return 0;
875 node_info =
876 (struct eth1394_node_info *)node->ud->device.driver_data;
878 /* Update our speed/payload/fifo_offset table */
879 node_info->maxpayload = maxpayload;
880 node_info->sspd = sspd;
881 node_info->fifo = fifo_addr;
883 /* Now that we're done with the 1394 specific stuff, we'll
884 * need to alter some of the data. Believe it or not, all
885 * that needs to be done is sender_IP_address needs to be
886 * moved, the destination hardware address get stuffed
887 * in and the hardware address length set to 8.
889 * IMPORTANT: The code below overwrites 1394 specific data
890 * needed above so keep the munging of the data for the
891 * higher level IP stack last. */
893 arp->ar_hln = 8;
894 arp_ptr += arp->ar_hln; /* skip over sender unique id */
895 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
896 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
898 if (arp->ar_op == htons(ARPOP_REQUEST))
899 memset(arp_ptr, 0, sizeof(u64));
900 else
901 memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
904 /* Now add the ethernet header. */
905 if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
906 skb->len) >= 0)
907 ret = ether1394_type_trans(skb, dev);
909 return ret;
912 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
914 struct fragment_info *fi;
915 int end = offset + len;
917 list_for_each_entry(fi, frag_list, list)
918 if (offset < fi->offset + fi->len && end > fi->offset)
919 return 1;
921 return 0;
924 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
926 struct partial_datagram *pd;
928 list_for_each_entry(pd, pdgl, list)
929 if (pd->dgl == dgl)
930 return &pd->list;
932 return NULL;
935 /* Assumes that new fragment does not overlap any existing fragments */
936 static int new_fragment(struct list_head *frag_info, int offset, int len)
938 struct list_head *lh;
939 struct fragment_info *fi, *fi2, *new;
941 list_for_each(lh, frag_info) {
942 fi = list_entry(lh, struct fragment_info, list);
943 if (fi->offset + fi->len == offset) {
944 /* The new fragment can be tacked on to the end */
945 fi->len += len;
946 /* Did the new fragment plug a hole? */
947 fi2 = list_entry(lh->next, struct fragment_info, list);
948 if (fi->offset + fi->len == fi2->offset) {
949 /* glue fragments together */
950 fi->len += fi2->len;
951 list_del(lh->next);
952 kfree(fi2);
954 return 0;
955 } else if (offset + len == fi->offset) {
956 /* The new fragment can be tacked on to the beginning */
957 fi->offset = offset;
958 fi->len += len;
959 /* Did the new fragment plug a hole? */
960 fi2 = list_entry(lh->prev, struct fragment_info, list);
961 if (fi2->offset + fi2->len == fi->offset) {
962 /* glue fragments together */
963 fi2->len += fi->len;
964 list_del(lh);
965 kfree(fi);
967 return 0;
968 } else if (offset > fi->offset + fi->len) {
969 break;
970 } else if (offset + len < fi->offset) {
971 lh = lh->prev;
972 break;
976 new = kmalloc(sizeof(*new), GFP_ATOMIC);
977 if (!new)
978 return -ENOMEM;
980 new->offset = offset;
981 new->len = len;
983 list_add(&new->list, lh);
984 return 0;
987 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
988 int dgl, int dg_size, char *frag_buf,
989 int frag_off, int frag_len)
991 struct partial_datagram *new;
993 new = kmalloc(sizeof(*new), GFP_ATOMIC);
994 if (!new)
995 return -ENOMEM;
997 INIT_LIST_HEAD(&new->frag_info);
999 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1000 kfree(new);
1001 return -ENOMEM;
1004 new->dgl = dgl;
1005 new->dg_size = dg_size;
1007 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1008 if (!new->skb) {
1009 struct fragment_info *fi = list_entry(new->frag_info.next,
1010 struct fragment_info,
1011 list);
1012 kfree(fi);
1013 kfree(new);
1014 return -ENOMEM;
1017 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1018 new->pbuf = skb_put(new->skb, dg_size);
1019 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1021 list_add(&new->list, pdgl);
1022 return 0;
1025 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1026 char *frag_buf, int frag_off, int frag_len)
1028 struct partial_datagram *pd =
1029 list_entry(lh, struct partial_datagram, list);
1031 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1032 return -ENOMEM;
1034 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1036 /* Move list entry to beginnig of list so that oldest partial
1037 * datagrams percolate to the end of the list */
1038 list_move(lh, pdgl);
1039 return 0;
1042 static int is_datagram_complete(struct list_head *lh, int dg_size)
1044 struct partial_datagram *pd;
1045 struct fragment_info *fi;
1047 pd = list_entry(lh, struct partial_datagram, list);
1048 fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1050 return (fi->len == dg_size);
1053 /* Packet reception. We convert the IP1394 encapsulation header to an
1054 * ethernet header, and fill it with some of our other fields. This is
1055 * an incoming packet from the 1394 bus. */
1056 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1057 char *buf, int len)
1059 struct sk_buff *skb;
1060 unsigned long flags;
1061 struct eth1394_priv *priv = netdev_priv(dev);
1062 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1063 u16 ether_type = 0; /* initialized to clear warning */
1064 int hdr_len;
1065 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1066 struct eth1394_node_info *node_info;
1068 if (!ud) {
1069 struct eth1394_node_ref *node;
1070 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1071 if (unlikely(!node)) {
1072 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1073 "lookup failure: " NODE_BUS_FMT,
1074 NODE_BUS_ARGS(priv->host, srcid));
1075 priv->stats.rx_dropped++;
1076 return -1;
1078 ud = node->ud;
1080 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1083 node_info = (struct eth1394_node_info *)ud->device.driver_data;
1085 /* First, did we receive a fragmented or unfragmented datagram? */
1086 hdr->words.word1 = ntohs(hdr->words.word1);
1088 hdr_len = hdr_type_len[hdr->common.lf];
1090 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1091 /* An unfragmented datagram has been received by the ieee1394
1092 * bus. Build an skbuff around it so we can pass it to the
1093 * high level network layer. */
1095 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1096 if (unlikely(!skb)) {
1097 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1098 priv->stats.rx_dropped++;
1099 return -1;
1101 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1102 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1103 len - hdr_len);
1104 ether_type = hdr->uf.ether_type;
1105 } else {
1106 /* A datagram fragment has been received, now the fun begins. */
1108 struct list_head *pdgl, *lh;
1109 struct partial_datagram *pd;
1110 int fg_off;
1111 int fg_len = len - hdr_len;
1112 int dg_size;
1113 int dgl;
1114 int retval;
1115 struct pdg_list *pdg = &(node_info->pdg);
1117 hdr->words.word3 = ntohs(hdr->words.word3);
1118 /* The 4th header word is reserved so no need to do ntohs() */
1120 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1121 ether_type = hdr->ff.ether_type;
1122 dgl = hdr->ff.dgl;
1123 dg_size = hdr->ff.dg_size + 1;
1124 fg_off = 0;
1125 } else {
1126 hdr->words.word2 = ntohs(hdr->words.word2);
1127 dgl = hdr->sf.dgl;
1128 dg_size = hdr->sf.dg_size + 1;
1129 fg_off = hdr->sf.fg_off;
1131 spin_lock_irqsave(&pdg->lock, flags);
1133 pdgl = &(pdg->list);
1134 lh = find_partial_datagram(pdgl, dgl);
1136 if (lh == NULL) {
1137 while (pdg->sz >= max_partial_datagrams) {
1138 /* remove the oldest */
1139 purge_partial_datagram(pdgl->prev);
1140 pdg->sz--;
1143 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1144 buf + hdr_len, fg_off,
1145 fg_len);
1146 if (retval < 0) {
1147 spin_unlock_irqrestore(&pdg->lock, flags);
1148 goto bad_proto;
1150 pdg->sz++;
1151 lh = find_partial_datagram(pdgl, dgl);
1152 } else {
1153 struct partial_datagram *pd;
1155 pd = list_entry(lh, struct partial_datagram, list);
1157 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1158 /* Overlapping fragments, obliterate old
1159 * datagram and start new one. */
1160 purge_partial_datagram(lh);
1161 retval = new_partial_datagram(dev, pdgl, dgl,
1162 dg_size,
1163 buf + hdr_len,
1164 fg_off, fg_len);
1165 if (retval < 0) {
1166 pdg->sz--;
1167 spin_unlock_irqrestore(&pdg->lock, flags);
1168 goto bad_proto;
1170 } else {
1171 retval = update_partial_datagram(pdgl, lh,
1172 buf + hdr_len,
1173 fg_off, fg_len);
1174 if (retval < 0) {
1175 /* Couldn't save off fragment anyway
1176 * so might as well obliterate the
1177 * datagram now. */
1178 purge_partial_datagram(lh);
1179 pdg->sz--;
1180 spin_unlock_irqrestore(&pdg->lock, flags);
1181 goto bad_proto;
1183 } /* fragment overlap */
1184 } /* new datagram or add to existing one */
1186 pd = list_entry(lh, struct partial_datagram, list);
1188 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1189 pd->ether_type = ether_type;
1191 if (is_datagram_complete(lh, dg_size)) {
1192 ether_type = pd->ether_type;
1193 pdg->sz--;
1194 skb = skb_get(pd->skb);
1195 purge_partial_datagram(lh);
1196 spin_unlock_irqrestore(&pdg->lock, flags);
1197 } else {
1198 /* Datagram is not complete, we're done for the
1199 * moment. */
1200 spin_unlock_irqrestore(&pdg->lock, flags);
1201 return 0;
1203 } /* unframgented datagram or fragmented one */
1205 /* Write metadata, and then pass to the receive level */
1206 skb->dev = dev;
1207 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1209 /* Parse the encapsulation header. This actually does the job of
1210 * converting to an ethernet frame header, aswell as arp
1211 * conversion if needed. ARP conversion is easier in this
1212 * direction, since we are using ethernet as our backend. */
1213 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1214 ether_type);
1216 spin_lock_irqsave(&priv->lock, flags);
1218 if (!skb->protocol) {
1219 priv->stats.rx_errors++;
1220 priv->stats.rx_dropped++;
1221 dev_kfree_skb_any(skb);
1222 goto bad_proto;
1225 if (netif_rx(skb) == NET_RX_DROP) {
1226 priv->stats.rx_errors++;
1227 priv->stats.rx_dropped++;
1228 goto bad_proto;
1231 /* Statistics */
1232 priv->stats.rx_packets++;
1233 priv->stats.rx_bytes += skb->len;
1235 bad_proto:
1236 if (netif_queue_stopped(dev))
1237 netif_wake_queue(dev);
1238 spin_unlock_irqrestore(&priv->lock, flags);
1240 dev->last_rx = jiffies;
1242 return 0;
1245 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1246 quadlet_t *data, u64 addr, size_t len, u16 flags)
1248 struct eth1394_host_info *hi;
1250 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1251 if (unlikely(!hi)) {
1252 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1253 host->id);
1254 return RCODE_ADDRESS_ERROR;
1257 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1258 return RCODE_ADDRESS_ERROR;
1259 else
1260 return RCODE_COMPLETE;
1263 static void ether1394_iso(struct hpsb_iso *iso)
1265 quadlet_t *data;
1266 char *buf;
1267 struct eth1394_host_info *hi;
1268 struct net_device *dev;
1269 struct eth1394_priv *priv;
1270 unsigned int len;
1271 u32 specifier_id;
1272 u16 source_id;
1273 int i;
1274 int nready;
1276 hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1277 if (unlikely(!hi)) {
1278 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1279 iso->host->id);
1280 return;
1283 dev = hi->dev;
1285 nready = hpsb_iso_n_ready(iso);
1286 for (i = 0; i < nready; i++) {
1287 struct hpsb_iso_packet_info *info =
1288 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1289 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1291 /* skip over GASP header */
1292 buf = (char *)data + 8;
1293 len = info->len - 8;
1295 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1296 (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1297 source_id = be32_to_cpu(data[0]) >> 16;
1299 priv = netdev_priv(dev);
1301 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1302 || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1303 /* This packet is not for us */
1304 continue;
1306 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1307 buf, len);
1310 hpsb_iso_recv_release_packets(iso, i);
1312 dev->last_rx = jiffies;
1315 /******************************************
1316 * Datagram transmission code
1317 ******************************************/
1319 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1320 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1321 * needs to be munged a bit. The remainder of the arphdr is formatted based
1322 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1323 * judge.
1325 * Now that the EUI is used for the hardware address all we need to do to make
1326 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1327 * speed, and unicast FIFO address information between the sender_unique_id
1328 * and the IP addresses.
1330 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1331 struct net_device *dev)
1333 struct eth1394_priv *priv = netdev_priv(dev);
1334 struct arphdr *arp = (struct arphdr *)skb->data;
1335 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1336 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1338 arp1394->hw_addr_len = 16;
1339 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1340 arp1394->max_rec = priv->host->csr.max_rec;
1341 arp1394->sspd = priv->host->csr.lnk_spd;
1342 arp1394->fifo_hi = htons(priv->local_fifo >> 32);
1343 arp1394->fifo_lo = htonl(priv->local_fifo & ~0x0);
1346 /* We need to encapsulate the standard header with our own. We use the
1347 * ethernet header's proto for our own. */
1348 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1349 __be16 proto,
1350 union eth1394_hdr *hdr,
1351 u16 dg_size, u16 dgl)
1353 unsigned int adj_max_payload =
1354 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1356 /* Does it all fit in one packet? */
1357 if (dg_size <= adj_max_payload) {
1358 hdr->uf.lf = ETH1394_HDR_LF_UF;
1359 hdr->uf.ether_type = proto;
1360 } else {
1361 hdr->ff.lf = ETH1394_HDR_LF_FF;
1362 hdr->ff.ether_type = proto;
1363 hdr->ff.dg_size = dg_size - 1;
1364 hdr->ff.dgl = dgl;
1365 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1367 return (dg_size + adj_max_payload - 1) / adj_max_payload;
1370 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1371 unsigned int max_payload,
1372 union eth1394_hdr *hdr)
1374 union eth1394_hdr *bufhdr;
1375 int ftype = hdr->common.lf;
1376 int hdrsz = hdr_type_len[ftype];
1377 unsigned int adj_max_payload = max_payload - hdrsz;
1379 switch (ftype) {
1380 case ETH1394_HDR_LF_UF:
1381 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1382 bufhdr->words.word1 = htons(hdr->words.word1);
1383 bufhdr->words.word2 = hdr->words.word2;
1384 break;
1386 case ETH1394_HDR_LF_FF:
1387 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1388 bufhdr->words.word1 = htons(hdr->words.word1);
1389 bufhdr->words.word2 = hdr->words.word2;
1390 bufhdr->words.word3 = htons(hdr->words.word3);
1391 bufhdr->words.word4 = 0;
1393 /* Set frag type here for future interior fragments */
1394 hdr->common.lf = ETH1394_HDR_LF_IF;
1395 hdr->sf.fg_off = 0;
1396 break;
1398 default:
1399 hdr->sf.fg_off += adj_max_payload;
1400 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1401 if (max_payload >= skb->len)
1402 hdr->common.lf = ETH1394_HDR_LF_LF;
1403 bufhdr->words.word1 = htons(hdr->words.word1);
1404 bufhdr->words.word2 = htons(hdr->words.word2);
1405 bufhdr->words.word3 = htons(hdr->words.word3);
1406 bufhdr->words.word4 = 0;
1408 return min(max_payload, skb->len);
1411 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1413 struct hpsb_packet *p;
1415 p = hpsb_alloc_packet(0);
1416 if (p) {
1417 p->host = host;
1418 p->generation = get_hpsb_generation(host);
1419 p->type = hpsb_async;
1421 return p;
1424 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1425 struct hpsb_host *host, nodeid_t node,
1426 u64 addr, void *data, int tx_len)
1428 p->node_id = node;
1430 if (hpsb_get_tlabel(p))
1431 return -EAGAIN;
1433 p->tcode = TCODE_WRITEB;
1434 p->header_size = 16;
1435 p->expect_response = 1;
1436 p->header[0] =
1437 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1438 p->header[1] = host->node_id << 16 | addr >> 32;
1439 p->header[2] = addr & 0xffffffff;
1440 p->header[3] = tx_len << 16;
1441 p->data_size = (tx_len + 3) & ~3;
1442 p->data = data;
1444 return 0;
1447 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1448 struct eth1394_priv *priv,
1449 struct sk_buff *skb, int length)
1451 p->header_size = 4;
1452 p->tcode = TCODE_STREAM_DATA;
1454 p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1455 TCODE_STREAM_DATA << 4;
1456 p->data_size = length;
1457 p->data = (quadlet_t *)skb->data - 2;
1458 p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1459 ETHER1394_GASP_SPECIFIER_ID_HI);
1460 p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1461 ETHER1394_GASP_VERSION);
1463 p->speed_code = priv->bc_sspd;
1465 /* prevent hpsb_send_packet() from overriding our speed code */
1466 p->node_id = LOCAL_BUS | ALL_NODES;
1469 static void ether1394_free_packet(struct hpsb_packet *packet)
1471 if (packet->tcode != TCODE_STREAM_DATA)
1472 hpsb_free_tlabel(packet);
1473 hpsb_free_packet(packet);
1476 static void ether1394_complete_cb(void *__ptask);
1478 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1480 struct eth1394_priv *priv = ptask->priv;
1481 struct hpsb_packet *packet = NULL;
1483 packet = ether1394_alloc_common_packet(priv->host);
1484 if (!packet)
1485 return -ENOMEM;
1487 if (ptask->tx_type == ETH1394_GASP) {
1488 int length = tx_len + 2 * sizeof(quadlet_t);
1490 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1491 } else if (ether1394_prep_write_packet(packet, priv->host,
1492 ptask->dest_node,
1493 ptask->addr, ptask->skb->data,
1494 tx_len)) {
1495 hpsb_free_packet(packet);
1496 return -EAGAIN;
1499 ptask->packet = packet;
1500 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1501 ptask);
1503 if (hpsb_send_packet(packet) < 0) {
1504 ether1394_free_packet(packet);
1505 return -EIO;
1508 return 0;
1511 /* Task function to be run when a datagram transmission is completed */
1512 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1514 struct sk_buff *skb = ptask->skb;
1515 struct eth1394_priv *priv = netdev_priv(skb->dev);
1516 unsigned long flags;
1518 /* Statistics */
1519 spin_lock_irqsave(&priv->lock, flags);
1520 if (fail) {
1521 priv->stats.tx_dropped++;
1522 priv->stats.tx_errors++;
1523 } else {
1524 priv->stats.tx_bytes += skb->len;
1525 priv->stats.tx_packets++;
1527 spin_unlock_irqrestore(&priv->lock, flags);
1529 dev_kfree_skb_any(skb);
1530 kmem_cache_free(packet_task_cache, ptask);
1533 /* Callback for when a packet has been sent and the status of that packet is
1534 * known */
1535 static void ether1394_complete_cb(void *__ptask)
1537 struct packet_task *ptask = (struct packet_task *)__ptask;
1538 struct hpsb_packet *packet = ptask->packet;
1539 int fail = 0;
1541 if (packet->tcode != TCODE_STREAM_DATA)
1542 fail = hpsb_packet_success(packet);
1544 ether1394_free_packet(packet);
1546 ptask->outstanding_pkts--;
1547 if (ptask->outstanding_pkts > 0 && !fail) {
1548 int tx_len, err;
1550 /* Add the encapsulation header to the fragment */
1551 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1552 &ptask->hdr);
1553 err = ether1394_send_packet(ptask, tx_len);
1554 if (err) {
1555 if (err == -EAGAIN)
1556 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1558 ether1394_dg_complete(ptask, 1);
1560 } else {
1561 ether1394_dg_complete(ptask, fail);
1565 /* Transmit a packet (called by kernel) */
1566 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1568 struct eth1394hdr hdr_buf;
1569 struct eth1394_priv *priv = netdev_priv(dev);
1570 __be16 proto;
1571 unsigned long flags;
1572 nodeid_t dest_node;
1573 eth1394_tx_type tx_type;
1574 unsigned int tx_len;
1575 unsigned int max_payload;
1576 u16 dg_size;
1577 u16 dgl;
1578 struct packet_task *ptask;
1579 struct eth1394_node_ref *node;
1580 struct eth1394_node_info *node_info = NULL;
1582 ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1583 if (ptask == NULL)
1584 goto fail;
1586 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1587 * it does not set our validity bit. We need to compensate for
1588 * that somewhere else, but not in eth1394. */
1589 #if 0
1590 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1591 goto fail;
1592 #endif
1594 skb = skb_share_check(skb, GFP_ATOMIC);
1595 if (!skb)
1596 goto fail;
1598 /* Get rid of the fake eth1394 header, but first make a copy.
1599 * We might need to rebuild the header on tx failure. */
1600 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1601 skb_pull(skb, ETH1394_HLEN);
1603 proto = hdr_buf.h_proto;
1604 dg_size = skb->len;
1606 /* Set the transmission type for the packet. ARP packets and IP
1607 * broadcast packets are sent via GASP. */
1608 if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1609 proto == htons(ETH_P_ARP) ||
1610 (proto == htons(ETH_P_IP) &&
1611 IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1612 tx_type = ETH1394_GASP;
1613 dest_node = LOCAL_BUS | ALL_NODES;
1614 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1615 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1616 dgl = priv->bc_dgl;
1617 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1618 priv->bc_dgl++;
1619 } else {
1620 __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
1622 node = eth1394_find_node_guid(&priv->ip_node_list,
1623 be64_to_cpu(guid));
1624 if (!node)
1625 goto fail;
1627 node_info =
1628 (struct eth1394_node_info *)node->ud->device.driver_data;
1629 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1630 goto fail;
1632 dest_node = node->ud->ne->nodeid;
1633 max_payload = node_info->maxpayload;
1634 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1636 dgl = node_info->dgl;
1637 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1638 node_info->dgl++;
1639 tx_type = ETH1394_WRREQ;
1642 /* If this is an ARP packet, convert it */
1643 if (proto == htons(ETH_P_ARP))
1644 ether1394_arp_to_1394arp(skb, dev);
1646 ptask->hdr.words.word1 = 0;
1647 ptask->hdr.words.word2 = 0;
1648 ptask->hdr.words.word3 = 0;
1649 ptask->hdr.words.word4 = 0;
1650 ptask->skb = skb;
1651 ptask->priv = priv;
1652 ptask->tx_type = tx_type;
1654 if (tx_type != ETH1394_GASP) {
1655 u64 addr;
1657 spin_lock_irqsave(&priv->lock, flags);
1658 addr = node_info->fifo;
1659 spin_unlock_irqrestore(&priv->lock, flags);
1661 ptask->addr = addr;
1662 ptask->dest_node = dest_node;
1665 ptask->tx_type = tx_type;
1666 ptask->max_payload = max_payload;
1667 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1668 proto, &ptask->hdr, dg_size, dgl);
1670 /* Add the encapsulation header to the fragment */
1671 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1672 dev->trans_start = jiffies;
1673 if (ether1394_send_packet(ptask, tx_len)) {
1674 if (dest_node == (LOCAL_BUS | ALL_NODES))
1675 goto fail;
1677 /* At this point we want to restore the packet. When we return
1678 * here with NETDEV_TX_BUSY we will get another entrance in this
1679 * routine with the same skb and we need it to look the same.
1680 * So we pull 4 more bytes, then build the header again. */
1681 skb_pull(skb, 4);
1682 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1683 hdr_buf.h_dest, NULL, 0);
1685 /* Most failures of ether1394_send_packet are recoverable. */
1686 netif_stop_queue(dev);
1687 priv->wake_node = dest_node;
1688 schedule_work(&priv->wake);
1689 kmem_cache_free(packet_task_cache, ptask);
1690 return NETDEV_TX_BUSY;
1693 return NETDEV_TX_OK;
1694 fail:
1695 if (ptask)
1696 kmem_cache_free(packet_task_cache, ptask);
1698 if (skb != NULL)
1699 dev_kfree_skb(skb);
1701 spin_lock_irqsave(&priv->lock, flags);
1702 priv->stats.tx_dropped++;
1703 priv->stats.tx_errors++;
1704 spin_unlock_irqrestore(&priv->lock, flags);
1707 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1708 * causes serious problems" here, allegedly. Before that patch,
1709 * -ERRNO was returned which is not appropriate under Linux 2.6.
1710 * Perhaps more needs to be done? Stop the queue in serious
1711 * conditions and restart it elsewhere?
1713 /* return NETDEV_TX_BUSY; */
1714 return NETDEV_TX_OK;
1717 static void ether1394_get_drvinfo(struct net_device *dev,
1718 struct ethtool_drvinfo *info)
1720 strcpy(info->driver, driver_name);
1721 strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1724 static struct ethtool_ops ethtool_ops = {
1725 .get_drvinfo = ether1394_get_drvinfo
1728 static int __init ether1394_init_module(void)
1730 int err;
1732 packet_task_cache = kmem_cache_create("packet_task",
1733 sizeof(struct packet_task),
1734 0, 0, NULL, NULL);
1735 if (!packet_task_cache)
1736 return -ENOMEM;
1738 hpsb_register_highlevel(&eth1394_highlevel);
1739 err = hpsb_register_protocol(&eth1394_proto_driver);
1740 if (err) {
1741 hpsb_unregister_highlevel(&eth1394_highlevel);
1742 kmem_cache_destroy(packet_task_cache);
1744 return err;
1747 static void __exit ether1394_exit_module(void)
1749 hpsb_unregister_protocol(&eth1394_proto_driver);
1750 hpsb_unregister_highlevel(&eth1394_highlevel);
1751 kmem_cache_destroy(packet_task_cache);
1754 module_init(ether1394_init_module);
1755 module_exit(ether1394_exit_module);