RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / block / elevator.c
blob4f6ce9a876f2c7b60ebe773e9d5ce0953e322436
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
38 #include <asm/uaccess.h>
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
44 * Merge hash stuff.
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
48 #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
49 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
50 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
51 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
54 * Query io scheduler to see if the current process issuing bio may be
55 * merged with rq.
57 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
59 request_queue_t *q = rq->q;
60 elevator_t *e = q->elevator;
62 if (e->ops->elevator_allow_merge_fn)
63 return e->ops->elevator_allow_merge_fn(q, rq, bio);
65 return 1;
69 * can we safely merge with this request?
71 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
73 if (!rq_mergeable(rq))
74 return 0;
77 * different data direction or already started, don't merge
79 if (bio_data_dir(bio) != rq_data_dir(rq))
80 return 0;
83 * must be same device and not a special request
85 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
86 return 0;
88 if (!elv_iosched_allow_merge(rq, bio))
89 return 0;
91 return 1;
93 EXPORT_SYMBOL(elv_rq_merge_ok);
95 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
97 int ret = ELEVATOR_NO_MERGE;
100 * we can merge and sequence is ok, check if it's possible
102 if (elv_rq_merge_ok(__rq, bio)) {
103 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
104 ret = ELEVATOR_BACK_MERGE;
105 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
106 ret = ELEVATOR_FRONT_MERGE;
109 return ret;
112 static struct elevator_type *elevator_find(const char *name)
114 struct elevator_type *e;
115 struct list_head *entry;
117 list_for_each(entry, &elv_list) {
119 e = list_entry(entry, struct elevator_type, list);
121 if (!strcmp(e->elevator_name, name))
122 return e;
125 return NULL;
128 static void elevator_put(struct elevator_type *e)
130 module_put(e->elevator_owner);
133 static struct elevator_type *elevator_get(const char *name)
135 struct elevator_type *e;
137 spin_lock(&elv_list_lock);
139 e = elevator_find(name);
140 if (e && !try_module_get(e->elevator_owner))
141 e = NULL;
143 spin_unlock(&elv_list_lock);
145 return e;
148 static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq)
150 return eq->ops->elevator_init_fn(q);
153 static void elevator_attach(request_queue_t *q, struct elevator_queue *eq,
154 void *data)
156 q->elevator = eq;
157 eq->elevator_data = data;
160 static char chosen_elevator[16];
162 static int __init elevator_setup(char *str)
165 * Be backwards-compatible with previous kernels, so users
166 * won't get the wrong elevator.
168 if (!strcmp(str, "as"))
169 strcpy(chosen_elevator, "anticipatory");
170 else
171 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
172 return 1;
175 __setup("elevator=", elevator_setup);
177 static struct kobj_type elv_ktype;
179 static elevator_t *elevator_alloc(request_queue_t *q, struct elevator_type *e)
181 elevator_t *eq;
182 int i;
184 eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL | __GFP_ZERO, q->node);
185 if (unlikely(!eq))
186 goto err;
188 eq->ops = &e->ops;
189 eq->elevator_type = e;
190 kobject_init(&eq->kobj);
191 snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
192 eq->kobj.ktype = &elv_ktype;
193 mutex_init(&eq->sysfs_lock);
195 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
196 GFP_KERNEL, q->node);
197 if (!eq->hash)
198 goto err;
200 for (i = 0; i < ELV_HASH_ENTRIES; i++)
201 INIT_HLIST_HEAD(&eq->hash[i]);
203 return eq;
204 err:
205 kfree(eq);
206 elevator_put(e);
207 return NULL;
210 static void elevator_release(struct kobject *kobj)
212 elevator_t *e = container_of(kobj, elevator_t, kobj);
214 elevator_put(e->elevator_type);
215 kfree(e->hash);
216 kfree(e);
219 int elevator_init(request_queue_t *q, char *name)
221 struct elevator_type *e = NULL;
222 struct elevator_queue *eq;
223 int ret = 0;
224 void *data;
226 INIT_LIST_HEAD(&q->queue_head);
227 q->last_merge = NULL;
228 q->end_sector = 0;
229 q->boundary_rq = NULL;
231 if (name && !(e = elevator_get(name)))
232 return -EINVAL;
234 if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
235 printk("I/O scheduler %s not found\n", chosen_elevator);
237 if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
238 printk("Default I/O scheduler not found, using no-op\n");
239 e = elevator_get("noop");
242 eq = elevator_alloc(q, e);
243 if (!eq)
244 return -ENOMEM;
246 data = elevator_init_queue(q, eq);
247 if (!data) {
248 kobject_put(&eq->kobj);
249 return -ENOMEM;
252 elevator_attach(q, eq, data);
253 return ret;
256 EXPORT_SYMBOL(elevator_init);
258 void elevator_exit(elevator_t *e)
260 mutex_lock(&e->sysfs_lock);
261 if (e->ops->elevator_exit_fn)
262 e->ops->elevator_exit_fn(e);
263 e->ops = NULL;
264 mutex_unlock(&e->sysfs_lock);
266 kobject_put(&e->kobj);
269 EXPORT_SYMBOL(elevator_exit);
271 static void elv_activate_rq(request_queue_t *q, struct request *rq)
273 elevator_t *e = q->elevator;
275 if (e->ops->elevator_activate_req_fn)
276 e->ops->elevator_activate_req_fn(q, rq);
279 static void elv_deactivate_rq(request_queue_t *q, struct request *rq)
281 elevator_t *e = q->elevator;
283 if (e->ops->elevator_deactivate_req_fn)
284 e->ops->elevator_deactivate_req_fn(q, rq);
287 static inline void __elv_rqhash_del(struct request *rq)
289 hlist_del_init(&rq->hash);
292 static void elv_rqhash_del(request_queue_t *q, struct request *rq)
294 if (ELV_ON_HASH(rq))
295 __elv_rqhash_del(rq);
298 static void elv_rqhash_add(request_queue_t *q, struct request *rq)
300 elevator_t *e = q->elevator;
302 BUG_ON(ELV_ON_HASH(rq));
303 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
306 static void elv_rqhash_reposition(request_queue_t *q, struct request *rq)
308 __elv_rqhash_del(rq);
309 elv_rqhash_add(q, rq);
312 static struct request *elv_rqhash_find(request_queue_t *q, sector_t offset)
314 elevator_t *e = q->elevator;
315 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
316 struct hlist_node *entry, *next;
317 struct request *rq;
319 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
320 BUG_ON(!ELV_ON_HASH(rq));
322 if (unlikely(!rq_mergeable(rq))) {
323 __elv_rqhash_del(rq);
324 continue;
327 if (rq_hash_key(rq) == offset)
328 return rq;
331 return NULL;
335 * RB-tree support functions for inserting/lookup/removal of requests
336 * in a sorted RB tree.
338 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
340 struct rb_node **p = &root->rb_node;
341 struct rb_node *parent = NULL;
342 struct request *__rq;
344 while (*p) {
345 parent = *p;
346 __rq = rb_entry(parent, struct request, rb_node);
348 if (rq->sector < __rq->sector)
349 p = &(*p)->rb_left;
350 else if (rq->sector > __rq->sector)
351 p = &(*p)->rb_right;
352 else
353 return __rq;
356 rb_link_node(&rq->rb_node, parent, p);
357 rb_insert_color(&rq->rb_node, root);
358 return NULL;
361 EXPORT_SYMBOL(elv_rb_add);
363 void elv_rb_del(struct rb_root *root, struct request *rq)
365 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
366 rb_erase(&rq->rb_node, root);
367 RB_CLEAR_NODE(&rq->rb_node);
370 EXPORT_SYMBOL(elv_rb_del);
372 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
374 struct rb_node *n = root->rb_node;
375 struct request *rq;
377 while (n) {
378 rq = rb_entry(n, struct request, rb_node);
380 if (sector < rq->sector)
381 n = n->rb_left;
382 else if (sector > rq->sector)
383 n = n->rb_right;
384 else
385 return rq;
388 return NULL;
391 EXPORT_SYMBOL(elv_rb_find);
394 * Insert rq into dispatch queue of q. Queue lock must be held on
395 * entry. rq is sort insted into the dispatch queue. To be used by
396 * specific elevators.
398 void elv_dispatch_sort(request_queue_t *q, struct request *rq)
400 sector_t boundary;
401 struct list_head *entry;
403 if (q->last_merge == rq)
404 q->last_merge = NULL;
406 elv_rqhash_del(q, rq);
408 q->nr_sorted--;
410 boundary = q->end_sector;
412 list_for_each_prev(entry, &q->queue_head) {
413 struct request *pos = list_entry_rq(entry);
415 if (rq_data_dir(rq) != rq_data_dir(pos))
416 break;
417 if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
418 break;
419 if (rq->sector >= boundary) {
420 if (pos->sector < boundary)
421 continue;
422 } else {
423 if (pos->sector >= boundary)
424 break;
426 if (rq->sector >= pos->sector)
427 break;
430 list_add(&rq->queuelist, entry);
433 EXPORT_SYMBOL(elv_dispatch_sort);
436 * Insert rq into dispatch queue of q. Queue lock must be held on
437 * entry. rq is added to the back of the dispatch queue. To be used by
438 * specific elevators.
440 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
442 if (q->last_merge == rq)
443 q->last_merge = NULL;
445 elv_rqhash_del(q, rq);
447 q->nr_sorted--;
449 q->end_sector = rq_end_sector(rq);
450 q->boundary_rq = rq;
451 list_add_tail(&rq->queuelist, &q->queue_head);
454 EXPORT_SYMBOL(elv_dispatch_add_tail);
456 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
458 elevator_t *e = q->elevator;
459 struct request *__rq;
460 int ret;
463 * First try one-hit cache.
465 if (q->last_merge) {
466 ret = elv_try_merge(q->last_merge, bio);
467 if (ret != ELEVATOR_NO_MERGE) {
468 *req = q->last_merge;
469 return ret;
474 * See if our hash lookup can find a potential backmerge.
476 __rq = elv_rqhash_find(q, bio->bi_sector);
477 if (__rq && elv_rq_merge_ok(__rq, bio)) {
478 *req = __rq;
479 return ELEVATOR_BACK_MERGE;
482 if (e->ops->elevator_merge_fn)
483 return e->ops->elevator_merge_fn(q, req, bio);
485 return ELEVATOR_NO_MERGE;
488 void elv_merged_request(request_queue_t *q, struct request *rq, int type)
490 elevator_t *e = q->elevator;
492 if (e->ops->elevator_merged_fn)
493 e->ops->elevator_merged_fn(q, rq, type);
495 if (type == ELEVATOR_BACK_MERGE)
496 elv_rqhash_reposition(q, rq);
498 q->last_merge = rq;
501 void elv_merge_requests(request_queue_t *q, struct request *rq,
502 struct request *next)
504 elevator_t *e = q->elevator;
506 if (e->ops->elevator_merge_req_fn)
507 e->ops->elevator_merge_req_fn(q, rq, next);
509 elv_rqhash_reposition(q, rq);
510 elv_rqhash_del(q, next);
512 q->nr_sorted--;
513 q->last_merge = rq;
516 void elv_requeue_request(request_queue_t *q, struct request *rq)
519 * it already went through dequeue, we need to decrement the
520 * in_flight count again
522 if (blk_account_rq(rq)) {
523 q->in_flight--;
524 if (blk_sorted_rq(rq))
525 elv_deactivate_rq(q, rq);
528 rq->cmd_flags &= ~REQ_STARTED;
530 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
533 static void elv_drain_elevator(request_queue_t *q)
535 static int printed;
536 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
538 if (q->nr_sorted == 0)
539 return;
540 if (printed++ < 10) {
541 printk(KERN_ERR "%s: forced dispatching is broken "
542 "(nr_sorted=%u), please report this\n",
543 q->elevator->elevator_type->elevator_name, q->nr_sorted);
547 void elv_insert(request_queue_t *q, struct request *rq, int where)
549 struct list_head *pos;
550 unsigned ordseq;
551 int unplug_it = 1;
553 blk_add_trace_rq(q, rq, BLK_TA_INSERT);
555 rq->q = q;
557 switch (where) {
558 case ELEVATOR_INSERT_FRONT:
559 rq->cmd_flags |= REQ_SOFTBARRIER;
561 list_add(&rq->queuelist, &q->queue_head);
562 break;
564 case ELEVATOR_INSERT_BACK:
565 rq->cmd_flags |= REQ_SOFTBARRIER;
566 elv_drain_elevator(q);
567 list_add_tail(&rq->queuelist, &q->queue_head);
569 * We kick the queue here for the following reasons.
570 * - The elevator might have returned NULL previously
571 * to delay requests and returned them now. As the
572 * queue wasn't empty before this request, ll_rw_blk
573 * won't run the queue on return, resulting in hang.
574 * - Usually, back inserted requests won't be merged
575 * with anything. There's no point in delaying queue
576 * processing.
578 blk_remove_plug(q);
579 q->request_fn(q);
580 break;
582 case ELEVATOR_INSERT_SORT:
583 BUG_ON(!blk_fs_request(rq));
584 rq->cmd_flags |= REQ_SORTED;
585 q->nr_sorted++;
586 if (rq_mergeable(rq)) {
587 elv_rqhash_add(q, rq);
588 if (!q->last_merge)
589 q->last_merge = rq;
593 * Some ioscheds (cfq) run q->request_fn directly, so
594 * rq cannot be accessed after calling
595 * elevator_add_req_fn.
597 q->elevator->ops->elevator_add_req_fn(q, rq);
598 break;
600 case ELEVATOR_INSERT_REQUEUE:
602 * If ordered flush isn't in progress, we do front
603 * insertion; otherwise, requests should be requeued
604 * in ordseq order.
606 rq->cmd_flags |= REQ_SOFTBARRIER;
609 * Most requeues happen because of a busy condition,
610 * don't force unplug of the queue for that case.
612 unplug_it = 0;
614 if (q->ordseq == 0) {
615 list_add(&rq->queuelist, &q->queue_head);
616 break;
619 ordseq = blk_ordered_req_seq(rq);
621 list_for_each(pos, &q->queue_head) {
622 struct request *pos_rq = list_entry_rq(pos);
623 if (ordseq <= blk_ordered_req_seq(pos_rq))
624 break;
627 list_add_tail(&rq->queuelist, pos);
628 break;
630 default:
631 printk(KERN_ERR "%s: bad insertion point %d\n",
632 __FUNCTION__, where);
633 BUG();
636 if (unplug_it && blk_queue_plugged(q)) {
637 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
638 - q->in_flight;
640 if (nrq >= q->unplug_thresh)
641 __generic_unplug_device(q);
645 void __elv_add_request(request_queue_t *q, struct request *rq, int where,
646 int plug)
648 if (q->ordcolor)
649 rq->cmd_flags |= REQ_ORDERED_COLOR;
651 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
653 * toggle ordered color
655 if (blk_barrier_rq(rq))
656 q->ordcolor ^= 1;
659 * barriers implicitly indicate back insertion
661 if (where == ELEVATOR_INSERT_SORT)
662 where = ELEVATOR_INSERT_BACK;
665 * this request is scheduling boundary, update
666 * end_sector
668 if (blk_fs_request(rq)) {
669 q->end_sector = rq_end_sector(rq);
670 q->boundary_rq = rq;
672 } else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
673 where = ELEVATOR_INSERT_BACK;
675 if (plug)
676 blk_plug_device(q);
678 elv_insert(q, rq, where);
681 EXPORT_SYMBOL(__elv_add_request);
683 void elv_add_request(request_queue_t *q, struct request *rq, int where,
684 int plug)
686 unsigned long flags;
688 spin_lock_irqsave(q->queue_lock, flags);
689 __elv_add_request(q, rq, where, plug);
690 spin_unlock_irqrestore(q->queue_lock, flags);
693 EXPORT_SYMBOL(elv_add_request);
695 static inline struct request *__elv_next_request(request_queue_t *q)
697 struct request *rq;
699 while (1) {
700 while (!list_empty(&q->queue_head)) {
701 rq = list_entry_rq(q->queue_head.next);
702 if (blk_do_ordered(q, &rq))
703 return rq;
706 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
707 return NULL;
711 struct request *elv_next_request(request_queue_t *q)
713 struct request *rq;
714 int ret;
716 while ((rq = __elv_next_request(q)) != NULL) {
717 if (!(rq->cmd_flags & REQ_STARTED)) {
719 * This is the first time the device driver
720 * sees this request (possibly after
721 * requeueing). Notify IO scheduler.
723 if (blk_sorted_rq(rq))
724 elv_activate_rq(q, rq);
727 * just mark as started even if we don't start
728 * it, a request that has been delayed should
729 * not be passed by new incoming requests
731 rq->cmd_flags |= REQ_STARTED;
732 blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
735 if (!q->boundary_rq || q->boundary_rq == rq) {
736 q->end_sector = rq_end_sector(rq);
737 q->boundary_rq = NULL;
740 if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
741 break;
743 ret = q->prep_rq_fn(q, rq);
744 if (ret == BLKPREP_OK) {
745 break;
746 } else if (ret == BLKPREP_DEFER) {
748 * the request may have been (partially) prepped.
749 * we need to keep this request in the front to
750 * avoid resource deadlock. REQ_STARTED will
751 * prevent other fs requests from passing this one.
753 rq = NULL;
754 break;
755 } else if (ret == BLKPREP_KILL) {
756 rq->cmd_flags |= REQ_QUIET;
757 end_queued_request(rq, 0);
758 } else {
759 printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
760 ret);
761 break;
765 return rq;
768 EXPORT_SYMBOL(elv_next_request);
770 void elv_dequeue_request(request_queue_t *q, struct request *rq)
772 BUG_ON(list_empty(&rq->queuelist));
773 BUG_ON(ELV_ON_HASH(rq));
775 list_del_init(&rq->queuelist);
778 * the time frame between a request being removed from the lists
779 * and to it is freed is accounted as io that is in progress at
780 * the driver side.
782 if (blk_account_rq(rq))
783 q->in_flight++;
786 EXPORT_SYMBOL(elv_dequeue_request);
788 int elv_queue_empty(request_queue_t *q)
790 elevator_t *e = q->elevator;
792 if (!list_empty(&q->queue_head))
793 return 0;
795 if (e->ops->elevator_queue_empty_fn)
796 return e->ops->elevator_queue_empty_fn(q);
798 return 1;
801 EXPORT_SYMBOL(elv_queue_empty);
803 struct request *elv_latter_request(request_queue_t *q, struct request *rq)
805 elevator_t *e = q->elevator;
807 if (e->ops->elevator_latter_req_fn)
808 return e->ops->elevator_latter_req_fn(q, rq);
809 return NULL;
812 struct request *elv_former_request(request_queue_t *q, struct request *rq)
814 elevator_t *e = q->elevator;
816 if (e->ops->elevator_former_req_fn)
817 return e->ops->elevator_former_req_fn(q, rq);
818 return NULL;
821 int elv_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
823 elevator_t *e = q->elevator;
825 if (e->ops->elevator_set_req_fn)
826 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
828 rq->elevator_private = NULL;
829 return 0;
832 void elv_put_request(request_queue_t *q, struct request *rq)
834 elevator_t *e = q->elevator;
836 if (e->ops->elevator_put_req_fn)
837 e->ops->elevator_put_req_fn(rq);
840 int elv_may_queue(request_queue_t *q, int rw)
842 elevator_t *e = q->elevator;
844 if (e->ops->elevator_may_queue_fn)
845 return e->ops->elevator_may_queue_fn(q, rw);
847 return ELV_MQUEUE_MAY;
850 void elv_completed_request(request_queue_t *q, struct request *rq)
852 elevator_t *e = q->elevator;
855 * request is released from the driver, io must be done
857 if (blk_account_rq(rq)) {
858 q->in_flight--;
859 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
860 e->ops->elevator_completed_req_fn(q, rq);
864 * Check if the queue is waiting for fs requests to be
865 * drained for flush sequence.
867 if (unlikely(q->ordseq)) {
868 struct request *first_rq = list_entry_rq(q->queue_head.next);
869 if (q->in_flight == 0 &&
870 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
871 blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
872 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
873 q->request_fn(q);
878 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
880 static ssize_t
881 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
883 elevator_t *e = container_of(kobj, elevator_t, kobj);
884 struct elv_fs_entry *entry = to_elv(attr);
885 ssize_t error;
887 if (!entry->show)
888 return -EIO;
890 mutex_lock(&e->sysfs_lock);
891 error = e->ops ? entry->show(e, page) : -ENOENT;
892 mutex_unlock(&e->sysfs_lock);
893 return error;
896 static ssize_t
897 elv_attr_store(struct kobject *kobj, struct attribute *attr,
898 const char *page, size_t length)
900 elevator_t *e = container_of(kobj, elevator_t, kobj);
901 struct elv_fs_entry *entry = to_elv(attr);
902 ssize_t error;
904 if (!entry->store)
905 return -EIO;
907 mutex_lock(&e->sysfs_lock);
908 error = e->ops ? entry->store(e, page, length) : -ENOENT;
909 mutex_unlock(&e->sysfs_lock);
910 return error;
913 static struct sysfs_ops elv_sysfs_ops = {
914 .show = elv_attr_show,
915 .store = elv_attr_store,
918 static struct kobj_type elv_ktype = {
919 .sysfs_ops = &elv_sysfs_ops,
920 .release = elevator_release,
923 int elv_register_queue(struct request_queue *q)
925 elevator_t *e = q->elevator;
926 int error;
928 e->kobj.parent = &q->kobj;
930 error = kobject_add(&e->kobj);
931 if (!error) {
932 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
933 if (attr) {
934 while (attr->attr.name) {
935 if (sysfs_create_file(&e->kobj, &attr->attr))
936 break;
937 attr++;
940 kobject_uevent(&e->kobj, KOBJ_ADD);
942 return error;
945 static void __elv_unregister_queue(elevator_t *e)
947 kobject_uevent(&e->kobj, KOBJ_REMOVE);
948 kobject_del(&e->kobj);
951 void elv_unregister_queue(struct request_queue *q)
953 if (q)
954 __elv_unregister_queue(q->elevator);
957 int elv_register(struct elevator_type *e)
959 char *def = "";
961 spin_lock(&elv_list_lock);
962 BUG_ON(elevator_find(e->elevator_name));
963 list_add_tail(&e->list, &elv_list);
964 spin_unlock(&elv_list_lock);
966 if (!strcmp(e->elevator_name, chosen_elevator) ||
967 (!*chosen_elevator &&
968 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
969 def = " (default)";
971 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name, def);
972 return 0;
974 EXPORT_SYMBOL_GPL(elv_register);
976 void elv_unregister(struct elevator_type *e)
978 struct task_struct *g, *p;
981 * Iterate every thread in the process to remove the io contexts.
983 if (e->ops.trim) {
984 read_lock(&tasklist_lock);
985 do_each_thread(g, p) {
986 task_lock(p);
987 if (p->io_context)
988 e->ops.trim(p->io_context);
989 task_unlock(p);
990 } while_each_thread(g, p);
991 read_unlock(&tasklist_lock);
994 spin_lock(&elv_list_lock);
995 list_del_init(&e->list);
996 spin_unlock(&elv_list_lock);
998 EXPORT_SYMBOL_GPL(elv_unregister);
1001 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1002 * we don't free the old io scheduler, before we have allocated what we
1003 * need for the new one. this way we have a chance of going back to the old
1004 * one, if the new one fails init for some reason.
1006 static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
1008 elevator_t *old_elevator, *e;
1009 void *data;
1012 * Allocate new elevator
1014 e = elevator_alloc(q, new_e);
1015 if (!e)
1016 return 0;
1018 data = elevator_init_queue(q, e);
1019 if (!data) {
1020 kobject_put(&e->kobj);
1021 return 0;
1025 * Turn on BYPASS and drain all requests w/ elevator private data
1027 spin_lock_irq(q->queue_lock);
1029 set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1031 elv_drain_elevator(q);
1033 while (q->rq.elvpriv) {
1034 blk_remove_plug(q);
1035 q->request_fn(q);
1036 spin_unlock_irq(q->queue_lock);
1037 msleep(10);
1038 spin_lock_irq(q->queue_lock);
1039 elv_drain_elevator(q);
1043 * Remember old elevator.
1045 old_elevator = q->elevator;
1048 * attach and start new elevator
1050 elevator_attach(q, e, data);
1052 spin_unlock_irq(q->queue_lock);
1054 __elv_unregister_queue(old_elevator);
1056 if (elv_register_queue(q))
1057 goto fail_register;
1060 * finally exit old elevator and turn off BYPASS.
1062 elevator_exit(old_elevator);
1063 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1064 return 1;
1066 fail_register:
1068 * switch failed, exit the new io scheduler and reattach the old
1069 * one again (along with re-adding the sysfs dir)
1071 elevator_exit(e);
1072 q->elevator = old_elevator;
1073 elv_register_queue(q);
1074 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1075 return 0;
1078 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
1080 char elevator_name[ELV_NAME_MAX];
1081 size_t len;
1082 struct elevator_type *e;
1084 elevator_name[sizeof(elevator_name) - 1] = '\0';
1085 strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1086 len = strlen(elevator_name);
1088 if (len && elevator_name[len - 1] == '\n')
1089 elevator_name[len - 1] = '\0';
1091 e = elevator_get(elevator_name);
1092 if (!e) {
1093 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1094 return -EINVAL;
1097 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1098 elevator_put(e);
1099 return count;
1102 if (!elevator_switch(q, e))
1103 printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
1104 return count;
1107 ssize_t elv_iosched_show(request_queue_t *q, char *name)
1109 elevator_t *e = q->elevator;
1110 struct elevator_type *elv = e->elevator_type;
1111 struct list_head *entry;
1112 int len = 0;
1114 spin_lock(&elv_list_lock);
1115 list_for_each(entry, &elv_list) {
1116 struct elevator_type *__e;
1118 __e = list_entry(entry, struct elevator_type, list);
1119 if (!strcmp(elv->elevator_name, __e->elevator_name))
1120 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1121 else
1122 len += sprintf(name+len, "%s ", __e->elevator_name);
1124 spin_unlock(&elv_list_lock);
1126 len += sprintf(len+name, "\n");
1127 return len;
1130 struct request *elv_rb_former_request(request_queue_t *q, struct request *rq)
1132 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1134 if (rbprev)
1135 return rb_entry_rq(rbprev);
1137 return NULL;
1140 EXPORT_SYMBOL(elv_rb_former_request);
1142 struct request *elv_rb_latter_request(request_queue_t *q, struct request *rq)
1144 struct rb_node *rbnext = rb_next(&rq->rb_node);
1146 if (rbnext)
1147 return rb_entry_rq(rbnext);
1149 return NULL;
1152 EXPORT_SYMBOL(elv_rb_latter_request);