RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / x86_64 / mm / fault.c
blob84f11728fc76e8438907be59f187ffb7fef96d72
1 /*
2 * linux/arch/x86-64/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
6 */
8 #include <linux/signal.h>
9 #include <linux/sched.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/ptrace.h>
15 #include <linux/mman.h>
16 #include <linux/mm.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/tty.h>
21 #include <linux/vt_kern.h> /* For unblank_screen() */
22 #include <linux/compiler.h>
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
29 #include <asm/system.h>
30 #include <asm/pgalloc.h>
31 #include <asm/smp.h>
32 #include <asm/tlbflush.h>
33 #include <asm/proto.h>
34 #include <asm-generic/sections.h>
36 /* Page fault error code bits */
37 #define PF_PROT (1<<0) /* or no page found */
38 #define PF_WRITE (1<<1)
39 #define PF_USER (1<<2)
40 #define PF_RSVD (1<<3)
41 #define PF_INSTR (1<<4)
43 static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
45 /* Hook to register for page fault notifications */
46 int register_page_fault_notifier(struct notifier_block *nb)
48 vmalloc_sync_all();
49 return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
51 EXPORT_SYMBOL_GPL(register_page_fault_notifier);
53 int unregister_page_fault_notifier(struct notifier_block *nb)
55 return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
57 EXPORT_SYMBOL_GPL(unregister_page_fault_notifier);
59 static inline int notify_page_fault(struct pt_regs *regs, long err)
61 struct die_args args = {
62 .regs = regs,
63 .str = "page fault",
64 .err = err,
65 .trapnr = 14,
66 .signr = SIGSEGV
68 return atomic_notifier_call_chain(&notify_page_fault_chain,
69 DIE_PAGE_FAULT, &args);
72 /* Sometimes the CPU reports invalid exceptions on prefetch.
73 Check that here and ignore.
74 Opcode checker based on code by Richard Brunner */
75 static noinline int is_prefetch(struct pt_regs *regs, unsigned long addr,
76 unsigned long error_code)
78 unsigned char *instr;
79 int scan_more = 1;
80 int prefetch = 0;
81 unsigned char *max_instr;
83 /* If it was a exec fault ignore */
84 if (error_code & PF_INSTR)
85 return 0;
87 instr = (unsigned char __user *)convert_rip_to_linear(current, regs);
88 max_instr = instr + 15;
90 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
91 return 0;
93 while (scan_more && instr < max_instr) {
94 unsigned char opcode;
95 unsigned char instr_hi;
96 unsigned char instr_lo;
98 if (probe_kernel_address(instr, opcode))
99 break;
101 instr_hi = opcode & 0xf0;
102 instr_lo = opcode & 0x0f;
103 instr++;
105 switch (instr_hi) {
106 case 0x20:
107 case 0x30:
108 /* Values 0x26,0x2E,0x36,0x3E are valid x86
109 prefixes. In long mode, the CPU will signal
110 invalid opcode if some of these prefixes are
111 present so we will never get here anyway */
112 scan_more = ((instr_lo & 7) == 0x6);
113 break;
115 case 0x40:
116 /* In AMD64 long mode, 0x40 to 0x4F are valid REX prefixes
117 Need to figure out under what instruction mode the
118 instruction was issued ... */
119 /* Could check the LDT for lm, but for now it's good
120 enough to assume that long mode only uses well known
121 segments or kernel. */
122 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
123 break;
125 case 0x60:
126 /* 0x64 thru 0x67 are valid prefixes in all modes. */
127 scan_more = (instr_lo & 0xC) == 0x4;
128 break;
129 case 0xF0:
130 /* 0xF0, 0xF2, and 0xF3 are valid prefixes in all modes. */
131 scan_more = !instr_lo || (instr_lo>>1) == 1;
132 break;
133 case 0x00:
134 /* Prefetch instruction is 0x0F0D or 0x0F18 */
135 scan_more = 0;
136 if (probe_kernel_address(instr, opcode))
137 break;
138 prefetch = (instr_lo == 0xF) &&
139 (opcode == 0x0D || opcode == 0x18);
140 break;
141 default:
142 scan_more = 0;
143 break;
146 return prefetch;
149 static int bad_address(void *p)
151 unsigned long dummy;
152 return probe_kernel_address((unsigned long *)p, dummy);
155 void dump_pagetable(unsigned long address)
157 pgd_t *pgd;
158 pud_t *pud;
159 pmd_t *pmd;
160 pte_t *pte;
162 asm("movq %%cr3,%0" : "=r" (pgd));
164 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
165 pgd += pgd_index(address);
166 if (bad_address(pgd)) goto bad;
167 printk("PGD %lx ", pgd_val(*pgd));
168 if (!pgd_present(*pgd)) goto ret;
170 pud = pud_offset(pgd, address);
171 if (bad_address(pud)) goto bad;
172 printk("PUD %lx ", pud_val(*pud));
173 if (!pud_present(*pud)) goto ret;
175 pmd = pmd_offset(pud, address);
176 if (bad_address(pmd)) goto bad;
177 printk("PMD %lx ", pmd_val(*pmd));
178 if (!pmd_present(*pmd)) goto ret;
180 pte = pte_offset_kernel(pmd, address);
181 if (bad_address(pte)) goto bad;
182 printk("PTE %lx", pte_val(*pte));
183 ret:
184 printk("\n");
185 return;
186 bad:
187 printk("BAD\n");
190 static const char errata93_warning[] =
191 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
192 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
193 KERN_ERR "******* Please consider a BIOS update.\n"
194 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
196 /* Workaround for K8 erratum #93 & buggy BIOS.
197 BIOS SMM functions are required to use a specific workaround
198 to avoid corruption of the 64bit RIP register on C stepping K8.
199 A lot of BIOS that didn't get tested properly miss this.
200 The OS sees this as a page fault with the upper 32bits of RIP cleared.
201 Try to work around it here.
202 Note we only handle faults in kernel here. */
204 static int is_errata93(struct pt_regs *regs, unsigned long address)
206 static int warned;
207 if (address != regs->rip)
208 return 0;
209 if ((address >> 32) != 0)
210 return 0;
211 address |= 0xffffffffUL << 32;
212 if ((address >= (u64)_stext && address <= (u64)_etext) ||
213 (address >= MODULES_VADDR && address <= MODULES_END)) {
214 if (!warned) {
215 printk(errata93_warning);
216 warned = 1;
218 regs->rip = address;
219 return 1;
221 return 0;
224 int unhandled_signal(struct task_struct *tsk, int sig)
226 if (is_init(tsk))
227 return 1;
228 if (tsk->ptrace & PT_PTRACED)
229 return 0;
230 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
231 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
234 static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
235 unsigned long error_code)
237 unsigned long flags = oops_begin();
238 struct task_struct *tsk;
240 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
241 current->comm, address);
242 dump_pagetable(address);
243 tsk = current;
244 tsk->thread.cr2 = address;
245 tsk->thread.trap_no = 14;
246 tsk->thread.error_code = error_code;
247 __die("Bad pagetable", regs, error_code);
248 oops_end(flags);
249 do_exit(SIGKILL);
253 * Handle a fault on the vmalloc area
255 * This assumes no large pages in there.
257 static int vmalloc_fault(unsigned long address)
259 pgd_t *pgd, *pgd_ref;
260 pud_t *pud, *pud_ref;
261 pmd_t *pmd, *pmd_ref;
262 pte_t *pte, *pte_ref;
264 /* Copy kernel mappings over when needed. This can also
265 happen within a race in page table update. In the later
266 case just flush. */
268 pgd = pgd_offset(current->mm ?: &init_mm, address);
269 pgd_ref = pgd_offset_k(address);
270 if (pgd_none(*pgd_ref))
271 return -1;
272 if (pgd_none(*pgd))
273 set_pgd(pgd, *pgd_ref);
274 else
275 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
277 /* Below here mismatches are bugs because these lower tables
278 are shared */
280 pud = pud_offset(pgd, address);
281 pud_ref = pud_offset(pgd_ref, address);
282 if (pud_none(*pud_ref))
283 return -1;
284 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
285 BUG();
286 pmd = pmd_offset(pud, address);
287 pmd_ref = pmd_offset(pud_ref, address);
288 if (pmd_none(*pmd_ref))
289 return -1;
290 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
291 BUG();
292 pte_ref = pte_offset_kernel(pmd_ref, address);
293 if (!pte_present(*pte_ref))
294 return -1;
295 pte = pte_offset_kernel(pmd, address);
296 /* Don't use pte_page here, because the mappings can point
297 outside mem_map, and the NUMA hash lookup cannot handle
298 that. */
299 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
300 BUG();
301 return 0;
304 int page_fault_trace = 0;
305 int exception_trace = 1;
308 * This routine handles page faults. It determines the address,
309 * and the problem, and then passes it off to one of the appropriate
310 * routines.
312 asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
313 unsigned long error_code)
315 struct task_struct *tsk;
316 struct mm_struct *mm;
317 struct vm_area_struct * vma;
318 unsigned long address;
319 const struct exception_table_entry *fixup;
320 int write, fault;
321 unsigned long flags;
322 siginfo_t info;
324 tsk = current;
325 mm = tsk->mm;
326 prefetchw(&mm->mmap_sem);
328 /* get the address */
329 __asm__("movq %%cr2,%0":"=r" (address));
331 info.si_code = SEGV_MAPERR;
335 * We fault-in kernel-space virtual memory on-demand. The
336 * 'reference' page table is init_mm.pgd.
338 * NOTE! We MUST NOT take any locks for this case. We may
339 * be in an interrupt or a critical region, and should
340 * only copy the information from the master page table,
341 * nothing more.
343 * This verifies that the fault happens in kernel space
344 * (error_code & 4) == 0, and that the fault was not a
345 * protection error (error_code & 9) == 0.
347 if (unlikely(address >= TASK_SIZE64)) {
349 * Don't check for the module range here: its PML4
350 * is always initialized because it's shared with the main
351 * kernel text. Only vmalloc may need PML4 syncups.
353 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
354 ((address >= VMALLOC_START && address < VMALLOC_END))) {
355 if (vmalloc_fault(address) >= 0)
356 return;
358 if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
359 return;
361 * Don't take the mm semaphore here. If we fixup a prefetch
362 * fault we could otherwise deadlock.
364 goto bad_area_nosemaphore;
367 if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
368 return;
370 if (likely(regs->eflags & X86_EFLAGS_IF))
371 local_irq_enable();
373 if (unlikely(page_fault_trace))
374 printk("pagefault rip:%lx rsp:%lx cs:%lu ss:%lu address %lx error %lx\n",
375 regs->rip,regs->rsp,regs->cs,regs->ss,address,error_code);
377 if (unlikely(error_code & PF_RSVD))
378 pgtable_bad(address, regs, error_code);
381 * If we're in an interrupt or have no user
382 * context, we must not take the fault..
384 if (unlikely(in_atomic() || !mm))
385 goto bad_area_nosemaphore;
387 again:
388 /* When running in the kernel we expect faults to occur only to
389 * addresses in user space. All other faults represent errors in the
390 * kernel and should generate an OOPS. Unfortunatly, in the case of an
391 * erroneous fault occurring in a code path which already holds mmap_sem
392 * we will deadlock attempting to validate the fault against the
393 * address space. Luckily the kernel only validly references user
394 * space from well defined areas of code, which are listed in the
395 * exceptions table.
397 * As the vast majority of faults will be valid we will only perform
398 * the source reference check when there is a possibilty of a deadlock.
399 * Attempt to lock the address space, if we cannot we then validate the
400 * source. If this is invalid we can skip the address space check,
401 * thus avoiding the deadlock.
403 if (!down_read_trylock(&mm->mmap_sem)) {
404 if ((error_code & PF_USER) == 0 &&
405 !search_exception_tables(regs->rip))
406 goto bad_area_nosemaphore;
407 down_read(&mm->mmap_sem);
410 vma = find_vma(mm, address);
411 if (!vma)
412 goto bad_area;
413 if (likely(vma->vm_start <= address))
414 goto good_area;
415 if (!(vma->vm_flags & VM_GROWSDOWN))
416 goto bad_area;
417 if (error_code & 4) {
418 /* Allow userspace just enough access below the stack pointer
419 * to let the 'enter' instruction work.
421 if (address + 65536 + 32 * sizeof(unsigned long) < regs->rsp)
422 goto bad_area;
424 if (expand_stack(vma, address))
425 goto bad_area;
427 * Ok, we have a good vm_area for this memory access, so
428 * we can handle it..
430 good_area:
431 info.si_code = SEGV_ACCERR;
432 write = 0;
433 switch (error_code & (PF_PROT|PF_WRITE)) {
434 default: /* 3: write, present */
435 /* fall through */
436 case PF_WRITE: /* write, not present */
437 if (!(vma->vm_flags & VM_WRITE))
438 goto bad_area;
439 write++;
440 break;
441 case PF_PROT: /* read, present */
442 goto bad_area;
443 case 0: /* read, not present */
444 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
445 goto bad_area;
449 * If for any reason at all we couldn't handle the fault,
450 * make sure we exit gracefully rather than endlessly redo
451 * the fault.
453 fault = handle_mm_fault(mm, vma, address, write);
454 if (unlikely(fault & VM_FAULT_ERROR)) {
455 if (fault & VM_FAULT_OOM)
456 goto out_of_memory;
457 else if (fault & VM_FAULT_SIGBUS)
458 goto do_sigbus;
459 BUG();
461 if (fault & VM_FAULT_MAJOR)
462 tsk->maj_flt++;
463 else
464 tsk->min_flt++;
465 up_read(&mm->mmap_sem);
466 return;
469 * Something tried to access memory that isn't in our memory map..
470 * Fix it, but check if it's kernel or user first..
472 bad_area:
473 up_read(&mm->mmap_sem);
475 bad_area_nosemaphore:
476 /* User mode accesses just cause a SIGSEGV */
477 if (error_code & PF_USER) {
480 * It's possible to have interrupts off here.
482 local_irq_enable();
484 if (is_prefetch(regs, address, error_code))
485 return;
487 /* Work around K8 erratum #100 K8 in compat mode
488 occasionally jumps to illegal addresses >4GB. We
489 catch this here in the page fault handler because
490 these addresses are not reachable. Just detect this
491 case and return. Any code segment in LDT is
492 compatibility mode. */
493 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
494 (address >> 32))
495 return;
497 if (exception_trace && unhandled_signal(tsk, SIGSEGV)) {
498 printk(
499 "%s%s[%d]: segfault at %016lx rip %016lx rsp %016lx error %lx\n",
500 tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
501 tsk->comm, tsk->pid, address, regs->rip,
502 regs->rsp, error_code);
505 tsk->thread.cr2 = address;
506 /* Kernel addresses are always protection faults */
507 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
508 tsk->thread.trap_no = 14;
509 info.si_signo = SIGSEGV;
510 info.si_errno = 0;
511 /* info.si_code has been set above */
512 info.si_addr = (void __user *)address;
513 force_sig_info(SIGSEGV, &info, tsk);
514 return;
517 no_context:
519 /* Are we prepared to handle this kernel fault? */
520 fixup = search_exception_tables(regs->rip);
521 if (fixup) {
522 regs->rip = fixup->fixup;
523 return;
527 * Hall of shame of CPU/BIOS bugs.
530 if (is_prefetch(regs, address, error_code))
531 return;
533 if (is_errata93(regs, address))
534 return;
537 * Oops. The kernel tried to access some bad page. We'll have to
538 * terminate things with extreme prejudice.
541 flags = oops_begin();
543 if (address < PAGE_SIZE)
544 printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
545 else
546 printk(KERN_ALERT "Unable to handle kernel paging request");
547 printk(" at %016lx RIP: \n" KERN_ALERT,address);
548 printk_address(regs->rip);
549 dump_pagetable(address);
550 tsk->thread.cr2 = address;
551 tsk->thread.trap_no = 14;
552 tsk->thread.error_code = error_code;
553 __die("Oops", regs, error_code);
554 /* Executive summary in case the body of the oops scrolled away */
555 printk(KERN_EMERG "CR2: %016lx\n", address);
556 oops_end(flags);
557 do_exit(SIGKILL);
560 * We ran out of memory, or some other thing happened to us that made
561 * us unable to handle the page fault gracefully.
563 out_of_memory:
564 up_read(&mm->mmap_sem);
565 if (is_init(current)) {
566 yield();
567 goto again;
569 printk("VM: killing process %s\n", tsk->comm);
570 if (error_code & 4)
571 do_exit(SIGKILL);
572 goto no_context;
574 do_sigbus:
575 up_read(&mm->mmap_sem);
577 /* Kernel mode? Handle exceptions or die */
578 if (!(error_code & PF_USER))
579 goto no_context;
581 tsk->thread.cr2 = address;
582 tsk->thread.error_code = error_code;
583 tsk->thread.trap_no = 14;
584 info.si_signo = SIGBUS;
585 info.si_errno = 0;
586 info.si_code = BUS_ADRERR;
587 info.si_addr = (void __user *)address;
588 force_sig_info(SIGBUS, &info, tsk);
589 return;
592 DEFINE_SPINLOCK(pgd_lock);
593 LIST_HEAD(pgd_list);
595 void vmalloc_sync_all(void)
597 /* Note that races in the updates of insync and start aren't
598 problematic:
599 insync can only get set bits added, and updates to start are only
600 improving performance (without affecting correctness if undone). */
601 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
602 static unsigned long start = VMALLOC_START & PGDIR_MASK;
603 unsigned long address;
605 for (address = start; address <= VMALLOC_END; address += PGDIR_SIZE) {
606 if (!test_bit(pgd_index(address), insync)) {
607 const pgd_t *pgd_ref = pgd_offset_k(address);
608 struct page *page;
610 if (pgd_none(*pgd_ref))
611 continue;
612 spin_lock(&pgd_lock);
613 list_for_each_entry(page, &pgd_list, lru) {
614 pgd_t *pgd;
615 pgd = (pgd_t *)page_address(page) + pgd_index(address);
616 if (pgd_none(*pgd))
617 set_pgd(pgd, *pgd_ref);
618 else
619 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
621 spin_unlock(&pgd_lock);
622 set_bit(pgd_index(address), insync);
624 if (address == start)
625 start = address + PGDIR_SIZE;
627 /* Check that there is no need to do the same for the modules area. */
628 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
629 BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
630 (__START_KERNEL & PGDIR_MASK)));
633 static int __init enable_pagefaulttrace(char *str)
635 page_fault_trace = 1;
636 return 1;
638 __setup("pagefaulttrace", enable_pagefaulttrace);