2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 * (c) 2002,2003 Andi Kleen, SuSE Labs.
8 * This code is released under the GNU General Public License version 2 or
12 #include <linux/init.h>
15 #include <linux/delay.h>
16 #include <linux/spinlock.h>
17 #include <linux/smp.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mc146818rtc.h>
20 #include <linux/interrupt.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mach_apic.h>
26 #include <asm/mmu_context.h>
27 #include <asm/proto.h>
28 #include <asm/apicdef.h>
32 * Smarter SMP flushing macros.
35 * These mean you can really definitely utterly forget about
36 * writing to user space from interrupts. (Its not allowed anyway).
38 * Optimizations Manfred Spraul <manfred@colorfullife.com>
40 * More scalable flush, from Andi Kleen
42 * To avoid global state use 8 different call vectors.
43 * Each CPU uses a specific vector to trigger flushes on other
44 * CPUs. Depending on the received vector the target CPUs look into
45 * the right per cpu variable for the flush data.
47 * With more than 8 CPUs they are hashed to the 8 available
48 * vectors. The limited global vector space forces us to this right now.
49 * In future when interrupts are split into per CPU domains this could be
50 * fixed, at the cost of triggering multiple IPIs in some cases.
53 union smp_flush_state
{
55 cpumask_t flush_cpumask
;
56 struct mm_struct
*flush_mm
;
57 unsigned long flush_va
;
58 #define FLUSH_ALL -1ULL
59 spinlock_t tlbstate_lock
;
61 char pad
[SMP_CACHE_BYTES
];
62 } ____cacheline_aligned
;
64 /* State is put into the per CPU data section, but padded
65 to a full cache line because other CPUs can access it and we don't
66 want false sharing in the per cpu data segment. */
67 static DEFINE_PER_CPU(union smp_flush_state
, flush_state
);
70 * We cannot call mmdrop() because we are in interrupt context,
71 * instead update mm->cpu_vm_mask.
73 static inline void leave_mm(int cpu
)
75 if (read_pda(mmu_state
) == TLBSTATE_OK
)
77 cpu_clear(cpu
, read_pda(active_mm
)->cpu_vm_mask
);
78 load_cr3(swapper_pg_dir
);
83 * The flush IPI assumes that a thread switch happens in this order:
84 * [cpu0: the cpu that switches]
85 * 1) switch_mm() either 1a) or 1b)
86 * 1a) thread switch to a different mm
87 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
88 * Stop ipi delivery for the old mm. This is not synchronized with
89 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
90 * for the wrong mm, and in the worst case we perform a superfluous
92 * 1a2) set cpu mmu_state to TLBSTATE_OK
93 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
94 * was in lazy tlb mode.
95 * 1a3) update cpu active_mm
96 * Now cpu0 accepts tlb flushes for the new mm.
97 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
98 * Now the other cpus will send tlb flush ipis.
100 * 1b) thread switch without mm change
101 * cpu active_mm is correct, cpu0 already handles
103 * 1b1) set cpu mmu_state to TLBSTATE_OK
104 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
105 * Atomically set the bit [other cpus will start sending flush ipis],
107 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
108 * 2) switch %%esp, ie current
110 * The interrupt must handle 2 special cases:
111 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
112 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
113 * runs in kernel space, the cpu could load tlb entries for user space
116 * The good news is that cpu mmu_state is local to each cpu, no
117 * write/read ordering problems.
123 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
124 * 2) Leave the mm if we are in the lazy tlb mode.
126 * Interrupts are disabled.
129 asmlinkage
void smp_invalidate_interrupt(struct pt_regs
*regs
)
133 union smp_flush_state
*f
;
135 cpu
= smp_processor_id();
137 * orig_rax contains the negated interrupt vector.
138 * Use that to determine where the sender put the data.
140 sender
= ~regs
->orig_rax
- INVALIDATE_TLB_VECTOR_START
;
141 f
= &per_cpu(flush_state
, sender
);
143 if (!cpu_isset(cpu
, f
->flush_cpumask
))
146 * This was a BUG() but until someone can quote me the
147 * line from the intel manual that guarantees an IPI to
148 * multiple CPUs is retried _only_ on the erroring CPUs
149 * its staying as a return
154 if (f
->flush_mm
== read_pda(active_mm
)) {
155 if (read_pda(mmu_state
) == TLBSTATE_OK
) {
156 if (f
->flush_va
== FLUSH_ALL
)
159 __flush_tlb_one(f
->flush_va
);
165 cpu_clear(cpu
, f
->flush_cpumask
);
168 static void flush_tlb_others(cpumask_t cpumask
, struct mm_struct
*mm
,
172 union smp_flush_state
*f
;
174 /* Caller has disabled preemption */
175 sender
= smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS
;
176 f
= &per_cpu(flush_state
, sender
);
178 /* Could avoid this lock when
179 num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
180 probably not worth checking this for a cache-hot lock. */
181 spin_lock(&f
->tlbstate_lock
);
185 cpus_or(f
->flush_cpumask
, cpumask
, f
->flush_cpumask
);
188 * We have to send the IPI only to
191 send_IPI_mask(cpumask
, INVALIDATE_TLB_VECTOR_START
+ sender
);
193 while (!cpus_empty(f
->flush_cpumask
))
198 spin_unlock(&f
->tlbstate_lock
);
201 int __cpuinit
init_smp_flush(void)
204 for_each_cpu_mask(i
, cpu_possible_map
) {
205 spin_lock_init(&per_cpu(flush_state
, i
).tlbstate_lock
);
210 core_initcall(init_smp_flush
);
212 void flush_tlb_current_task(void)
214 struct mm_struct
*mm
= current
->mm
;
218 cpu_mask
= mm
->cpu_vm_mask
;
219 cpu_clear(smp_processor_id(), cpu_mask
);
222 if (!cpus_empty(cpu_mask
))
223 flush_tlb_others(cpu_mask
, mm
, FLUSH_ALL
);
226 EXPORT_SYMBOL(flush_tlb_current_task
);
228 void flush_tlb_mm (struct mm_struct
* mm
)
233 cpu_mask
= mm
->cpu_vm_mask
;
234 cpu_clear(smp_processor_id(), cpu_mask
);
236 if (current
->active_mm
== mm
) {
240 leave_mm(smp_processor_id());
242 if (!cpus_empty(cpu_mask
))
243 flush_tlb_others(cpu_mask
, mm
, FLUSH_ALL
);
247 EXPORT_SYMBOL(flush_tlb_mm
);
249 void flush_tlb_page(struct vm_area_struct
* vma
, unsigned long va
)
251 struct mm_struct
*mm
= vma
->vm_mm
;
255 cpu_mask
= mm
->cpu_vm_mask
;
256 cpu_clear(smp_processor_id(), cpu_mask
);
258 if (current
->active_mm
== mm
) {
262 leave_mm(smp_processor_id());
265 if (!cpus_empty(cpu_mask
))
266 flush_tlb_others(cpu_mask
, mm
, va
);
270 EXPORT_SYMBOL(flush_tlb_page
);
272 static void do_flush_tlb_all(void* info
)
274 unsigned long cpu
= smp_processor_id();
277 if (read_pda(mmu_state
) == TLBSTATE_LAZY
)
281 void flush_tlb_all(void)
283 on_each_cpu(do_flush_tlb_all
, NULL
, 1, 1);
287 * this function sends a 'reschedule' IPI to another CPU.
288 * it goes straight through and wastes no time serializing
289 * anything. Worst case is that we lose a reschedule ...
292 void smp_send_reschedule(int cpu
)
294 send_IPI_mask(cpumask_of_cpu(cpu
), RESCHEDULE_VECTOR
);
298 * Structure and data for smp_call_function(). This is designed to minimise
299 * static memory requirements. It also looks cleaner.
301 static DEFINE_SPINLOCK(call_lock
);
303 struct call_data_struct
{
304 void (*func
) (void *info
);
311 static struct call_data_struct
* call_data
;
313 void lock_ipi_call_lock(void)
315 spin_lock_irq(&call_lock
);
318 void unlock_ipi_call_lock(void)
320 spin_unlock_irq(&call_lock
);
324 * this function sends a 'generic call function' IPI to one other CPU
327 * cpu is a standard Linux logical CPU number.
330 __smp_call_function_single(int cpu
, void (*func
) (void *info
), void *info
,
331 int nonatomic
, int wait
)
333 struct call_data_struct data
;
338 atomic_set(&data
.started
, 0);
341 atomic_set(&data
.finished
, 0);
345 /* Send a message to all other CPUs and wait for them to respond */
346 send_IPI_mask(cpumask_of_cpu(cpu
), CALL_FUNCTION_VECTOR
);
348 /* Wait for response */
349 while (atomic_read(&data
.started
) != cpus
)
355 while (atomic_read(&data
.finished
) != cpus
)
360 * smp_call_function_single - Run a function on another CPU
361 * @func: The function to run. This must be fast and non-blocking.
362 * @info: An arbitrary pointer to pass to the function.
363 * @nonatomic: Currently unused.
364 * @wait: If true, wait until function has completed on other CPUs.
366 * Retrurns 0 on success, else a negative status code.
368 * Does not return until the remote CPU is nearly ready to execute <func>
369 * or is or has executed.
372 int smp_call_function_single (int cpu
, void (*func
) (void *info
), void *info
,
373 int nonatomic
, int wait
)
375 /* prevent preemption and reschedule on another processor */
382 /* Can deadlock when called with interrupts disabled */
383 WARN_ON(irqs_disabled());
385 spin_lock_bh(&call_lock
);
386 __smp_call_function_single(cpu
, func
, info
, nonatomic
, wait
);
387 spin_unlock_bh(&call_lock
);
391 EXPORT_SYMBOL(smp_call_function_single
);
394 * this function sends a 'generic call function' IPI to all other CPUs
397 static void __smp_call_function (void (*func
) (void *info
), void *info
,
398 int nonatomic
, int wait
)
400 struct call_data_struct data
;
401 int cpus
= num_online_cpus()-1;
408 atomic_set(&data
.started
, 0);
411 atomic_set(&data
.finished
, 0);
415 /* Send a message to all other CPUs and wait for them to respond */
416 send_IPI_allbutself(CALL_FUNCTION_VECTOR
);
418 /* Wait for response */
419 while (atomic_read(&data
.started
) != cpus
)
425 while (atomic_read(&data
.finished
) != cpus
)
430 * smp_call_function - run a function on all other CPUs.
431 * @func: The function to run. This must be fast and non-blocking.
432 * @info: An arbitrary pointer to pass to the function.
433 * @nonatomic: currently unused.
434 * @wait: If true, wait (atomically) until function has completed on other
437 * Returns 0 on success, else a negative status code. Does not return until
438 * remote CPUs are nearly ready to execute func or are or have executed.
440 * You must not call this function with disabled interrupts or from a
441 * hardware interrupt handler or from a bottom half handler.
442 * Actually there are a few legal cases, like panic.
444 int smp_call_function (void (*func
) (void *info
), void *info
, int nonatomic
,
447 spin_lock(&call_lock
);
448 __smp_call_function(func
,info
,nonatomic
,wait
);
449 spin_unlock(&call_lock
);
452 EXPORT_SYMBOL(smp_call_function
);
454 static void stop_this_cpu(void *dummy
)
460 cpu_clear(smp_processor_id(), cpu_online_map
);
461 disable_local_APIC();
466 void smp_send_stop(void)
474 /* Don't deadlock on the call lock in panic */
475 nolock
= !spin_trylock(&call_lock
);
476 local_irq_save(flags
);
477 __smp_call_function(stop_this_cpu
, NULL
, 0, 0);
479 spin_unlock(&call_lock
);
480 disable_local_APIC();
481 local_irq_restore(flags
);
485 * Reschedule call back. Nothing to do,
486 * all the work is done automatically when
487 * we return from the interrupt.
489 asmlinkage
void smp_reschedule_interrupt(void)
494 asmlinkage
void smp_call_function_interrupt(void)
496 void (*func
) (void *info
) = call_data
->func
;
497 void *info
= call_data
->info
;
498 int wait
= call_data
->wait
;
502 * Notify initiating CPU that I've grabbed the data and am
503 * about to execute the function
506 atomic_inc(&call_data
->started
);
508 * At this point the info structure may be out of scope unless wait==1
516 atomic_inc(&call_data
->finished
);