RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / sparc64 / kernel / of_device.c
blob6676b93219dcd51cee5454cb2577854074c4ec80
1 #include <linux/string.h>
2 #include <linux/kernel.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/mod_devicetable.h>
6 #include <linux/slab.h>
8 #include <asm/errno.h>
9 #include <asm/of_device.h>
11 /**
12 * of_match_device - Tell if an of_device structure has a matching
13 * of_match structure
14 * @ids: array of of device match structures to search in
15 * @dev: the of device structure to match against
17 * Used by a driver to check whether an of_device present in the
18 * system is in its list of supported devices.
20 const struct of_device_id *of_match_device(const struct of_device_id *matches,
21 const struct of_device *dev)
23 if (!dev->node)
24 return NULL;
25 while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
26 int match = 1;
27 if (matches->name[0])
28 match &= dev->node->name
29 && !strcmp(matches->name, dev->node->name);
30 if (matches->type[0])
31 match &= dev->node->type
32 && !strcmp(matches->type, dev->node->type);
33 if (matches->compatible[0])
34 match &= of_device_is_compatible(dev->node,
35 matches->compatible);
36 if (match)
37 return matches;
38 matches++;
40 return NULL;
43 static int of_platform_bus_match(struct device *dev, struct device_driver *drv)
45 struct of_device * of_dev = to_of_device(dev);
46 struct of_platform_driver * of_drv = to_of_platform_driver(drv);
47 const struct of_device_id * matches = of_drv->match_table;
49 if (!matches)
50 return 0;
52 return of_match_device(matches, of_dev) != NULL;
55 struct of_device *of_dev_get(struct of_device *dev)
57 struct device *tmp;
59 if (!dev)
60 return NULL;
61 tmp = get_device(&dev->dev);
62 if (tmp)
63 return to_of_device(tmp);
64 else
65 return NULL;
68 void of_dev_put(struct of_device *dev)
70 if (dev)
71 put_device(&dev->dev);
75 static int of_device_probe(struct device *dev)
77 int error = -ENODEV;
78 struct of_platform_driver *drv;
79 struct of_device *of_dev;
80 const struct of_device_id *match;
82 drv = to_of_platform_driver(dev->driver);
83 of_dev = to_of_device(dev);
85 if (!drv->probe)
86 return error;
88 of_dev_get(of_dev);
90 match = of_match_device(drv->match_table, of_dev);
91 if (match)
92 error = drv->probe(of_dev, match);
93 if (error)
94 of_dev_put(of_dev);
96 return error;
99 static int of_device_remove(struct device *dev)
101 struct of_device * of_dev = to_of_device(dev);
102 struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
104 if (dev->driver && drv->remove)
105 drv->remove(of_dev);
106 return 0;
109 static int of_device_suspend(struct device *dev, pm_message_t state)
111 struct of_device * of_dev = to_of_device(dev);
112 struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
113 int error = 0;
115 if (dev->driver && drv->suspend)
116 error = drv->suspend(of_dev, state);
117 return error;
120 static int of_device_resume(struct device * dev)
122 struct of_device * of_dev = to_of_device(dev);
123 struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
124 int error = 0;
126 if (dev->driver && drv->resume)
127 error = drv->resume(of_dev);
128 return error;
131 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
133 unsigned long ret = res->start + offset;
134 struct resource *r;
136 if (res->flags & IORESOURCE_MEM)
137 r = request_mem_region(ret, size, name);
138 else
139 r = request_region(ret, size, name);
140 if (!r)
141 ret = 0;
143 return (void __iomem *) ret;
145 EXPORT_SYMBOL(of_ioremap);
147 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
149 if (res->flags & IORESOURCE_MEM)
150 release_mem_region((unsigned long) base, size);
151 else
152 release_region((unsigned long) base, size);
154 EXPORT_SYMBOL(of_iounmap);
156 static int node_match(struct device *dev, void *data)
158 struct of_device *op = to_of_device(dev);
159 struct device_node *dp = data;
161 return (op->node == dp);
164 struct of_device *of_find_device_by_node(struct device_node *dp)
166 struct device *dev = bus_find_device(&of_bus_type, NULL,
167 dp, node_match);
169 if (dev)
170 return to_of_device(dev);
172 return NULL;
174 EXPORT_SYMBOL(of_find_device_by_node);
176 #ifdef CONFIG_PCI
177 struct bus_type isa_bus_type = {
178 .name = "isa",
179 .match = of_platform_bus_match,
180 .probe = of_device_probe,
181 .remove = of_device_remove,
182 .suspend = of_device_suspend,
183 .resume = of_device_resume,
185 EXPORT_SYMBOL(isa_bus_type);
187 struct bus_type ebus_bus_type = {
188 .name = "ebus",
189 .match = of_platform_bus_match,
190 .probe = of_device_probe,
191 .remove = of_device_remove,
192 .suspend = of_device_suspend,
193 .resume = of_device_resume,
195 EXPORT_SYMBOL(ebus_bus_type);
196 #endif
198 #ifdef CONFIG_SBUS
199 struct bus_type sbus_bus_type = {
200 .name = "sbus",
201 .match = of_platform_bus_match,
202 .probe = of_device_probe,
203 .remove = of_device_remove,
204 .suspend = of_device_suspend,
205 .resume = of_device_resume,
207 EXPORT_SYMBOL(sbus_bus_type);
208 #endif
210 struct bus_type of_bus_type = {
211 .name = "of",
212 .match = of_platform_bus_match,
213 .probe = of_device_probe,
214 .remove = of_device_remove,
215 .suspend = of_device_suspend,
216 .resume = of_device_resume,
218 EXPORT_SYMBOL(of_bus_type);
220 static inline u64 of_read_addr(const u32 *cell, int size)
222 u64 r = 0;
223 while (size--)
224 r = (r << 32) | *(cell++);
225 return r;
228 static void __init get_cells(struct device_node *dp,
229 int *addrc, int *sizec)
231 if (addrc)
232 *addrc = of_n_addr_cells(dp);
233 if (sizec)
234 *sizec = of_n_size_cells(dp);
237 /* Max address size we deal with */
238 #define OF_MAX_ADDR_CELLS 4
240 struct of_bus {
241 const char *name;
242 const char *addr_prop_name;
243 int (*match)(struct device_node *parent);
244 void (*count_cells)(struct device_node *child,
245 int *addrc, int *sizec);
246 int (*map)(u32 *addr, const u32 *range,
247 int na, int ns, int pna);
248 unsigned int (*get_flags)(const u32 *addr);
252 * Default translator (generic bus)
255 static void of_bus_default_count_cells(struct device_node *dev,
256 int *addrc, int *sizec)
258 get_cells(dev, addrc, sizec);
261 /* Make sure the least significant 64-bits are in-range. Even
262 * for 3 or 4 cell values it is a good enough approximation.
264 static int of_out_of_range(const u32 *addr, const u32 *base,
265 const u32 *size, int na, int ns)
267 u64 a = of_read_addr(addr, na);
268 u64 b = of_read_addr(base, na);
270 if (a < b)
271 return 1;
273 b += of_read_addr(size, ns);
274 if (a >= b)
275 return 1;
277 return 0;
280 static int of_bus_default_map(u32 *addr, const u32 *range,
281 int na, int ns, int pna)
283 u32 result[OF_MAX_ADDR_CELLS];
284 int i;
286 if (ns > 2) {
287 printk("of_device: Cannot handle size cells (%d) > 2.", ns);
288 return -EINVAL;
291 if (of_out_of_range(addr, range, range + na + pna, na, ns))
292 return -EINVAL;
294 /* Start with the parent range base. */
295 memcpy(result, range + na, pna * 4);
297 /* Add in the child address offset. */
298 for (i = 0; i < na; i++)
299 result[pna - 1 - i] +=
300 (addr[na - 1 - i] -
301 range[na - 1 - i]);
303 memcpy(addr, result, pna * 4);
305 return 0;
308 static unsigned int of_bus_default_get_flags(const u32 *addr)
310 return IORESOURCE_MEM;
314 * PCI bus specific translator
317 static int of_bus_pci_match(struct device_node *np)
319 if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
320 const char *model = of_get_property(np, "model", NULL);
322 if (model && !strcmp(model, "SUNW,simba"))
323 return 0;
325 /* Do not do PCI specific frobbing if the
326 * PCI bridge lacks a ranges property. We
327 * want to pass it through up to the next
328 * parent as-is, not with the PCI translate
329 * method which chops off the top address cell.
331 if (!of_find_property(np, "ranges", NULL))
332 return 0;
334 return 1;
337 return 0;
340 static int of_bus_simba_match(struct device_node *np)
342 const char *model = of_get_property(np, "model", NULL);
344 if (model && !strcmp(model, "SUNW,simba"))
345 return 1;
347 /* Treat PCI busses lacking ranges property just like
348 * simba.
350 if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
351 if (!of_find_property(np, "ranges", NULL))
352 return 1;
355 return 0;
358 static int of_bus_simba_map(u32 *addr, const u32 *range,
359 int na, int ns, int pna)
361 return 0;
364 static void of_bus_pci_count_cells(struct device_node *np,
365 int *addrc, int *sizec)
367 if (addrc)
368 *addrc = 3;
369 if (sizec)
370 *sizec = 2;
373 static int of_bus_pci_map(u32 *addr, const u32 *range,
374 int na, int ns, int pna)
376 u32 result[OF_MAX_ADDR_CELLS];
377 int i;
379 /* Check address type match */
380 if ((addr[0] ^ range[0]) & 0x03000000)
381 return -EINVAL;
383 if (of_out_of_range(addr + 1, range + 1, range + na + pna,
384 na - 1, ns))
385 return -EINVAL;
387 /* Start with the parent range base. */
388 memcpy(result, range + na, pna * 4);
390 /* Add in the child address offset, skipping high cell. */
391 for (i = 0; i < na - 1; i++)
392 result[pna - 1 - i] +=
393 (addr[na - 1 - i] -
394 range[na - 1 - i]);
396 memcpy(addr, result, pna * 4);
398 return 0;
401 static unsigned int of_bus_pci_get_flags(const u32 *addr)
403 unsigned int flags = 0;
404 u32 w = addr[0];
406 switch((w >> 24) & 0x03) {
407 case 0x01:
408 flags |= IORESOURCE_IO;
409 case 0x02: /* 32 bits */
410 case 0x03: /* 64 bits */
411 flags |= IORESOURCE_MEM;
413 if (w & 0x40000000)
414 flags |= IORESOURCE_PREFETCH;
415 return flags;
419 * SBUS bus specific translator
422 static int of_bus_sbus_match(struct device_node *np)
424 return !strcmp(np->name, "sbus") ||
425 !strcmp(np->name, "sbi");
428 static void of_bus_sbus_count_cells(struct device_node *child,
429 int *addrc, int *sizec)
431 if (addrc)
432 *addrc = 2;
433 if (sizec)
434 *sizec = 1;
438 * FHC/Central bus specific translator.
440 * This is just needed to hard-code the address and size cell
441 * counts. 'fhc' and 'central' nodes lack the #address-cells and
442 * #size-cells properties, and if you walk to the root on such
443 * Enterprise boxes all you'll get is a #size-cells of 2 which is
444 * not what we want to use.
446 static int of_bus_fhc_match(struct device_node *np)
448 return !strcmp(np->name, "fhc") ||
449 !strcmp(np->name, "central");
452 #define of_bus_fhc_count_cells of_bus_sbus_count_cells
455 * Array of bus specific translators
458 static struct of_bus of_busses[] = {
459 /* PCI */
461 .name = "pci",
462 .addr_prop_name = "assigned-addresses",
463 .match = of_bus_pci_match,
464 .count_cells = of_bus_pci_count_cells,
465 .map = of_bus_pci_map,
466 .get_flags = of_bus_pci_get_flags,
468 /* SIMBA */
470 .name = "simba",
471 .addr_prop_name = "assigned-addresses",
472 .match = of_bus_simba_match,
473 .count_cells = of_bus_pci_count_cells,
474 .map = of_bus_simba_map,
475 .get_flags = of_bus_pci_get_flags,
477 /* SBUS */
479 .name = "sbus",
480 .addr_prop_name = "reg",
481 .match = of_bus_sbus_match,
482 .count_cells = of_bus_sbus_count_cells,
483 .map = of_bus_default_map,
484 .get_flags = of_bus_default_get_flags,
486 /* FHC */
488 .name = "fhc",
489 .addr_prop_name = "reg",
490 .match = of_bus_fhc_match,
491 .count_cells = of_bus_fhc_count_cells,
492 .map = of_bus_default_map,
493 .get_flags = of_bus_default_get_flags,
495 /* Default */
497 .name = "default",
498 .addr_prop_name = "reg",
499 .match = NULL,
500 .count_cells = of_bus_default_count_cells,
501 .map = of_bus_default_map,
502 .get_flags = of_bus_default_get_flags,
506 static struct of_bus *of_match_bus(struct device_node *np)
508 int i;
510 for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
511 if (!of_busses[i].match || of_busses[i].match(np))
512 return &of_busses[i];
513 BUG();
514 return NULL;
517 static int __init build_one_resource(struct device_node *parent,
518 struct of_bus *bus,
519 struct of_bus *pbus,
520 u32 *addr,
521 int na, int ns, int pna)
523 const u32 *ranges;
524 unsigned int rlen;
525 int rone;
527 ranges = of_get_property(parent, "ranges", &rlen);
528 if (ranges == NULL || rlen == 0) {
529 u32 result[OF_MAX_ADDR_CELLS];
530 int i;
532 memset(result, 0, pna * 4);
533 for (i = 0; i < na; i++)
534 result[pna - 1 - i] =
535 addr[na - 1 - i];
537 memcpy(addr, result, pna * 4);
538 return 0;
541 /* Now walk through the ranges */
542 rlen /= 4;
543 rone = na + pna + ns;
544 for (; rlen >= rone; rlen -= rone, ranges += rone) {
545 if (!bus->map(addr, ranges, na, ns, pna))
546 return 0;
549 /* When we miss an I/O space match on PCI, just pass it up
550 * to the next PCI bridge and/or controller.
552 if (!strcmp(bus->name, "pci") &&
553 (addr[0] & 0x03000000) == 0x01000000)
554 return 0;
556 return 1;
559 static int __init use_1to1_mapping(struct device_node *pp)
561 /* If this is on the PMU bus, don't try to translate it even
562 * if a ranges property exists.
564 if (!strcmp(pp->name, "pmu"))
565 return 1;
567 /* If we have a ranges property in the parent, use it. */
568 if (of_find_property(pp, "ranges", NULL) != NULL)
569 return 0;
571 /* If the parent is the dma node of an ISA bus, pass
572 * the translation up to the root.
574 if (!strcmp(pp->name, "dma"))
575 return 0;
577 /* Similarly for all PCI bridges, if we get this far
578 * it lacks a ranges property, and this will include
579 * cases like Simba.
581 if (!strcmp(pp->type, "pci") || !strcmp(pp->type, "pciex"))
582 return 0;
584 return 1;
587 static int of_resource_verbose;
589 static void __init build_device_resources(struct of_device *op,
590 struct device *parent)
592 struct of_device *p_op;
593 struct of_bus *bus;
594 int na, ns;
595 int index, num_reg;
596 const void *preg;
598 if (!parent)
599 return;
601 p_op = to_of_device(parent);
602 bus = of_match_bus(p_op->node);
603 bus->count_cells(op->node, &na, &ns);
605 preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
606 if (!preg || num_reg == 0)
607 return;
609 /* Convert to num-cells. */
610 num_reg /= 4;
612 /* Convert to num-entries. */
613 num_reg /= na + ns;
615 /* Prevent overrunning the op->resources[] array. */
616 if (num_reg > PROMREG_MAX) {
617 printk(KERN_WARNING "%s: Too many regs (%d), "
618 "limiting to %d.\n",
619 op->node->full_name, num_reg, PROMREG_MAX);
620 num_reg = PROMREG_MAX;
623 for (index = 0; index < num_reg; index++) {
624 struct resource *r = &op->resource[index];
625 u32 addr[OF_MAX_ADDR_CELLS];
626 const u32 *reg = (preg + (index * ((na + ns) * 4)));
627 struct device_node *dp = op->node;
628 struct device_node *pp = p_op->node;
629 struct of_bus *pbus, *dbus;
630 u64 size, result = OF_BAD_ADDR;
631 unsigned long flags;
632 int dna, dns;
633 int pna, pns;
635 size = of_read_addr(reg + na, ns);
636 flags = bus->get_flags(reg);
638 memcpy(addr, reg, na * 4);
640 if (use_1to1_mapping(pp)) {
641 result = of_read_addr(addr, na);
642 goto build_res;
645 dna = na;
646 dns = ns;
647 dbus = bus;
649 while (1) {
650 dp = pp;
651 pp = dp->parent;
652 if (!pp) {
653 result = of_read_addr(addr, dna);
654 break;
657 pbus = of_match_bus(pp);
658 pbus->count_cells(dp, &pna, &pns);
660 if (build_one_resource(dp, dbus, pbus, addr,
661 dna, dns, pna))
662 break;
664 dna = pna;
665 dns = pns;
666 dbus = pbus;
669 build_res:
670 memset(r, 0, sizeof(*r));
672 if (of_resource_verbose)
673 printk("%s reg[%d] -> %lx\n",
674 op->node->full_name, index,
675 result);
677 if (result != OF_BAD_ADDR) {
678 if (tlb_type == hypervisor)
679 result &= 0x0fffffffffffffffUL;
681 r->start = result;
682 r->end = result + size - 1;
683 r->flags = flags;
685 r->name = op->node->name;
689 static struct device_node * __init
690 apply_interrupt_map(struct device_node *dp, struct device_node *pp,
691 const u32 *imap, int imlen, const u32 *imask,
692 unsigned int *irq_p)
694 struct device_node *cp;
695 unsigned int irq = *irq_p;
696 struct of_bus *bus;
697 phandle handle;
698 const u32 *reg;
699 int na, num_reg, i;
701 bus = of_match_bus(pp);
702 bus->count_cells(dp, &na, NULL);
704 reg = of_get_property(dp, "reg", &num_reg);
705 if (!reg || !num_reg)
706 return NULL;
708 imlen /= ((na + 3) * 4);
709 handle = 0;
710 for (i = 0; i < imlen; i++) {
711 int j;
713 for (j = 0; j < na; j++) {
714 if ((reg[j] & imask[j]) != imap[j])
715 goto next;
717 if (imap[na] == irq) {
718 handle = imap[na + 1];
719 irq = imap[na + 2];
720 break;
723 next:
724 imap += (na + 3);
726 if (i == imlen) {
727 /* Psycho and Sabre PCI controllers can have 'interrupt-map'
728 * properties that do not include the on-board device
729 * interrupts. Instead, the device's 'interrupts' property
730 * is already a fully specified INO value.
732 * Handle this by deciding that, if we didn't get a
733 * match in the parent's 'interrupt-map', and the
734 * parent is an IRQ translater, then use the parent as
735 * our IRQ controller.
737 if (pp->irq_trans)
738 return pp;
740 return NULL;
743 *irq_p = irq;
744 cp = of_find_node_by_phandle(handle);
746 return cp;
749 static unsigned int __init pci_irq_swizzle(struct device_node *dp,
750 struct device_node *pp,
751 unsigned int irq)
753 const struct linux_prom_pci_registers *regs;
754 unsigned int bus, devfn, slot, ret;
756 if (irq < 1 || irq > 4)
757 return irq;
759 regs = of_get_property(dp, "reg", NULL);
760 if (!regs)
761 return irq;
763 bus = (regs->phys_hi >> 16) & 0xff;
764 devfn = (regs->phys_hi >> 8) & 0xff;
765 slot = (devfn >> 3) & 0x1f;
767 if (pp->irq_trans) {
768 /* Derived from Table 8-3, U2P User's Manual. This branch
769 * is handling a PCI controller that lacks a proper set of
770 * interrupt-map and interrupt-map-mask properties. The
771 * Ultra-E450 is one example.
773 * The bit layout is BSSLL, where:
774 * B: 0 on bus A, 1 on bus B
775 * D: 2-bit slot number, derived from PCI device number as
776 * (dev - 1) for bus A, or (dev - 2) for bus B
777 * L: 2-bit line number
779 if (bus & 0x80) {
780 /* PBM-A */
781 bus = 0x00;
782 slot = (slot - 1) << 2;
783 } else {
784 /* PBM-B */
785 bus = 0x10;
786 slot = (slot - 2) << 2;
788 irq -= 1;
790 ret = (bus | slot | irq);
791 } else {
792 /* Going through a PCI-PCI bridge that lacks a set of
793 * interrupt-map and interrupt-map-mask properties.
795 ret = ((irq - 1 + (slot & 3)) & 3) + 1;
798 return ret;
801 static int of_irq_verbose;
803 static unsigned int __init build_one_device_irq(struct of_device *op,
804 struct device *parent,
805 unsigned int irq)
807 struct device_node *dp = op->node;
808 struct device_node *pp, *ip;
809 unsigned int orig_irq = irq;
811 if (irq == 0xffffffff)
812 return irq;
814 if (dp->irq_trans) {
815 irq = dp->irq_trans->irq_build(dp, irq,
816 dp->irq_trans->data);
818 if (of_irq_verbose)
819 printk("%s: direct translate %x --> %x\n",
820 dp->full_name, orig_irq, irq);
822 return irq;
825 /* Something more complicated. Walk up to the root, applying
826 * interrupt-map or bus specific translations, until we hit
827 * an IRQ translator.
829 * If we hit a bus type or situation we cannot handle, we
830 * stop and assume that the original IRQ number was in a
831 * format which has special meaning to it's immediate parent.
833 pp = dp->parent;
834 ip = NULL;
835 while (pp) {
836 const void *imap, *imsk;
837 int imlen;
839 imap = of_get_property(pp, "interrupt-map", &imlen);
840 imsk = of_get_property(pp, "interrupt-map-mask", NULL);
841 if (imap && imsk) {
842 struct device_node *iret;
843 int this_orig_irq = irq;
845 iret = apply_interrupt_map(dp, pp,
846 imap, imlen, imsk,
847 &irq);
849 if (of_irq_verbose)
850 printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
851 op->node->full_name,
852 pp->full_name, this_orig_irq,
853 (iret ? iret->full_name : "NULL"), irq);
855 if (!iret)
856 break;
858 if (iret->irq_trans) {
859 ip = iret;
860 break;
862 } else {
863 if (!strcmp(pp->type, "pci") ||
864 !strcmp(pp->type, "pciex")) {
865 unsigned int this_orig_irq = irq;
867 irq = pci_irq_swizzle(dp, pp, irq);
868 if (of_irq_verbose)
869 printk("%s: PCI swizzle [%s] "
870 "%x --> %x\n",
871 op->node->full_name,
872 pp->full_name, this_orig_irq,
873 irq);
877 if (pp->irq_trans) {
878 ip = pp;
879 break;
882 dp = pp;
883 pp = pp->parent;
885 if (!ip)
886 return orig_irq;
888 irq = ip->irq_trans->irq_build(op->node, irq,
889 ip->irq_trans->data);
890 if (of_irq_verbose)
891 printk("%s: Apply IRQ trans [%s] %x --> %x\n",
892 op->node->full_name, ip->full_name, orig_irq, irq);
894 return irq;
897 static struct of_device * __init scan_one_device(struct device_node *dp,
898 struct device *parent)
900 struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
901 const unsigned int *irq;
902 int len, i;
904 if (!op)
905 return NULL;
907 op->node = dp;
909 op->clock_freq = of_getintprop_default(dp, "clock-frequency",
910 (25*1000*1000));
911 op->portid = of_getintprop_default(dp, "upa-portid", -1);
912 if (op->portid == -1)
913 op->portid = of_getintprop_default(dp, "portid", -1);
915 irq = of_get_property(dp, "interrupts", &len);
916 if (irq) {
917 memcpy(op->irqs, irq, len);
918 op->num_irqs = len / 4;
919 } else {
920 op->num_irqs = 0;
923 /* Prevent overrunning the op->irqs[] array. */
924 if (op->num_irqs > PROMINTR_MAX) {
925 printk(KERN_WARNING "%s: Too many irqs (%d), "
926 "limiting to %d.\n",
927 dp->full_name, op->num_irqs, PROMINTR_MAX);
928 op->num_irqs = PROMINTR_MAX;
931 build_device_resources(op, parent);
932 for (i = 0; i < op->num_irqs; i++)
933 op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
935 op->dev.parent = parent;
936 op->dev.bus = &of_bus_type;
937 if (!parent)
938 strcpy(op->dev.bus_id, "root");
939 else
940 sprintf(op->dev.bus_id, "%08x", dp->node);
942 if (of_device_register(op)) {
943 printk("%s: Could not register of device.\n",
944 dp->full_name);
945 kfree(op);
946 op = NULL;
949 return op;
952 static void __init scan_tree(struct device_node *dp, struct device *parent)
954 while (dp) {
955 struct of_device *op = scan_one_device(dp, parent);
957 if (op)
958 scan_tree(dp->child, &op->dev);
960 dp = dp->sibling;
964 static void __init scan_of_devices(void)
966 struct device_node *root = of_find_node_by_path("/");
967 struct of_device *parent;
969 parent = scan_one_device(root, NULL);
970 if (!parent)
971 return;
973 scan_tree(root->child, &parent->dev);
976 static int __init of_bus_driver_init(void)
978 int err;
980 err = bus_register(&of_bus_type);
981 #ifdef CONFIG_PCI
982 if (!err)
983 err = bus_register(&isa_bus_type);
984 if (!err)
985 err = bus_register(&ebus_bus_type);
986 #endif
987 #ifdef CONFIG_SBUS
988 if (!err)
989 err = bus_register(&sbus_bus_type);
990 #endif
992 if (!err)
993 scan_of_devices();
995 return err;
998 postcore_initcall(of_bus_driver_init);
1000 static int __init of_debug(char *str)
1002 int val = 0;
1004 get_option(&str, &val);
1005 if (val & 1)
1006 of_resource_verbose = 1;
1007 if (val & 2)
1008 of_irq_verbose = 1;
1009 return 1;
1012 __setup("of_debug=", of_debug);
1014 int of_register_driver(struct of_platform_driver *drv, struct bus_type *bus)
1016 /* initialize common driver fields */
1017 drv->driver.name = drv->name;
1018 drv->driver.bus = bus;
1020 /* register with core */
1021 return driver_register(&drv->driver);
1024 void of_unregister_driver(struct of_platform_driver *drv)
1026 driver_unregister(&drv->driver);
1030 static ssize_t dev_show_devspec(struct device *dev, struct device_attribute *attr, char *buf)
1032 struct of_device *ofdev;
1034 ofdev = to_of_device(dev);
1035 return sprintf(buf, "%s", ofdev->node->full_name);
1038 static DEVICE_ATTR(devspec, S_IRUGO, dev_show_devspec, NULL);
1041 * of_release_dev - free an of device structure when all users of it are finished.
1042 * @dev: device that's been disconnected
1044 * Will be called only by the device core when all users of this of device are
1045 * done.
1047 void of_release_dev(struct device *dev)
1049 struct of_device *ofdev;
1051 ofdev = to_of_device(dev);
1053 kfree(ofdev);
1056 int of_device_register(struct of_device *ofdev)
1058 int rc;
1060 BUG_ON(ofdev->node == NULL);
1062 rc = device_register(&ofdev->dev);
1063 if (rc)
1064 return rc;
1066 rc = device_create_file(&ofdev->dev, &dev_attr_devspec);
1067 if (rc)
1068 device_unregister(&ofdev->dev);
1070 return rc;
1073 void of_device_unregister(struct of_device *ofdev)
1075 device_remove_file(&ofdev->dev, &dev_attr_devspec);
1076 device_unregister(&ofdev->dev);
1079 struct of_device* of_platform_device_create(struct device_node *np,
1080 const char *bus_id,
1081 struct device *parent,
1082 struct bus_type *bus)
1084 struct of_device *dev;
1086 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1087 if (!dev)
1088 return NULL;
1090 dev->dev.parent = parent;
1091 dev->dev.bus = bus;
1092 dev->dev.release = of_release_dev;
1094 strlcpy(dev->dev.bus_id, bus_id, BUS_ID_SIZE);
1096 if (of_device_register(dev) != 0) {
1097 kfree(dev);
1098 return NULL;
1101 return dev;
1104 EXPORT_SYMBOL(of_match_device);
1105 EXPORT_SYMBOL(of_register_driver);
1106 EXPORT_SYMBOL(of_unregister_driver);
1107 EXPORT_SYMBOL(of_device_register);
1108 EXPORT_SYMBOL(of_device_unregister);
1109 EXPORT_SYMBOL(of_dev_get);
1110 EXPORT_SYMBOL(of_dev_put);
1111 EXPORT_SYMBOL(of_platform_device_create);
1112 EXPORT_SYMBOL(of_release_dev);