RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / powerpc / platforms / cell / spufs / switch.c
blob71a0b41adb8c8ed320ba2325716f491ec99b34e0
1 /*
2 * spu_switch.c
4 * (C) Copyright IBM Corp. 2005
6 * Author: Mark Nutter <mnutter@us.ibm.com>
8 * Host-side part of SPU context switch sequence outlined in
9 * Synergistic Processor Element, Book IV.
11 * A fully premptive switch of an SPE is very expensive in terms
12 * of time and system resources. SPE Book IV indicates that SPE
13 * allocation should follow a "serially reusable device" model,
14 * in which the SPE is assigned a task until it completes. When
15 * this is not possible, this sequence may be used to premptively
16 * save, and then later (optionally) restore the context of a
17 * program executing on an SPE.
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2, or (at your option)
23 * any later version.
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/smp.h>
42 #include <linux/stddef.h>
43 #include <linux/unistd.h>
45 #include <asm/io.h>
46 #include <asm/spu.h>
47 #include <asm/spu_priv1.h>
48 #include <asm/spu_csa.h>
49 #include <asm/mmu_context.h>
51 #include "spu_save_dump.h"
52 #include "spu_restore_dump.h"
54 #if 0
55 #define POLL_WHILE_TRUE(_c) { \
56 do { \
57 } while (_c); \
59 #else
60 #define RELAX_SPIN_COUNT 1000
61 #define POLL_WHILE_TRUE(_c) { \
62 do { \
63 int _i; \
64 for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
65 cpu_relax(); \
66 } \
67 if (unlikely(_c)) yield(); \
68 else break; \
69 } while (_c); \
71 #endif /* debug */
73 #define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
75 static inline void acquire_spu_lock(struct spu *spu)
77 /* Save, Step 1:
78 * Restore, Step 1:
79 * Acquire SPU-specific mutual exclusion lock.
80 * TBD.
84 static inline void release_spu_lock(struct spu *spu)
86 /* Restore, Step 76:
87 * Release SPU-specific mutual exclusion lock.
88 * TBD.
92 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
94 struct spu_problem __iomem *prob = spu->problem;
95 u32 isolate_state;
97 /* Save, Step 2:
98 * Save, Step 6:
99 * If SPU_Status[E,L,IS] any field is '1', this
100 * SPU is in isolate state and cannot be context
101 * saved at this time.
103 isolate_state = SPU_STATUS_ISOLATED_STATE |
104 SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
105 return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
108 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
110 /* Save, Step 3:
111 * Restore, Step 2:
112 * Save INT_Mask_class0 in CSA.
113 * Write INT_MASK_class0 with value of 0.
114 * Save INT_Mask_class1 in CSA.
115 * Write INT_MASK_class1 with value of 0.
116 * Save INT_Mask_class2 in CSA.
117 * Write INT_MASK_class2 with value of 0.
119 spin_lock_irq(&spu->register_lock);
120 if (csa) {
121 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
122 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
123 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
125 spu_int_mask_set(spu, 0, 0ul);
126 spu_int_mask_set(spu, 1, 0ul);
127 spu_int_mask_set(spu, 2, 0ul);
128 eieio();
129 spin_unlock_irq(&spu->register_lock);
132 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
134 /* Save, Step 4:
135 * Restore, Step 25.
136 * Set a software watchdog timer, which specifies the
137 * maximum allowable time for a context save sequence.
139 * For present, this implementation will not set a global
140 * watchdog timer, as virtualization & variable system load
141 * may cause unpredictable execution times.
145 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
147 /* Save, Step 5:
148 * Restore, Step 3:
149 * Inhibit user-space access (if provided) to this
150 * SPU by unmapping the virtual pages assigned to
151 * the SPU memory-mapped I/O (MMIO) for problem
152 * state. TBD.
156 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
158 /* Save, Step 7:
159 * Restore, Step 5:
160 * Set a software context switch pending flag.
162 set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
163 mb();
166 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
168 struct spu_priv2 __iomem *priv2 = spu->priv2;
170 /* Save, Step 8:
171 * Suspend DMA and save MFC_CNTL.
173 switch (in_be64(&priv2->mfc_control_RW) &
174 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
175 case MFC_CNTL_SUSPEND_IN_PROGRESS:
176 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
177 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
178 MFC_CNTL_SUSPEND_COMPLETE);
179 /* fall through */
180 case MFC_CNTL_SUSPEND_COMPLETE:
181 if (csa) {
182 csa->priv2.mfc_control_RW =
183 in_be64(&priv2->mfc_control_RW) |
184 MFC_CNTL_SUSPEND_DMA_QUEUE;
186 break;
187 case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
188 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
189 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
190 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
191 MFC_CNTL_SUSPEND_COMPLETE);
192 if (csa) {
193 csa->priv2.mfc_control_RW =
194 in_be64(&priv2->mfc_control_RW) &
195 ~MFC_CNTL_SUSPEND_DMA_QUEUE;
197 break;
201 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
203 struct spu_problem __iomem *prob = spu->problem;
205 /* Save, Step 9:
206 * Save SPU_Runcntl in the CSA. This value contains
207 * the "Application Desired State".
209 csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
212 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
214 /* Save, Step 10:
215 * Save MFC_SR1 in the CSA.
217 csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
220 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
222 struct spu_problem __iomem *prob = spu->problem;
224 /* Save, Step 11:
225 * Read SPU_Status[R], and save to CSA.
227 if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
228 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
229 } else {
230 u32 stopped;
232 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
233 eieio();
234 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
235 SPU_STATUS_RUNNING);
236 stopped =
237 SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
238 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
239 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
240 csa->prob.spu_status_R = SPU_STATUS_RUNNING;
241 else
242 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
246 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
248 struct spu_priv2 __iomem *priv2 = spu->priv2;
250 /* Save, Step 12:
251 * Read MFC_CNTL[Ds]. Update saved copy of
252 * CSA.MFC_CNTL[Ds].
254 if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
255 csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
256 csa->suspend_time = get_cycles();
257 out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
258 eieio();
259 csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
260 eieio();
261 } else {
262 csa->priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
266 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
268 struct spu_priv2 __iomem *priv2 = spu->priv2;
270 /* Save, Step 13:
271 * Write MFC_CNTL[Dh] set to a '1' to halt
272 * the decrementer.
274 out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
275 eieio();
278 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
280 /* Save, Step 14:
281 * Read PPE Timebase High and Timebase low registers
282 * and save in CSA. TBD.
284 csa->suspend_time = get_cycles();
287 static inline void remove_other_spu_access(struct spu_state *csa,
288 struct spu *spu)
290 /* Save, Step 15:
291 * Remove other SPU access to this SPU by unmapping
292 * this SPU's pages from their address space. TBD.
296 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
298 struct spu_problem __iomem *prob = spu->problem;
300 /* Save, Step 16:
301 * Restore, Step 11.
302 * Write SPU_MSSync register. Poll SPU_MSSync[P]
303 * for a value of 0.
305 out_be64(&prob->spc_mssync_RW, 1UL);
306 POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
309 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
311 /* Save, Step 17:
312 * Restore, Step 12.
313 * Restore, Step 48.
314 * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
315 * Then issue a PPE sync instruction.
317 spu_tlb_invalidate(spu);
318 mb();
321 static inline void handle_pending_interrupts(struct spu_state *csa,
322 struct spu *spu)
324 /* Save, Step 18:
325 * Handle any pending interrupts from this SPU
326 * here. This is OS or hypervisor specific. One
327 * option is to re-enable interrupts to handle any
328 * pending interrupts, with the interrupt handlers
329 * recognizing the software Context Switch Pending
330 * flag, to ensure the SPU execution or MFC command
331 * queue is not restarted. TBD.
335 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
337 struct spu_priv2 __iomem *priv2 = spu->priv2;
338 int i;
340 /* Save, Step 19:
341 * If MFC_Cntl[Se]=0 then save
342 * MFC command queues.
344 if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
345 for (i = 0; i < 8; i++) {
346 csa->priv2.puq[i].mfc_cq_data0_RW =
347 in_be64(&priv2->puq[i].mfc_cq_data0_RW);
348 csa->priv2.puq[i].mfc_cq_data1_RW =
349 in_be64(&priv2->puq[i].mfc_cq_data1_RW);
350 csa->priv2.puq[i].mfc_cq_data2_RW =
351 in_be64(&priv2->puq[i].mfc_cq_data2_RW);
352 csa->priv2.puq[i].mfc_cq_data3_RW =
353 in_be64(&priv2->puq[i].mfc_cq_data3_RW);
355 for (i = 0; i < 16; i++) {
356 csa->priv2.spuq[i].mfc_cq_data0_RW =
357 in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
358 csa->priv2.spuq[i].mfc_cq_data1_RW =
359 in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
360 csa->priv2.spuq[i].mfc_cq_data2_RW =
361 in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
362 csa->priv2.spuq[i].mfc_cq_data3_RW =
363 in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
368 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
370 struct spu_problem __iomem *prob = spu->problem;
372 /* Save, Step 20:
373 * Save the PPU_QueryMask register
374 * in the CSA.
376 csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
379 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
381 struct spu_problem __iomem *prob = spu->problem;
383 /* Save, Step 21:
384 * Save the PPU_QueryType register
385 * in the CSA.
387 csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
390 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
392 struct spu_priv2 __iomem *priv2 = spu->priv2;
394 /* Save, Step 22:
395 * Save the MFC_CSR_TSQ register
396 * in the LSCSA.
398 csa->priv2.spu_tag_status_query_RW =
399 in_be64(&priv2->spu_tag_status_query_RW);
402 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
404 struct spu_priv2 __iomem *priv2 = spu->priv2;
406 /* Save, Step 23:
407 * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
408 * registers in the CSA.
410 csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
411 csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
414 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
416 struct spu_priv2 __iomem *priv2 = spu->priv2;
418 /* Save, Step 24:
419 * Save the MFC_CSR_ATO register in
420 * the CSA.
422 csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
425 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
427 /* Save, Step 25:
428 * Save the MFC_TCLASS_ID register in
429 * the CSA.
431 csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
434 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
436 /* Save, Step 26:
437 * Restore, Step 23.
438 * Write the MFC_TCLASS_ID register with
439 * the value 0x10000000.
441 spu_mfc_tclass_id_set(spu, 0x10000000);
442 eieio();
445 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
447 struct spu_priv2 __iomem *priv2 = spu->priv2;
449 /* Save, Step 27:
450 * Restore, Step 14.
451 * Write MFC_CNTL[Pc]=1 (purge queue).
453 out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
454 eieio();
457 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
459 struct spu_priv2 __iomem *priv2 = spu->priv2;
461 /* Save, Step 28:
462 * Poll MFC_CNTL[Ps] until value '11' is read
463 * (purge complete).
465 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
466 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
467 MFC_CNTL_PURGE_DMA_COMPLETE);
470 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
472 /* Save, Step 30:
473 * Restore, Step 18:
474 * Write MFC_SR1 with MFC_SR1[D=0,S=1] and
475 * MFC_SR1[TL,R,Pr,T] set correctly for the
476 * OS specific environment.
478 * Implementation note: The SPU-side code
479 * for save/restore is privileged, so the
480 * MFC_SR1[Pr] bit is not set.
483 spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
484 MFC_STATE1_RELOCATE_MASK |
485 MFC_STATE1_BUS_TLBIE_MASK));
488 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
490 struct spu_problem __iomem *prob = spu->problem;
492 /* Save, Step 31:
493 * Save SPU_NPC in the CSA.
495 csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
498 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
500 struct spu_priv2 __iomem *priv2 = spu->priv2;
502 /* Save, Step 32:
503 * Save SPU_PrivCntl in the CSA.
505 csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
508 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
510 struct spu_priv2 __iomem *priv2 = spu->priv2;
512 /* Save, Step 33:
513 * Restore, Step 16:
514 * Write SPU_PrivCntl[S,Le,A] fields reset to 0.
516 out_be64(&priv2->spu_privcntl_RW, 0UL);
517 eieio();
520 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
522 struct spu_priv2 __iomem *priv2 = spu->priv2;
524 /* Save, Step 34:
525 * Save SPU_LSLR in the CSA.
527 csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
530 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
532 struct spu_priv2 __iomem *priv2 = spu->priv2;
534 /* Save, Step 35:
535 * Restore, Step 17.
536 * Reset SPU_LSLR.
538 out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
539 eieio();
542 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
544 struct spu_priv2 __iomem *priv2 = spu->priv2;
546 /* Save, Step 36:
547 * Save SPU_Cfg in the CSA.
549 csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
552 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
554 /* Save, Step 37:
555 * Save PM_Trace_Tag_Wait_Mask in the CSA.
556 * Not performed by this implementation.
560 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
562 /* Save, Step 38:
563 * Save RA_GROUP_ID register and the
564 * RA_ENABLE reigster in the CSA.
566 csa->priv1.resource_allocation_groupID_RW =
567 spu_resource_allocation_groupID_get(spu);
568 csa->priv1.resource_allocation_enable_RW =
569 spu_resource_allocation_enable_get(spu);
572 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
574 struct spu_problem __iomem *prob = spu->problem;
576 /* Save, Step 39:
577 * Save MB_Stat register in the CSA.
579 csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
582 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
584 struct spu_problem __iomem *prob = spu->problem;
586 /* Save, Step 40:
587 * Save the PPU_MB register in the CSA.
589 csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
592 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
594 struct spu_priv2 __iomem *priv2 = spu->priv2;
596 /* Save, Step 41:
597 * Save the PPUINT_MB register in the CSA.
599 csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
602 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
604 struct spu_priv2 __iomem *priv2 = spu->priv2;
605 u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
606 int i;
608 /* Save, Step 42:
611 /* Save CH 1, without channel count */
612 out_be64(&priv2->spu_chnlcntptr_RW, 1);
613 csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
615 /* Save the following CH: [0,3,4,24,25,27] */
616 for (i = 0; i < 7; i++) {
617 idx = ch_indices[i];
618 out_be64(&priv2->spu_chnlcntptr_RW, idx);
619 eieio();
620 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
621 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
622 out_be64(&priv2->spu_chnldata_RW, 0UL);
623 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
624 eieio();
628 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
630 struct spu_priv2 __iomem *priv2 = spu->priv2;
631 int i;
633 /* Save, Step 43:
634 * Save SPU Read Mailbox Channel.
636 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
637 eieio();
638 csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
639 for (i = 0; i < 4; i++) {
640 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
642 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
643 eieio();
646 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
648 struct spu_priv2 __iomem *priv2 = spu->priv2;
650 /* Save, Step 44:
651 * Save MFC_CMD Channel.
653 out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
654 eieio();
655 csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
656 eieio();
659 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
661 struct spu_priv2 __iomem *priv2 = spu->priv2;
662 u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
663 u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
664 u64 idx;
665 int i;
667 /* Save, Step 45:
668 * Reset the following CH: [21, 23, 28, 30]
670 for (i = 0; i < 4; i++) {
671 idx = ch_indices[i];
672 out_be64(&priv2->spu_chnlcntptr_RW, idx);
673 eieio();
674 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
675 eieio();
679 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
681 struct spu_priv2 __iomem *priv2 = spu->priv2;
683 /* Save, Step 46:
684 * Restore, Step 25.
685 * Write MFC_CNTL[Sc]=0 (resume queue processing).
687 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
690 static inline void get_kernel_slb(u64 ea, u64 slb[2])
692 u64 llp;
694 if (REGION_ID(ea) == KERNEL_REGION_ID)
695 llp = mmu_psize_defs[mmu_linear_psize].sllp;
696 else
697 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
698 slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
699 SLB_VSID_KERNEL | llp;
700 slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
703 static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
705 struct spu_priv2 __iomem *priv2 = spu->priv2;
707 out_be64(&priv2->slb_index_W, slbe);
708 eieio();
709 out_be64(&priv2->slb_vsid_RW, slb[0]);
710 out_be64(&priv2->slb_esid_RW, slb[1]);
711 eieio();
714 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
716 u64 code_slb[2];
717 u64 lscsa_slb[2];
719 /* Save, Step 47:
720 * Restore, Step 30.
721 * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
722 * register, then initialize SLB_VSID and SLB_ESID
723 * to provide access to SPU context save code and
724 * LSCSA.
726 * This implementation places both the context
727 * switch code and LSCSA in kernel address space.
729 * Further this implementation assumes that the
730 * MFC_SR1[R]=1 (in other words, assume that
731 * translation is desired by OS environment).
733 spu_invalidate_slbs(spu);
734 get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
735 get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
736 load_mfc_slb(spu, code_slb, 0);
737 if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
738 load_mfc_slb(spu, lscsa_slb, 1);
741 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
743 /* Save, Step 48:
744 * Restore, Step 23.
745 * Change the software context switch pending flag
746 * to context switch active.
748 set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
749 clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
750 mb();
753 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
755 unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
756 CLASS1_ENABLE_STORAGE_FAULT_INTR;
758 /* Save, Step 49:
759 * Restore, Step 22:
760 * Reset and then enable interrupts, as
761 * needed by OS.
763 * This implementation enables only class1
764 * (translation) interrupts.
766 spin_lock_irq(&spu->register_lock);
767 spu_int_stat_clear(spu, 0, ~0ul);
768 spu_int_stat_clear(spu, 1, ~0ul);
769 spu_int_stat_clear(spu, 2, ~0ul);
770 spu_int_mask_set(spu, 0, 0ul);
771 spu_int_mask_set(spu, 1, class1_mask);
772 spu_int_mask_set(spu, 2, 0ul);
773 spin_unlock_irq(&spu->register_lock);
776 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
777 unsigned int ls_offset, unsigned int size,
778 unsigned int tag, unsigned int rclass,
779 unsigned int cmd)
781 struct spu_problem __iomem *prob = spu->problem;
782 union mfc_tag_size_class_cmd command;
783 unsigned int transfer_size;
784 volatile unsigned int status = 0x0;
786 while (size > 0) {
787 transfer_size =
788 (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
789 command.u.mfc_size = transfer_size;
790 command.u.mfc_tag = tag;
791 command.u.mfc_rclassid = rclass;
792 command.u.mfc_cmd = cmd;
793 do {
794 out_be32(&prob->mfc_lsa_W, ls_offset);
795 out_be64(&prob->mfc_ea_W, ea);
796 out_be64(&prob->mfc_union_W.all64, command.all64);
797 status =
798 in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
799 if (unlikely(status & 0x2)) {
800 cpu_relax();
802 } while (status & 0x3);
803 size -= transfer_size;
804 ea += transfer_size;
805 ls_offset += transfer_size;
807 return 0;
810 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
812 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
813 unsigned int ls_offset = 0x0;
814 unsigned int size = 16384;
815 unsigned int tag = 0;
816 unsigned int rclass = 0;
817 unsigned int cmd = MFC_PUT_CMD;
819 /* Save, Step 50:
820 * Issue a DMA command to copy the first 16K bytes
821 * of local storage to the CSA.
823 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
826 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
828 struct spu_problem __iomem *prob = spu->problem;
830 /* Save, Step 51:
831 * Restore, Step 31.
832 * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
833 * point address of context save code in local
834 * storage.
836 * This implementation uses SPU-side save/restore
837 * programs with entry points at LSA of 0.
839 out_be32(&prob->spu_npc_RW, 0);
840 eieio();
843 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
845 struct spu_problem __iomem *prob = spu->problem;
846 union {
847 u64 ull;
848 u32 ui[2];
849 } addr64;
851 /* Save, Step 52:
852 * Restore, Step 32:
853 * Write SPU_Sig_Notify_1 register with upper 32-bits
854 * of the CSA.LSCSA effective address.
856 addr64.ull = (u64) csa->lscsa;
857 out_be32(&prob->signal_notify1, addr64.ui[0]);
858 eieio();
861 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
863 struct spu_problem __iomem *prob = spu->problem;
864 union {
865 u64 ull;
866 u32 ui[2];
867 } addr64;
869 /* Save, Step 53:
870 * Restore, Step 33:
871 * Write SPU_Sig_Notify_2 register with lower 32-bits
872 * of the CSA.LSCSA effective address.
874 addr64.ull = (u64) csa->lscsa;
875 out_be32(&prob->signal_notify2, addr64.ui[1]);
876 eieio();
879 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
881 unsigned long addr = (unsigned long)&spu_save_code[0];
882 unsigned int ls_offset = 0x0;
883 unsigned int size = sizeof(spu_save_code);
884 unsigned int tag = 0;
885 unsigned int rclass = 0;
886 unsigned int cmd = MFC_GETFS_CMD;
888 /* Save, Step 54:
889 * Issue a DMA command to copy context save code
890 * to local storage and start SPU.
892 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
895 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
897 struct spu_problem __iomem *prob = spu->problem;
899 /* Save, Step 55:
900 * Restore, Step 38.
901 * Write PPU_QueryMask=1 (enable Tag Group 0)
902 * and issue eieio instruction.
904 out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
905 eieio();
908 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
910 struct spu_problem __iomem *prob = spu->problem;
911 u32 mask = MFC_TAGID_TO_TAGMASK(0);
912 unsigned long flags;
914 /* Save, Step 56:
915 * Restore, Step 39.
916 * Restore, Step 39.
917 * Restore, Step 46.
918 * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
919 * or write PPU_QueryType[TS]=01 and wait for Tag Group
920 * Complete Interrupt. Write INT_Stat_Class0 or
921 * INT_Stat_Class2 with value of 'handled'.
923 POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
925 local_irq_save(flags);
926 spu_int_stat_clear(spu, 0, ~(0ul));
927 spu_int_stat_clear(spu, 2, ~(0ul));
928 local_irq_restore(flags);
931 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
933 struct spu_problem __iomem *prob = spu->problem;
934 unsigned long flags;
936 /* Save, Step 57:
937 * Restore, Step 40.
938 * Poll until SPU_Status[R]=0 or wait for SPU Class 0
939 * or SPU Class 2 interrupt. Write INT_Stat_class0
940 * or INT_Stat_class2 with value of handled.
942 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
944 local_irq_save(flags);
945 spu_int_stat_clear(spu, 0, ~(0ul));
946 spu_int_stat_clear(spu, 2, ~(0ul));
947 local_irq_restore(flags);
950 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
952 struct spu_problem __iomem *prob = spu->problem;
953 u32 complete;
955 /* Save, Step 54:
956 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
957 * context save succeeded, otherwise context save
958 * failed.
960 complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
961 SPU_STATUS_STOPPED_BY_STOP);
962 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
965 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
967 /* Restore, Step 4:
968 * If required, notify the "using application" that
969 * the SPU task has been terminated. TBD.
973 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
975 struct spu_priv2 __iomem *priv2 = spu->priv2;
977 /* Restore, Step 7:
978 * Restore, Step 47.
979 * Write MFC_Cntl[Dh,Sc]='1','1' to suspend
980 * the queue and halt the decrementer.
982 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
983 MFC_CNTL_DECREMENTER_HALTED);
984 eieio();
987 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
988 struct spu *spu)
990 struct spu_priv2 __iomem *priv2 = spu->priv2;
992 /* Restore, Step 8:
993 * Restore, Step 47.
994 * Poll MFC_CNTL[Ss] until 11 is returned.
996 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
997 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
998 MFC_CNTL_SUSPEND_COMPLETE);
1001 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1003 struct spu_problem __iomem *prob = spu->problem;
1005 /* Restore, Step 9:
1006 * If SPU_Status[R]=1, stop SPU execution
1007 * and wait for stop to complete.
1009 * Returns 1 if SPU_Status[R]=1 on entry.
1010 * 0 otherwise
1012 if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1013 if (in_be32(&prob->spu_status_R) &
1014 SPU_STATUS_ISOLATED_EXIT_STATUS) {
1015 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1016 SPU_STATUS_RUNNING);
1018 if ((in_be32(&prob->spu_status_R) &
1019 SPU_STATUS_ISOLATED_LOAD_STATUS)
1020 || (in_be32(&prob->spu_status_R) &
1021 SPU_STATUS_ISOLATED_STATE)) {
1022 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1023 eieio();
1024 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1025 SPU_STATUS_RUNNING);
1026 out_be32(&prob->spu_runcntl_RW, 0x2);
1027 eieio();
1028 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1029 SPU_STATUS_RUNNING);
1031 if (in_be32(&prob->spu_status_R) &
1032 SPU_STATUS_WAITING_FOR_CHANNEL) {
1033 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1034 eieio();
1035 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1036 SPU_STATUS_RUNNING);
1038 return 1;
1040 return 0;
1043 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1045 struct spu_problem __iomem *prob = spu->problem;
1047 /* Restore, Step 10:
1048 * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1049 * release SPU from isolate state.
1051 if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1052 if (in_be32(&prob->spu_status_R) &
1053 SPU_STATUS_ISOLATED_EXIT_STATUS) {
1054 spu_mfc_sr1_set(spu,
1055 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1056 eieio();
1057 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1058 eieio();
1059 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1060 SPU_STATUS_RUNNING);
1062 if ((in_be32(&prob->spu_status_R) &
1063 SPU_STATUS_ISOLATED_LOAD_STATUS)
1064 || (in_be32(&prob->spu_status_R) &
1065 SPU_STATUS_ISOLATED_STATE)) {
1066 spu_mfc_sr1_set(spu,
1067 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1068 eieio();
1069 out_be32(&prob->spu_runcntl_RW, 0x2);
1070 eieio();
1071 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1072 SPU_STATUS_RUNNING);
1077 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1079 struct spu_priv2 __iomem *priv2 = spu->priv2;
1080 u64 ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1081 u64 idx;
1082 int i;
1084 /* Restore, Step 20:
1087 /* Reset CH 1 */
1088 out_be64(&priv2->spu_chnlcntptr_RW, 1);
1089 out_be64(&priv2->spu_chnldata_RW, 0UL);
1091 /* Reset the following CH: [0,3,4,24,25,27] */
1092 for (i = 0; i < 7; i++) {
1093 idx = ch_indices[i];
1094 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1095 eieio();
1096 out_be64(&priv2->spu_chnldata_RW, 0UL);
1097 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1098 eieio();
1102 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1104 struct spu_priv2 __iomem *priv2 = spu->priv2;
1105 u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1106 u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1107 u64 idx;
1108 int i;
1110 /* Restore, Step 21:
1111 * Reset the following CH: [21, 23, 28, 29, 30]
1113 for (i = 0; i < 5; i++) {
1114 idx = ch_indices[i];
1115 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1116 eieio();
1117 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1118 eieio();
1122 static inline void setup_spu_status_part1(struct spu_state *csa,
1123 struct spu *spu)
1125 u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1126 u32 status_I = SPU_STATUS_INVALID_INSTR;
1127 u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1128 u32 status_S = SPU_STATUS_SINGLE_STEP;
1129 u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1130 u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1131 u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1132 u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1133 u32 status_code;
1135 /* Restore, Step 27:
1136 * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1137 * instruction sequence to the end of the SPU based restore
1138 * code (after the "context restored" stop and signal) to
1139 * restore the correct SPU status.
1141 * NOTE: Rather than modifying the SPU executable, we
1142 * instead add a new 'stopped_status' field to the
1143 * LSCSA. The SPU-side restore reads this field and
1144 * takes the appropriate action when exiting.
1147 status_code =
1148 (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1149 if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1151 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1152 * by Stop and Signal instruction, followed by 'br -4'.
1155 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1156 csa->lscsa->stopped_status.slot[1] = status_code;
1158 } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1160 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1161 * by Stop and Signal instruction, followed by
1162 * 'br -4'.
1164 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1165 csa->lscsa->stopped_status.slot[1] = status_code;
1167 } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1169 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1170 * followed by 'br -4'.
1172 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1173 csa->lscsa->stopped_status.slot[1] = status_code;
1175 } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1177 /* SPU_Status[S,I]=1 - Illegal instruction followed
1178 * by 'br -4'.
1180 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1181 csa->lscsa->stopped_status.slot[1] = status_code;
1183 } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1185 /* SPU_Status[P]=1 - Stop and Signal instruction
1186 * followed by 'br -4'.
1188 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1189 csa->lscsa->stopped_status.slot[1] = status_code;
1191 } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1193 /* SPU_Status[H]=1 - Halt Conditional, followed
1194 * by 'br -4'.
1196 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1198 } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1200 /* SPU_Status[S]=1 - Two nop instructions.
1202 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1204 } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1206 /* SPU_Status[I]=1 - Illegal instruction followed
1207 * by 'br -4'.
1209 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1214 static inline void setup_spu_status_part2(struct spu_state *csa,
1215 struct spu *spu)
1217 u32 mask;
1219 /* Restore, Step 28:
1220 * If the CSA.SPU_Status[I,S,H,P,R]=0 then
1221 * add a 'br *' instruction to the end of
1222 * the SPU based restore code.
1224 * NOTE: Rather than modifying the SPU executable, we
1225 * instead add a new 'stopped_status' field to the
1226 * LSCSA. The SPU-side restore reads this field and
1227 * takes the appropriate action when exiting.
1229 mask = SPU_STATUS_INVALID_INSTR |
1230 SPU_STATUS_SINGLE_STEP |
1231 SPU_STATUS_STOPPED_BY_HALT |
1232 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1233 if (!(csa->prob.spu_status_R & mask)) {
1234 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1238 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1240 /* Restore, Step 29:
1241 * Restore RA_GROUP_ID register and the
1242 * RA_ENABLE reigster from the CSA.
1244 spu_resource_allocation_groupID_set(spu,
1245 csa->priv1.resource_allocation_groupID_RW);
1246 spu_resource_allocation_enable_set(spu,
1247 csa->priv1.resource_allocation_enable_RW);
1250 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1252 unsigned long addr = (unsigned long)&spu_restore_code[0];
1253 unsigned int ls_offset = 0x0;
1254 unsigned int size = sizeof(spu_restore_code);
1255 unsigned int tag = 0;
1256 unsigned int rclass = 0;
1257 unsigned int cmd = MFC_GETFS_CMD;
1259 /* Restore, Step 37:
1260 * Issue MFC DMA command to copy context
1261 * restore code to local storage.
1263 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1266 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1268 /* Restore, Step 34:
1269 * If CSA.MFC_CNTL[Ds]=1 (decrementer was
1270 * running) then adjust decrementer, set
1271 * decrementer running status in LSCSA,
1272 * and set decrementer "wrapped" status
1273 * in LSCSA.
1275 if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1276 cycles_t resume_time = get_cycles();
1277 cycles_t delta_time = resume_time - csa->suspend_time;
1279 csa->lscsa->decr.slot[0] -= delta_time;
1283 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1285 /* Restore, Step 35:
1286 * Copy the CSA.PU_MB data into the LSCSA.
1288 csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1291 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1293 /* Restore, Step 36:
1294 * Copy the CSA.PUINT_MB data into the LSCSA.
1296 csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1299 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1301 struct spu_problem __iomem *prob = spu->problem;
1302 u32 complete;
1304 /* Restore, Step 40:
1305 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1306 * context restore succeeded, otherwise context restore
1307 * failed.
1309 complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1310 SPU_STATUS_STOPPED_BY_STOP);
1311 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1314 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1316 struct spu_priv2 __iomem *priv2 = spu->priv2;
1318 /* Restore, Step 41:
1319 * Restore SPU_PrivCntl from the CSA.
1321 out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1322 eieio();
1325 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1327 struct spu_problem __iomem *prob = spu->problem;
1328 u32 mask;
1330 /* Restore, Step 42:
1331 * If any CSA.SPU_Status[I,S,H,P]=1, then
1332 * restore the error or single step state.
1334 mask = SPU_STATUS_INVALID_INSTR |
1335 SPU_STATUS_SINGLE_STEP |
1336 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1337 if (csa->prob.spu_status_R & mask) {
1338 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1339 eieio();
1340 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1341 SPU_STATUS_RUNNING);
1345 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1347 struct spu_problem __iomem *prob = spu->problem;
1348 u32 mask;
1350 /* Restore, Step 43:
1351 * If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1352 * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1353 * then write '00' to SPU_RunCntl[R0R1] and wait
1354 * for SPU_Status[R]=0.
1356 mask = SPU_STATUS_INVALID_INSTR |
1357 SPU_STATUS_SINGLE_STEP |
1358 SPU_STATUS_STOPPED_BY_HALT |
1359 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1360 if (!(csa->prob.spu_status_R & mask)) {
1361 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1362 eieio();
1363 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1364 SPU_STATUS_RUNNING);
1365 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1366 eieio();
1367 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1368 SPU_STATUS_RUNNING);
1372 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1374 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1375 unsigned int ls_offset = 0x0;
1376 unsigned int size = 16384;
1377 unsigned int tag = 0;
1378 unsigned int rclass = 0;
1379 unsigned int cmd = MFC_GET_CMD;
1381 /* Restore, Step 44:
1382 * Issue a DMA command to restore the first
1383 * 16kb of local storage from CSA.
1385 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1388 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1390 /* Restore, Step 49:
1391 * Write INT_MASK_class0 with value of 0.
1392 * Write INT_MASK_class1 with value of 0.
1393 * Write INT_MASK_class2 with value of 0.
1394 * Write INT_STAT_class0 with value of -1.
1395 * Write INT_STAT_class1 with value of -1.
1396 * Write INT_STAT_class2 with value of -1.
1398 spin_lock_irq(&spu->register_lock);
1399 spu_int_mask_set(spu, 0, 0ul);
1400 spu_int_mask_set(spu, 1, 0ul);
1401 spu_int_mask_set(spu, 2, 0ul);
1402 spu_int_stat_clear(spu, 0, ~0ul);
1403 spu_int_stat_clear(spu, 1, ~0ul);
1404 spu_int_stat_clear(spu, 2, ~0ul);
1405 spin_unlock_irq(&spu->register_lock);
1408 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1410 struct spu_priv2 __iomem *priv2 = spu->priv2;
1411 int i;
1413 /* Restore, Step 50:
1414 * If MFC_Cntl[Se]!=0 then restore
1415 * MFC command queues.
1417 if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1418 for (i = 0; i < 8; i++) {
1419 out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1420 csa->priv2.puq[i].mfc_cq_data0_RW);
1421 out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1422 csa->priv2.puq[i].mfc_cq_data1_RW);
1423 out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1424 csa->priv2.puq[i].mfc_cq_data2_RW);
1425 out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1426 csa->priv2.puq[i].mfc_cq_data3_RW);
1428 for (i = 0; i < 16; i++) {
1429 out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1430 csa->priv2.spuq[i].mfc_cq_data0_RW);
1431 out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1432 csa->priv2.spuq[i].mfc_cq_data1_RW);
1433 out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1434 csa->priv2.spuq[i].mfc_cq_data2_RW);
1435 out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1436 csa->priv2.spuq[i].mfc_cq_data3_RW);
1439 eieio();
1442 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1444 struct spu_problem __iomem *prob = spu->problem;
1446 /* Restore, Step 51:
1447 * Restore the PPU_QueryMask register from CSA.
1449 out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1450 eieio();
1453 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1455 struct spu_problem __iomem *prob = spu->problem;
1457 /* Restore, Step 52:
1458 * Restore the PPU_QueryType register from CSA.
1460 out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1461 eieio();
1464 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1466 struct spu_priv2 __iomem *priv2 = spu->priv2;
1468 /* Restore, Step 53:
1469 * Restore the MFC_CSR_TSQ register from CSA.
1471 out_be64(&priv2->spu_tag_status_query_RW,
1472 csa->priv2.spu_tag_status_query_RW);
1473 eieio();
1476 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1478 struct spu_priv2 __iomem *priv2 = spu->priv2;
1480 /* Restore, Step 54:
1481 * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1482 * registers from CSA.
1484 out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1485 out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1486 eieio();
1489 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1491 struct spu_priv2 __iomem *priv2 = spu->priv2;
1493 /* Restore, Step 55:
1494 * Restore the MFC_CSR_ATO register from CSA.
1496 out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1499 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1501 /* Restore, Step 56:
1502 * Restore the MFC_TCLASS_ID register from CSA.
1504 spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1505 eieio();
1508 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1510 u64 ch0_cnt, ch0_data;
1511 u64 ch1_data;
1513 /* Restore, Step 57:
1514 * Set the Lock Line Reservation Lost Event by:
1515 * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1516 * 2. If CSA.SPU_Channel_0_Count=0 and
1517 * CSA.SPU_Wr_Event_Mask[Lr]=1 and
1518 * CSA.SPU_Event_Status[Lr]=0 then set
1519 * CSA.SPU_Event_Status_Count=1.
1521 ch0_cnt = csa->spu_chnlcnt_RW[0];
1522 ch0_data = csa->spu_chnldata_RW[0];
1523 ch1_data = csa->spu_chnldata_RW[1];
1524 csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1525 if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1526 (ch1_data & MFC_LLR_LOST_EVENT)) {
1527 csa->spu_chnlcnt_RW[0] = 1;
1531 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1533 /* Restore, Step 58:
1534 * If the status of the CSA software decrementer
1535 * "wrapped" flag is set, OR in a '1' to
1536 * CSA.SPU_Event_Status[Tm].
1538 if (csa->lscsa->decr_status.slot[0] == 1) {
1539 csa->spu_chnldata_RW[0] |= 0x20;
1541 if ((csa->lscsa->decr_status.slot[0] == 1) &&
1542 (csa->spu_chnlcnt_RW[0] == 0 &&
1543 ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1544 ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1545 csa->spu_chnlcnt_RW[0] = 1;
1549 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1551 struct spu_priv2 __iomem *priv2 = spu->priv2;
1552 u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1553 int i;
1555 /* Restore, Step 59:
1558 /* Restore CH 1 without count */
1559 out_be64(&priv2->spu_chnlcntptr_RW, 1);
1560 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[1]);
1562 /* Restore the following CH: [0,3,4,24,25,27] */
1563 for (i = 0; i < 7; i++) {
1564 idx = ch_indices[i];
1565 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1566 eieio();
1567 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1568 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1569 eieio();
1573 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1575 struct spu_priv2 __iomem *priv2 = spu->priv2;
1576 u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1577 u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1578 u64 idx;
1579 int i;
1581 /* Restore, Step 60:
1582 * Restore the following CH: [9,21,23].
1584 ch_counts[0] = 1UL;
1585 ch_counts[1] = csa->spu_chnlcnt_RW[21];
1586 ch_counts[2] = 1UL;
1587 for (i = 0; i < 3; i++) {
1588 idx = ch_indices[i];
1589 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1590 eieio();
1591 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1592 eieio();
1596 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1598 struct spu_priv2 __iomem *priv2 = spu->priv2;
1600 /* Restore, Step 61:
1601 * Restore the SPU_LSLR register from CSA.
1603 out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1604 eieio();
1607 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1609 struct spu_priv2 __iomem *priv2 = spu->priv2;
1611 /* Restore, Step 62:
1612 * Restore the SPU_Cfg register from CSA.
1614 out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1615 eieio();
1618 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1620 /* Restore, Step 63:
1621 * Restore PM_Trace_Tag_Wait_Mask from CSA.
1622 * Not performed by this implementation.
1626 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1628 struct spu_problem __iomem *prob = spu->problem;
1630 /* Restore, Step 64:
1631 * Restore SPU_NPC from CSA.
1633 out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1634 eieio();
1637 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1639 struct spu_priv2 __iomem *priv2 = spu->priv2;
1640 int i;
1642 /* Restore, Step 65:
1643 * Restore MFC_RdSPU_MB from CSA.
1645 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1646 eieio();
1647 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1648 for (i = 0; i < 4; i++) {
1649 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1651 eieio();
1654 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1656 struct spu_problem __iomem *prob = spu->problem;
1657 u32 dummy = 0;
1659 /* Restore, Step 66:
1660 * If CSA.MB_Stat[P]=0 (mailbox empty) then
1661 * read from the PPU_MB register.
1663 if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1664 dummy = in_be32(&prob->pu_mb_R);
1665 eieio();
1669 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1671 struct spu_priv2 __iomem *priv2 = spu->priv2;
1672 u64 dummy = 0UL;
1674 /* Restore, Step 66:
1675 * If CSA.MB_Stat[I]=0 (mailbox empty) then
1676 * read from the PPUINT_MB register.
1678 if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1679 dummy = in_be64(&priv2->puint_mb_R);
1680 eieio();
1681 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1682 eieio();
1686 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1688 /* Restore, Step 69:
1689 * Restore the MFC_SR1 register from CSA.
1691 spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1692 eieio();
1695 static inline void restore_other_spu_access(struct spu_state *csa,
1696 struct spu *spu)
1698 /* Restore, Step 70:
1699 * Restore other SPU mappings to this SPU. TBD.
1703 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1705 struct spu_problem __iomem *prob = spu->problem;
1707 /* Restore, Step 71:
1708 * If CSA.SPU_Status[R]=1 then write
1709 * SPU_RunCntl[R0R1]='01'.
1711 if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1712 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1713 eieio();
1717 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1719 struct spu_priv2 __iomem *priv2 = spu->priv2;
1721 /* Restore, Step 72:
1722 * Restore the MFC_CNTL register for the CSA.
1724 out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1725 eieio();
1727 * FIXME: this is to restart a DMA that we were processing
1728 * before the save. better remember the fault information
1729 * in the csa instead.
1731 if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1732 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1733 eieio();
1737 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1739 /* Restore, Step 73:
1740 * Enable user-space access (if provided) to this
1741 * SPU by mapping the virtual pages assigned to
1742 * the SPU memory-mapped I/O (MMIO) for problem
1743 * state. TBD.
1747 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1749 /* Restore, Step 74:
1750 * Reset the "context switch active" flag.
1752 clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1753 mb();
1756 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1758 /* Restore, Step 75:
1759 * Re-enable SPU interrupts.
1761 spin_lock_irq(&spu->register_lock);
1762 spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1763 spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1764 spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1765 spin_unlock_irq(&spu->register_lock);
1768 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1771 * Combined steps 2-18 of SPU context save sequence, which
1772 * quiesce the SPU state (disable SPU execution, MFC command
1773 * queues, decrementer, SPU interrupts, etc.).
1775 * Returns 0 on success.
1776 * 2 if failed step 2.
1777 * 6 if failed step 6.
1780 if (check_spu_isolate(prev, spu)) { /* Step 2. */
1781 return 2;
1783 disable_interrupts(prev, spu); /* Step 3. */
1784 set_watchdog_timer(prev, spu); /* Step 4. */
1785 inhibit_user_access(prev, spu); /* Step 5. */
1786 if (check_spu_isolate(prev, spu)) { /* Step 6. */
1787 return 6;
1789 set_switch_pending(prev, spu); /* Step 7. */
1790 save_mfc_cntl(prev, spu); /* Step 8. */
1791 save_spu_runcntl(prev, spu); /* Step 9. */
1792 save_mfc_sr1(prev, spu); /* Step 10. */
1793 save_spu_status(prev, spu); /* Step 11. */
1794 save_mfc_decr(prev, spu); /* Step 12. */
1795 halt_mfc_decr(prev, spu); /* Step 13. */
1796 save_timebase(prev, spu); /* Step 14. */
1797 remove_other_spu_access(prev, spu); /* Step 15. */
1798 do_mfc_mssync(prev, spu); /* Step 16. */
1799 issue_mfc_tlbie(prev, spu); /* Step 17. */
1800 handle_pending_interrupts(prev, spu); /* Step 18. */
1802 return 0;
1805 static void save_csa(struct spu_state *prev, struct spu *spu)
1808 * Combine steps 19-44 of SPU context save sequence, which
1809 * save regions of the privileged & problem state areas.
1812 save_mfc_queues(prev, spu); /* Step 19. */
1813 save_ppu_querymask(prev, spu); /* Step 20. */
1814 save_ppu_querytype(prev, spu); /* Step 21. */
1815 save_mfc_csr_tsq(prev, spu); /* Step 22. */
1816 save_mfc_csr_cmd(prev, spu); /* Step 23. */
1817 save_mfc_csr_ato(prev, spu); /* Step 24. */
1818 save_mfc_tclass_id(prev, spu); /* Step 25. */
1819 set_mfc_tclass_id(prev, spu); /* Step 26. */
1820 purge_mfc_queue(prev, spu); /* Step 27. */
1821 wait_purge_complete(prev, spu); /* Step 28. */
1822 setup_mfc_sr1(prev, spu); /* Step 30. */
1823 save_spu_npc(prev, spu); /* Step 31. */
1824 save_spu_privcntl(prev, spu); /* Step 32. */
1825 reset_spu_privcntl(prev, spu); /* Step 33. */
1826 save_spu_lslr(prev, spu); /* Step 34. */
1827 reset_spu_lslr(prev, spu); /* Step 35. */
1828 save_spu_cfg(prev, spu); /* Step 36. */
1829 save_pm_trace(prev, spu); /* Step 37. */
1830 save_mfc_rag(prev, spu); /* Step 38. */
1831 save_ppu_mb_stat(prev, spu); /* Step 39. */
1832 save_ppu_mb(prev, spu); /* Step 40. */
1833 save_ppuint_mb(prev, spu); /* Step 41. */
1834 save_ch_part1(prev, spu); /* Step 42. */
1835 save_spu_mb(prev, spu); /* Step 43. */
1836 save_mfc_cmd(prev, spu); /* Step 44. */
1837 reset_ch(prev, spu); /* Step 45. */
1840 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1843 * Perform steps 46-57 of SPU context save sequence,
1844 * which save regions of the local store and register
1845 * file.
1848 resume_mfc_queue(prev, spu); /* Step 46. */
1849 setup_mfc_slbs(prev, spu); /* Step 47. */
1850 set_switch_active(prev, spu); /* Step 48. */
1851 enable_interrupts(prev, spu); /* Step 49. */
1852 save_ls_16kb(prev, spu); /* Step 50. */
1853 set_spu_npc(prev, spu); /* Step 51. */
1854 set_signot1(prev, spu); /* Step 52. */
1855 set_signot2(prev, spu); /* Step 53. */
1856 send_save_code(prev, spu); /* Step 54. */
1857 set_ppu_querymask(prev, spu); /* Step 55. */
1858 wait_tag_complete(prev, spu); /* Step 56. */
1859 wait_spu_stopped(prev, spu); /* Step 57. */
1862 static void force_spu_isolate_exit(struct spu *spu)
1864 struct spu_problem __iomem *prob = spu->problem;
1865 struct spu_priv2 __iomem *priv2 = spu->priv2;
1867 /* Stop SPE execution and wait for completion. */
1868 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1869 iobarrier_rw();
1870 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1872 /* Restart SPE master runcntl. */
1873 spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1874 iobarrier_w();
1876 /* Initiate isolate exit request and wait for completion. */
1877 out_be64(&priv2->spu_privcntl_RW, 4LL);
1878 iobarrier_w();
1879 out_be32(&prob->spu_runcntl_RW, 2);
1880 iobarrier_rw();
1881 POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1882 & SPU_STATUS_STOPPED_BY_STOP));
1884 /* Reset load request to normal. */
1885 out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1886 iobarrier_w();
1890 * stop_spu_isolate
1891 * Check SPU run-control state and force isolated
1892 * exit function as necessary.
1894 static void stop_spu_isolate(struct spu *spu)
1896 struct spu_problem __iomem *prob = spu->problem;
1898 if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1899 /* The SPU is in isolated state; the only way
1900 * to get it out is to perform an isolated
1901 * exit (clean) operation.
1903 force_spu_isolate_exit(spu);
1907 static void harvest(struct spu_state *prev, struct spu *spu)
1910 * Perform steps 2-25 of SPU context restore sequence,
1911 * which resets an SPU either after a failed save, or
1912 * when using SPU for first time.
1915 disable_interrupts(prev, spu); /* Step 2. */
1916 inhibit_user_access(prev, spu); /* Step 3. */
1917 terminate_spu_app(prev, spu); /* Step 4. */
1918 set_switch_pending(prev, spu); /* Step 5. */
1919 stop_spu_isolate(spu); /* NEW. */
1920 remove_other_spu_access(prev, spu); /* Step 6. */
1921 suspend_mfc(prev, spu); /* Step 7. */
1922 wait_suspend_mfc_complete(prev, spu); /* Step 8. */
1923 if (!suspend_spe(prev, spu)) /* Step 9. */
1924 clear_spu_status(prev, spu); /* Step 10. */
1925 do_mfc_mssync(prev, spu); /* Step 11. */
1926 issue_mfc_tlbie(prev, spu); /* Step 12. */
1927 handle_pending_interrupts(prev, spu); /* Step 13. */
1928 purge_mfc_queue(prev, spu); /* Step 14. */
1929 wait_purge_complete(prev, spu); /* Step 15. */
1930 reset_spu_privcntl(prev, spu); /* Step 16. */
1931 reset_spu_lslr(prev, spu); /* Step 17. */
1932 setup_mfc_sr1(prev, spu); /* Step 18. */
1933 spu_invalidate_slbs(spu); /* Step 19. */
1934 reset_ch_part1(prev, spu); /* Step 20. */
1935 reset_ch_part2(prev, spu); /* Step 21. */
1936 enable_interrupts(prev, spu); /* Step 22. */
1937 set_switch_active(prev, spu); /* Step 23. */
1938 set_mfc_tclass_id(prev, spu); /* Step 24. */
1939 resume_mfc_queue(prev, spu); /* Step 25. */
1942 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1945 * Perform steps 26-40 of SPU context restore sequence,
1946 * which restores regions of the local store and register
1947 * file.
1950 set_watchdog_timer(next, spu); /* Step 26. */
1951 setup_spu_status_part1(next, spu); /* Step 27. */
1952 setup_spu_status_part2(next, spu); /* Step 28. */
1953 restore_mfc_rag(next, spu); /* Step 29. */
1954 setup_mfc_slbs(next, spu); /* Step 30. */
1955 set_spu_npc(next, spu); /* Step 31. */
1956 set_signot1(next, spu); /* Step 32. */
1957 set_signot2(next, spu); /* Step 33. */
1958 setup_decr(next, spu); /* Step 34. */
1959 setup_ppu_mb(next, spu); /* Step 35. */
1960 setup_ppuint_mb(next, spu); /* Step 36. */
1961 send_restore_code(next, spu); /* Step 37. */
1962 set_ppu_querymask(next, spu); /* Step 38. */
1963 wait_tag_complete(next, spu); /* Step 39. */
1964 wait_spu_stopped(next, spu); /* Step 40. */
1967 static void restore_csa(struct spu_state *next, struct spu *spu)
1970 * Combine steps 41-76 of SPU context restore sequence, which
1971 * restore regions of the privileged & problem state areas.
1974 restore_spu_privcntl(next, spu); /* Step 41. */
1975 restore_status_part1(next, spu); /* Step 42. */
1976 restore_status_part2(next, spu); /* Step 43. */
1977 restore_ls_16kb(next, spu); /* Step 44. */
1978 wait_tag_complete(next, spu); /* Step 45. */
1979 suspend_mfc(next, spu); /* Step 46. */
1980 wait_suspend_mfc_complete(next, spu); /* Step 47. */
1981 issue_mfc_tlbie(next, spu); /* Step 48. */
1982 clear_interrupts(next, spu); /* Step 49. */
1983 restore_mfc_queues(next, spu); /* Step 50. */
1984 restore_ppu_querymask(next, spu); /* Step 51. */
1985 restore_ppu_querytype(next, spu); /* Step 52. */
1986 restore_mfc_csr_tsq(next, spu); /* Step 53. */
1987 restore_mfc_csr_cmd(next, spu); /* Step 54. */
1988 restore_mfc_csr_ato(next, spu); /* Step 55. */
1989 restore_mfc_tclass_id(next, spu); /* Step 56. */
1990 set_llr_event(next, spu); /* Step 57. */
1991 restore_decr_wrapped(next, spu); /* Step 58. */
1992 restore_ch_part1(next, spu); /* Step 59. */
1993 restore_ch_part2(next, spu); /* Step 60. */
1994 restore_spu_lslr(next, spu); /* Step 61. */
1995 restore_spu_cfg(next, spu); /* Step 62. */
1996 restore_pm_trace(next, spu); /* Step 63. */
1997 restore_spu_npc(next, spu); /* Step 64. */
1998 restore_spu_mb(next, spu); /* Step 65. */
1999 check_ppu_mb_stat(next, spu); /* Step 66. */
2000 check_ppuint_mb_stat(next, spu); /* Step 67. */
2001 spu_invalidate_slbs(spu); /* Modified Step 68. */
2002 restore_mfc_sr1(next, spu); /* Step 69. */
2003 restore_other_spu_access(next, spu); /* Step 70. */
2004 restore_spu_runcntl(next, spu); /* Step 71. */
2005 restore_mfc_cntl(next, spu); /* Step 72. */
2006 enable_user_access(next, spu); /* Step 73. */
2007 reset_switch_active(next, spu); /* Step 74. */
2008 reenable_interrupts(next, spu); /* Step 75. */
2011 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2013 int rc;
2016 * SPU context save can be broken into three phases:
2018 * (a) quiesce [steps 2-16].
2019 * (b) save of CSA, performed by PPE [steps 17-42]
2020 * (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2022 * Returns 0 on success.
2023 * 2,6 if failed to quiece SPU
2024 * 53 if SPU-side of save failed.
2027 rc = quiece_spu(prev, spu); /* Steps 2-16. */
2028 switch (rc) {
2029 default:
2030 case 2:
2031 case 6:
2032 harvest(prev, spu);
2033 return rc;
2034 break;
2035 case 0:
2036 break;
2038 save_csa(prev, spu); /* Steps 17-43. */
2039 save_lscsa(prev, spu); /* Steps 44-53. */
2040 return check_save_status(prev, spu); /* Step 54. */
2043 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2045 int rc;
2048 * SPU context restore can be broken into three phases:
2050 * (a) harvest (or reset) SPU [steps 2-24].
2051 * (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2052 * (c) restore CSA [steps 41-76], performed by PPE.
2054 * The 'harvest' step is not performed here, but rather
2055 * as needed below.
2058 restore_lscsa(next, spu); /* Steps 24-39. */
2059 rc = check_restore_status(next, spu); /* Step 40. */
2060 switch (rc) {
2061 default:
2062 /* Failed. Return now. */
2063 return rc;
2064 break;
2065 case 0:
2066 /* Fall through to next step. */
2067 break;
2069 restore_csa(next, spu);
2071 return 0;
2075 * spu_save - SPU context save, with locking.
2076 * @prev: pointer to SPU context save area, to be saved.
2077 * @spu: pointer to SPU iomem structure.
2079 * Acquire locks, perform the save operation then return.
2081 int spu_save(struct spu_state *prev, struct spu *spu)
2083 int rc;
2085 acquire_spu_lock(spu); /* Step 1. */
2086 prev->dar = spu->dar;
2087 prev->dsisr = spu->dsisr;
2088 spu->dar = 0;
2089 spu->dsisr = 0;
2090 rc = __do_spu_save(prev, spu); /* Steps 2-53. */
2091 release_spu_lock(spu);
2092 if (rc != 0 && rc != 2 && rc != 6) {
2093 panic("%s failed on SPU[%d], rc=%d.\n",
2094 __func__, spu->number, rc);
2096 return 0;
2098 EXPORT_SYMBOL_GPL(spu_save);
2101 * spu_restore - SPU context restore, with harvest and locking.
2102 * @new: pointer to SPU context save area, to be restored.
2103 * @spu: pointer to SPU iomem structure.
2105 * Perform harvest + restore, as we may not be coming
2106 * from a previous successful save operation, and the
2107 * hardware state is unknown.
2109 int spu_restore(struct spu_state *new, struct spu *spu)
2111 int rc;
2113 acquire_spu_lock(spu);
2114 harvest(NULL, spu);
2115 spu->slb_replace = 0;
2116 new->dar = 0;
2117 new->dsisr = 0;
2118 spu->class_0_pending = 0;
2119 rc = __do_spu_restore(new, spu);
2120 release_spu_lock(spu);
2121 if (rc) {
2122 panic("%s failed on SPU[%d] rc=%d.\n",
2123 __func__, spu->number, rc);
2125 return rc;
2127 EXPORT_SYMBOL_GPL(spu_restore);
2130 * spu_harvest - SPU harvest (reset) operation
2131 * @spu: pointer to SPU iomem structure.
2133 * Perform SPU harvest (reset) operation.
2135 void spu_harvest(struct spu *spu)
2137 acquire_spu_lock(spu);
2138 harvest(NULL, spu);
2139 release_spu_lock(spu);
2142 static void init_prob(struct spu_state *csa)
2144 csa->spu_chnlcnt_RW[9] = 1;
2145 csa->spu_chnlcnt_RW[21] = 16;
2146 csa->spu_chnlcnt_RW[23] = 1;
2147 csa->spu_chnlcnt_RW[28] = 1;
2148 csa->spu_chnlcnt_RW[30] = 1;
2149 csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2150 csa->prob.mb_stat_R = 0x000400;
2153 static void init_priv1(struct spu_state *csa)
2155 /* Enable decode, relocate, tlbie response, master runcntl. */
2156 csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2157 MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2158 MFC_STATE1_PROBLEM_STATE_MASK |
2159 MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2161 /* Enable OS-specific set of interrupts. */
2162 csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2163 CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2164 CLASS0_ENABLE_SPU_ERROR_INTR;
2165 csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2166 CLASS1_ENABLE_STORAGE_FAULT_INTR;
2167 csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2168 CLASS2_ENABLE_SPU_HALT_INTR |
2169 CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2172 static void init_priv2(struct spu_state *csa)
2174 csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2175 csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2176 MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2177 MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2181 * spu_alloc_csa - allocate and initialize an SPU context save area.
2183 * Allocate and initialize the contents of an SPU context save area.
2184 * This includes enabling address translation, interrupt masks, etc.,
2185 * as appropriate for the given OS environment.
2187 * Note that storage for the 'lscsa' is allocated separately,
2188 * as it is by far the largest of the context save regions,
2189 * and may need to be pinned or otherwise specially aligned.
2191 int spu_init_csa(struct spu_state *csa)
2193 int rc;
2195 if (!csa)
2196 return -EINVAL;
2197 memset(csa, 0, sizeof(struct spu_state));
2199 rc = spu_alloc_lscsa(csa);
2200 if (rc)
2201 return rc;
2203 spin_lock_init(&csa->register_lock);
2205 init_prob(csa);
2206 init_priv1(csa);
2207 init_priv2(csa);
2209 return 0;
2211 EXPORT_SYMBOL_GPL(spu_init_csa);
2213 void spu_fini_csa(struct spu_state *csa)
2215 spu_free_lscsa(csa);
2217 EXPORT_SYMBOL_GPL(spu_fini_csa);