RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / powerpc / platforms / cell / spufs / run.c
blob57626600b1a4b5c7cb3d46d17ef214e5b5807d1d
1 #define DEBUG
3 #include <linux/wait.h>
4 #include <linux/ptrace.h>
6 #include <asm/spu.h>
7 #include <asm/spu_priv1.h>
8 #include <asm/io.h>
9 #include <asm/unistd.h>
11 #include "spufs.h"
13 /* interrupt-level stop callback function. */
14 void spufs_stop_callback(struct spu *spu)
16 struct spu_context *ctx = spu->ctx;
18 wake_up_all(&ctx->stop_wq);
21 static inline int spu_stopped(struct spu_context *ctx, u32 * stat)
23 struct spu *spu;
24 u64 pte_fault;
26 *stat = ctx->ops->status_read(ctx);
27 if (ctx->state != SPU_STATE_RUNNABLE)
28 return 1;
29 spu = ctx->spu;
30 pte_fault = spu->dsisr &
31 (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED);
32 return (!(*stat & 0x1) || pte_fault || spu->class_0_pending) ? 1 : 0;
35 static int spu_setup_isolated(struct spu_context *ctx)
37 int ret;
38 u64 __iomem *mfc_cntl;
39 u64 sr1;
40 u32 status;
41 unsigned long timeout;
42 const u32 status_loading = SPU_STATUS_RUNNING
43 | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
45 ret = -ENODEV;
46 if (!isolated_loader)
47 goto out;
50 * We need to exclude userspace access to the context.
52 * To protect against memory access we invalidate all ptes
53 * and make sure the pagefault handlers block on the mutex.
55 spu_unmap_mappings(ctx);
57 mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
59 /* purge the MFC DMA queue to ensure no spurious accesses before we
60 * enter kernel mode */
61 timeout = jiffies + HZ;
62 out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
63 while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
64 != MFC_CNTL_PURGE_DMA_COMPLETE) {
65 if (time_after(jiffies, timeout)) {
66 printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
67 __FUNCTION__);
68 ret = -EIO;
69 goto out;
71 cond_resched();
74 /* put the SPE in kernel mode to allow access to the loader */
75 sr1 = spu_mfc_sr1_get(ctx->spu);
76 sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
77 spu_mfc_sr1_set(ctx->spu, sr1);
79 /* start the loader */
80 ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
81 ctx->ops->signal2_write(ctx,
82 (unsigned long)isolated_loader & 0xffffffff);
84 ctx->ops->runcntl_write(ctx,
85 SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
87 ret = 0;
88 timeout = jiffies + HZ;
89 while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
90 status_loading) {
91 if (time_after(jiffies, timeout)) {
92 printk(KERN_ERR "%s: timeout waiting for loader\n",
93 __FUNCTION__);
94 ret = -EIO;
95 goto out_drop_priv;
97 cond_resched();
100 if (!(status & SPU_STATUS_RUNNING)) {
101 /* If isolated LOAD has failed: run SPU, we will get a stop-and
102 * signal later. */
103 pr_debug("%s: isolated LOAD failed\n", __FUNCTION__);
104 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
105 ret = -EACCES;
106 goto out_drop_priv;
109 if (!(status & SPU_STATUS_ISOLATED_STATE)) {
110 /* This isn't allowed by the CBEA, but check anyway */
111 pr_debug("%s: SPU fell out of isolated mode?\n", __FUNCTION__);
112 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
113 ret = -EINVAL;
114 goto out_drop_priv;
117 out_drop_priv:
118 /* Finished accessing the loader. Drop kernel mode */
119 sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
120 spu_mfc_sr1_set(ctx->spu, sr1);
122 out:
123 return ret;
126 static int spu_run_init(struct spu_context *ctx, u32 * npc)
128 if (ctx->flags & SPU_CREATE_ISOLATE) {
129 unsigned long runcntl;
131 if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
132 int ret = spu_setup_isolated(ctx);
133 if (ret)
134 return ret;
137 /* if userspace has set the runcntrl register (eg, to issue an
138 * isolated exit), we need to re-set it here */
139 runcntl = ctx->ops->runcntl_read(ctx) &
140 (SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
141 if (runcntl == 0)
142 runcntl = SPU_RUNCNTL_RUNNABLE;
143 ctx->ops->runcntl_write(ctx, runcntl);
144 } else {
145 spu_start_tick(ctx);
146 ctx->ops->npc_write(ctx, *npc);
147 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
150 return 0;
153 static int spu_run_fini(struct spu_context *ctx, u32 * npc,
154 u32 * status)
156 int ret = 0;
158 spu_stop_tick(ctx);
159 *status = ctx->ops->status_read(ctx);
160 *npc = ctx->ops->npc_read(ctx);
161 spu_release(ctx);
163 if (signal_pending(current))
164 ret = -ERESTARTSYS;
166 return ret;
169 static int spu_reacquire_runnable(struct spu_context *ctx, u32 *npc,
170 u32 *status)
172 int ret;
174 ret = spu_run_fini(ctx, npc, status);
175 if (ret)
176 return ret;
178 if (*status & (SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_STOPPED_BY_HALT))
179 return *status;
181 ret = spu_acquire_runnable(ctx, 0);
182 if (ret)
183 return ret;
185 ret = spu_run_init(ctx, npc);
186 if (ret) {
187 spu_release(ctx);
188 return ret;
190 return 0;
194 * SPU syscall restarting is tricky because we violate the basic
195 * assumption that the signal handler is running on the interrupted
196 * thread. Here instead, the handler runs on PowerPC user space code,
197 * while the syscall was called from the SPU.
198 * This means we can only do a very rough approximation of POSIX
199 * signal semantics.
201 int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
202 unsigned int *npc)
204 int ret;
206 switch (*spu_ret) {
207 case -ERESTARTSYS:
208 case -ERESTARTNOINTR:
210 * Enter the regular syscall restarting for
211 * sys_spu_run, then restart the SPU syscall
212 * callback.
214 *npc -= 8;
215 ret = -ERESTARTSYS;
216 break;
217 case -ERESTARTNOHAND:
218 case -ERESTART_RESTARTBLOCK:
220 * Restart block is too hard for now, just return -EINTR
221 * to the SPU.
222 * ERESTARTNOHAND comes from sys_pause, we also return
223 * -EINTR from there.
224 * Assume that we need to be restarted ourselves though.
226 *spu_ret = -EINTR;
227 ret = -ERESTARTSYS;
228 break;
229 default:
230 printk(KERN_WARNING "%s: unexpected return code %ld\n",
231 __FUNCTION__, *spu_ret);
232 ret = 0;
234 return ret;
237 int spu_process_callback(struct spu_context *ctx)
239 struct spu_syscall_block s;
240 u32 ls_pointer, npc;
241 void __iomem *ls;
242 long spu_ret;
243 int ret;
245 /* get syscall block from local store */
246 npc = ctx->ops->npc_read(ctx) & ~3;
247 ls = (void __iomem *)ctx->ops->get_ls(ctx);
248 ls_pointer = in_be32(ls + npc);
249 if (ls_pointer > (LS_SIZE - sizeof(s)))
250 return -EFAULT;
251 memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
253 /* do actual syscall without pinning the spu */
254 ret = 0;
255 spu_ret = -ENOSYS;
256 npc += 4;
258 if (s.nr_ret < __NR_syscalls) {
259 spu_release(ctx);
260 /* do actual system call from here */
261 spu_ret = spu_sys_callback(&s);
262 if (spu_ret <= -ERESTARTSYS) {
263 ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
265 spu_acquire(ctx);
266 if (ret == -ERESTARTSYS)
267 return ret;
270 /* write result, jump over indirect pointer */
271 memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
272 ctx->ops->npc_write(ctx, npc);
273 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
274 return ret;
277 static inline int spu_process_events(struct spu_context *ctx)
279 struct spu *spu = ctx->spu;
280 int ret = 0;
282 if (spu->class_0_pending)
283 ret = spu_irq_class_0_bottom(spu);
284 if (!ret && signal_pending(current))
285 ret = -ERESTARTSYS;
286 return ret;
289 long spufs_run_spu(struct file *file, struct spu_context *ctx,
290 u32 *npc, u32 *event)
292 int ret;
293 u32 status;
295 if (mutex_lock_interruptible(&ctx->run_mutex))
296 return -ERESTARTSYS;
298 ctx->ops->master_start(ctx);
299 ctx->event_return = 0;
301 ret = spu_acquire_runnable(ctx, 0);
302 if (ret)
303 return ret;
305 ret = spu_run_init(ctx, npc);
306 if (ret) {
307 spu_release(ctx);
308 goto out;
311 do {
312 ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
313 if (unlikely(ret))
314 break;
315 if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
316 (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
317 ret = spu_process_callback(ctx);
318 if (ret)
319 break;
320 status &= ~SPU_STATUS_STOPPED_BY_STOP;
322 ret = spufs_handle_class1(ctx);
323 if (ret)
324 break;
326 if (unlikely(ctx->state != SPU_STATE_RUNNABLE)) {
327 ret = spu_reacquire_runnable(ctx, npc, &status);
328 if (ret) {
329 spu_stop_tick(ctx);
330 goto out2;
332 continue;
334 ret = spu_process_events(ctx);
336 } while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
337 SPU_STATUS_STOPPED_BY_HALT)));
339 ctx->ops->master_stop(ctx);
340 ret = spu_run_fini(ctx, npc, &status);
341 spu_yield(ctx);
343 out2:
344 if ((ret == 0) ||
345 ((ret == -ERESTARTSYS) &&
346 ((status & SPU_STATUS_STOPPED_BY_HALT) ||
347 ((status & SPU_STATUS_STOPPED_BY_STOP) &&
348 (status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
349 ret = status;
351 if ((status & SPU_STATUS_STOPPED_BY_STOP)
352 && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff) {
353 force_sig(SIGTRAP, current);
354 ret = -ERESTARTSYS;
357 out:
358 *event = ctx->event_return;
359 mutex_unlock(&ctx->run_mutex);
360 return ret;