RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / mips / mm / tlbex.c
blob14ac18010eda0f1c84113c382ea6c6972b0bd2dc
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004,2005,2006 by Thiemo Seufer
9 * Copyright (C) 2005 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
12 * ... and the days got worse and worse and now you see
13 * I've gone completly out of my mind.
15 * They're coming to take me a away haha
16 * they're coming to take me a away hoho hihi haha
17 * to the funny farm where code is beautiful all the time ...
19 * (Condolences to Napoleon XIV)
22 #include <stdarg.h>
24 #include <linux/mm.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
30 #include <asm/pgtable.h>
31 #include <asm/cacheflush.h>
32 #include <asm/mmu_context.h>
33 #include <asm/inst.h>
34 #include <asm/elf.h>
35 #include <asm/smp.h>
36 #include <asm/war.h>
37 #include <asm/uasm.h>
39 static __cpuinit int __maybe_unused r45k_bvahwbug(void)
41 /* XXX: We should probe for the presence of this bug, but we don't. */
42 return 0;
45 static __cpuinit int __maybe_unused r4k_250MHZhwbug(void)
47 /* XXX: We should probe for the presence of this bug, but we don't. */
48 return 0;
51 static __cpuinit int __maybe_unused bcm1250_m3_war(void)
53 return BCM1250_M3_WAR;
56 static __cpuinit int __maybe_unused r10000_llsc_war(void)
58 return R10000_LLSC_WAR;
62 * Found by experiment: At least some revisions of the 4kc throw under
63 * some circumstances a machine check exception, triggered by invalid
64 * values in the index register. Delaying the tlbp instruction until
65 * after the next branch, plus adding an additional nop in front of
66 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
67 * why; it's not an issue caused by the core RTL.
70 static __init int __attribute__((unused)) m4kc_tlbp_war(void)
72 return (current_cpu_data.processor_id & 0xffff00) ==
73 (PRID_COMP_MIPS | PRID_IMP_4KC);
77 * A little micro-assembler, intended for TLB refill handler
78 * synthesizing. It is intentionally kept simple, does only support
79 * a subset of instructions, and does not try to hide pipeline effects
80 * like branch delay slots.
83 enum fields
85 RS = 0x001,
86 RT = 0x002,
87 RD = 0x004,
88 RE = 0x008,
89 SIMM = 0x010,
90 UIMM = 0x020,
91 BIMM = 0x040,
92 JIMM = 0x080,
93 FUNC = 0x100,
94 SET = 0x200,
95 SCIMM = 0x400
98 #define OP_MASK 0x2f
99 #define OP_SH 26
100 #define RS_MASK 0x1f
101 #define RS_SH 21
102 #define RT_MASK 0x1f
103 #define RT_SH 16
104 #define RD_MASK 0x1f
105 #define RD_SH 11
106 #define RE_MASK 0x1f
107 #define RE_SH 6
108 #define IMM_MASK 0xffff
109 #define IMM_SH 0
110 #define JIMM_MASK 0x3ffffff
111 #define JIMM_SH 0
112 #define FUNC_MASK 0x2f
113 #define FUNC_SH 0
114 #define SET_MASK 0x7
115 #define SET_SH 0
116 #define SCIMM_MASK 0xfffff
117 #define SCIMM_SH 6
119 struct insn {
120 enum opcode opcode;
121 u32 match;
122 enum fields fields;
125 /* This macro sets the non-variable bits of an instruction. */
126 #define M(a, b, c, d, e, f) \
127 ((a) << OP_SH \
128 | (b) << RS_SH \
129 | (c) << RT_SH \
130 | (d) << RD_SH \
131 | (e) << RE_SH \
132 | (f) << FUNC_SH)
134 static __cpuinitdata struct insn insn_table[] = {
135 { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
136 { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
137 { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
138 { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
139 { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
140 { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
141 { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
142 { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
143 { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
144 { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
145 { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
146 { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
147 { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
148 { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
149 { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
150 { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
151 { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
152 { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
153 { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
154 { insn_dsrl32, M(spec_op,0,0,0,0,dsrl32_op), RT | RD | RE },
155 { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
156 { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
157 { insn_j, M(j_op,0,0,0,0,0), JIMM },
158 { insn_jal, M(jal_op,0,0,0,0,0), JIMM },
159 { insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
160 { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
161 { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
162 { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
163 { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
164 { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
165 { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
166 { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
167 { insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD },
168 { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
169 { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
170 { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
171 { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
172 { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
173 { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
174 { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
175 { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
176 { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
177 { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
178 { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
179 { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
180 { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
181 { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
182 { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
183 { insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
184 { insn_invalid, 0, 0 }
187 #undef M
189 static __cpuinit u32 build_rs(u32 arg)
191 if (arg & ~RS_MASK)
192 printk(KERN_WARNING "TLB synthesizer field overflow\n");
194 return (arg & RS_MASK) << RS_SH;
197 static __cpuinit u32 build_rt(u32 arg)
199 if (arg & ~RT_MASK)
200 printk(KERN_WARNING "TLB synthesizer field overflow\n");
202 return (arg & RT_MASK) << RT_SH;
205 static __cpuinit u32 build_rd(u32 arg)
207 if (arg & ~RD_MASK)
208 printk(KERN_WARNING "TLB synthesizer field overflow\n");
210 return (arg & RD_MASK) << RD_SH;
213 static __cpuinit u32 build_re(u32 arg)
215 if (arg & ~RE_MASK)
216 printk(KERN_WARNING "TLB synthesizer field overflow\n");
218 return (arg & RE_MASK) << RE_SH;
221 static __cpuinit u32 build_simm(s32 arg)
223 if (arg > 0x7fff || arg < -0x8000)
224 printk(KERN_WARNING "TLB synthesizer field overflow\n");
226 return arg & 0xffff;
229 static __cpuinit u32 build_uimm(u32 arg)
231 if (arg & ~IMM_MASK)
232 printk(KERN_WARNING "TLB synthesizer field overflow\n");
234 return arg & IMM_MASK;
237 static __cpuinit u32 build_bimm(s32 arg)
239 if (arg > 0x1ffff || arg < -0x20000)
240 printk(KERN_WARNING "TLB synthesizer field overflow\n");
242 if (arg & 0x3)
243 printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
245 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
248 static __cpuinit u32 build_jimm(u32 arg)
250 if (arg & ~((JIMM_MASK) << 2))
251 printk(KERN_WARNING "TLB synthesizer field overflow\n");
253 return (arg >> 2) & JIMM_MASK;
256 static inline __cpuinit u32 build_scimm(u32 arg)
258 if (arg & ~SCIMM_MASK)
259 printk(KERN_WARNING "Micro-assembler field overflow\n");
261 return (arg & SCIMM_MASK) << SCIMM_SH;
264 static __cpuinit u32 build_func(u32 arg)
266 if (arg & ~FUNC_MASK)
267 printk(KERN_WARNING "TLB synthesizer field overflow\n");
269 return arg & FUNC_MASK;
272 static __cpuinit u32 build_set(u32 arg)
274 if (arg & ~SET_MASK)
275 printk(KERN_WARNING "TLB synthesizer field overflow\n");
277 return arg & SET_MASK;
281 * The order of opcode arguments is implicitly left to right,
282 * starting with RS and ending with FUNC or IMM.
284 void __cpuinit build_insn(u32 **buf, enum opcode opc, ...)
286 struct insn *ip = NULL;
287 unsigned int i;
288 va_list ap;
289 u32 op;
291 for (i = 0; insn_table[i].opcode != insn_invalid; i++)
292 if (insn_table[i].opcode == opc) {
293 ip = &insn_table[i];
294 break;
297 if (!ip)
298 panic("Unsupported TLB synthesizer instruction %d", opc);
300 op = ip->match;
301 va_start(ap, opc);
302 if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
303 if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
304 if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
305 if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
306 if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
307 if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
308 if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
309 if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
310 if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
311 if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
312 if (ip->fields & SCIMM) op |= build_scimm(va_arg(ap, u32));
313 va_end(ap);
315 **buf = op;
316 (*buf)++;
319 #ifdef CONFIG_64BIT
320 static __cpuinit int __maybe_unused in_compat_space_p(long addr)
322 /* Is this address in 32bit compat space? */
323 return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
326 static __cpuinit int __maybe_unused rel_highest(long val)
328 return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
331 static __cpuinit int __maybe_unused rel_higher(long val)
333 return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
335 #endif
337 static __cpuinit int rel_hi(long val)
339 return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
342 static __cpuinit int rel_lo(long val)
344 return ((val & 0xffff) ^ 0x8000) - 0x8000;
347 static __cpuinit void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
349 #ifdef CONFIG_64BIT
350 if (!in_compat_space_p(addr)) {
351 i_lui(buf, rs, rel_highest(addr));
352 if (rel_higher(addr))
353 i_daddiu(buf, rs, rs, rel_higher(addr));
354 if (rel_hi(addr)) {
355 i_dsll(buf, rs, rs, 16);
356 i_daddiu(buf, rs, rs, rel_hi(addr));
357 i_dsll(buf, rs, rs, 16);
358 } else
359 i_dsll32(buf, rs, rs, 0);
360 } else
361 #endif
362 i_lui(buf, rs, rel_hi(addr));
365 static __cpuinit void __maybe_unused i_LA(u32 **buf, unsigned int rs,
366 long addr)
368 i_LA_mostly(buf, rs, addr);
369 if (rel_lo(addr))
370 i_ADDIU(buf, rs, rs, rel_lo(addr));
374 * handle relocations
377 struct reloc {
378 u32 *addr;
379 unsigned int type;
380 enum label_id lab;
383 static __cpuinit void r_mips_pc16(struct reloc **rel, u32 *addr,
384 enum label_id l)
386 (*rel)->addr = addr;
387 (*rel)->type = R_MIPS_PC16;
388 (*rel)->lab = l;
389 (*rel)++;
392 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
394 long laddr = (long)lab->addr;
395 long raddr = (long)rel->addr;
397 switch (rel->type) {
398 case R_MIPS_PC16:
399 *rel->addr |= build_bimm(laddr - (raddr + 4));
400 break;
402 default:
403 panic("Unsupported TLB synthesizer relocation %d",
404 rel->type);
408 static __cpuinit void resolve_relocs(struct reloc *rel, struct label *lab)
410 struct label *l;
412 for (; rel->lab != label_invalid; rel++)
413 for (l = lab; l->lab != label_invalid; l++)
414 if (rel->lab == l->lab)
415 __resolve_relocs(rel, l);
418 static __cpuinit void move_relocs(struct reloc *rel, u32 *first, u32 *end,
419 long off)
421 for (; rel->lab != label_invalid; rel++)
422 if (rel->addr >= first && rel->addr < end)
423 rel->addr += off;
426 static __cpuinit void move_labels(struct label *lab, u32 *first, u32 *end,
427 long off)
429 for (; lab->lab != label_invalid; lab++)
430 if (lab->addr >= first && lab->addr < end)
431 lab->addr += off;
434 static __cpuinit void copy_handler(struct reloc *rel, struct label *lab,
435 u32 *first, u32 *end, u32 *target)
437 long off = (long)(target - first);
439 memcpy(target, first, (end - first) * sizeof(u32));
441 move_relocs(rel, first, end, off);
442 move_labels(lab, first, end, off);
445 static __cpuinit int __maybe_unused insn_has_bdelay(struct reloc *rel,
446 u32 *addr)
448 for (; rel->lab != label_invalid; rel++) {
449 if (rel->addr == addr
450 && (rel->type == R_MIPS_PC16
451 || rel->type == R_MIPS_26))
452 return 1;
455 return 0;
458 /* convenience functions for labeled branches */
459 static void __cpuinit __maybe_unused
460 il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
462 r_mips_pc16(r, *p, l);
463 i_bltz(p, reg, 0);
466 static void __cpuinit __maybe_unused il_b(u32 **p, struct reloc **r,
467 enum label_id l)
469 r_mips_pc16(r, *p, l);
470 i_b(p, 0);
473 static void __cpuinit il_beqz(u32 **p, struct reloc **r, unsigned int reg,
474 enum label_id l)
476 r_mips_pc16(r, *p, l);
477 i_beqz(p, reg, 0);
480 static void __cpuinit __maybe_unused
481 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
483 r_mips_pc16(r, *p, l);
484 i_beqzl(p, reg, 0);
487 static void __cpuinit il_bnez(u32 **p, struct reloc **r, unsigned int reg,
488 enum label_id l)
490 r_mips_pc16(r, *p, l);
491 i_bnez(p, reg, 0);
494 static void __cpuinit il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
495 enum label_id l)
497 r_mips_pc16(r, *p, l);
498 i_bgezl(p, reg, 0);
501 static void __cpuinit __maybe_unused
502 il_bgez(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
504 r_mips_pc16(r, *p, l);
505 i_bgez(p, reg, 0);
508 /* The only general purpose registers allowed in TLB handlers. */
509 #define K0 26
510 #define K1 27
512 /* Some CP0 registers */
513 #define C0_INDEX 0, 0
514 #define C0_ENTRYLO0 2, 0
515 #define C0_TCBIND 2, 2
516 #define C0_ENTRYLO1 3, 0
517 #define C0_CONTEXT 4, 0
518 #define C0_BADVADDR 8, 0
519 #define C0_ENTRYHI 10, 0
520 #define C0_EPC 14, 0
521 #define C0_XCONTEXT 20, 0
523 #ifdef CONFIG_64BIT
524 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
525 #else
526 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
527 #endif
529 /* The worst case length of the handler is around 18 instructions for
530 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
531 * Maximum space available is 32 instructions for R3000 and 64
532 * instructions for R4000.
534 * We deliberately chose a buffer size of 128, so we won't scribble
535 * over anything important on overflow before we panic.
537 static __cpuinitdata u32 tlb_handler[128];
539 /* simply assume worst case size for labels and relocs */
540 static __cpuinitdata struct label labels[128];
541 static __cpuinitdata struct reloc relocs[128];
544 * The R3000 TLB handler is simple.
546 static void __cpuinit build_r3000_tlb_refill_handler(void)
548 long pgdc = (long)pgd_current;
549 u32 *p;
550 int i;
552 memset(tlb_handler, 0, sizeof(tlb_handler));
553 p = tlb_handler;
555 i_mfc0(&p, K0, C0_BADVADDR);
556 i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
557 i_lw(&p, K1, rel_lo(pgdc), K1);
558 i_srl(&p, K0, K0, 22); /* load delay */
559 i_sll(&p, K0, K0, 2);
560 i_addu(&p, K1, K1, K0);
561 i_mfc0(&p, K0, C0_CONTEXT);
562 i_lw(&p, K1, 0, K1); /* cp0 delay */
563 i_andi(&p, K0, K0, 0xffc); /* load delay */
564 i_addu(&p, K1, K1, K0);
565 i_lw(&p, K0, 0, K1);
566 i_nop(&p); /* load delay */
567 i_mtc0(&p, K0, C0_ENTRYLO0);
568 i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
569 i_tlbwr(&p); /* cp0 delay */
570 i_jr(&p, K1);
571 i_rfe(&p); /* branch delay */
573 if (p > tlb_handler + 32)
574 panic("TLB refill handler space exceeded");
576 pr_info("Synthesized TLB refill handler (%u instructions).\n",
577 (unsigned int)(p - tlb_handler));
579 pr_debug("\t.set push\n");
580 pr_debug("\t.set noreorder\n");
581 for (i = 0; i < (p - tlb_handler); i++)
582 pr_debug("\t.word 0x%08x\n", tlb_handler[i]);
583 pr_debug("\t.set pop\n");
585 memcpy((void *)ebase, tlb_handler, 0x80);
589 * The R4000 TLB handler is much more complicated. We have two
590 * consecutive handler areas with 32 instructions space each.
591 * Since they aren't used at the same time, we can overflow in the
592 * other one.To keep things simple, we first assume linear space,
593 * then we relocate it to the final handler layout as needed.
595 static __cpuinitdata u32 final_handler[64];
598 * Hazards
600 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
601 * 2. A timing hazard exists for the TLBP instruction.
603 * stalling_instruction
604 * TLBP
606 * The JTLB is being read for the TLBP throughout the stall generated by the
607 * previous instruction. This is not really correct as the stalling instruction
608 * can modify the address used to access the JTLB. The failure symptom is that
609 * the TLBP instruction will use an address created for the stalling instruction
610 * and not the address held in C0_ENHI and thus report the wrong results.
612 * The software work-around is to not allow the instruction preceding the TLBP
613 * to stall - make it an NOP or some other instruction guaranteed not to stall.
615 * Errata 2 will not be fixed. This errata is also on the R5000.
617 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
619 static __cpuinit void __maybe_unused build_tlb_probe_entry(u32 **p)
621 switch (current_cpu_data.cputype) {
622 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
623 case CPU_R4600:
624 case CPU_R4700:
625 case CPU_R5000:
626 case CPU_R5000A:
627 case CPU_NEVADA:
628 i_nop(p);
629 i_tlbp(p);
630 break;
632 default:
633 i_tlbp(p);
634 break;
639 * Write random or indexed TLB entry, and care about the hazards from
640 * the preceeding mtc0 and for the following eret.
642 enum tlb_write_entry { tlb_random, tlb_indexed };
644 static __cpuinit void build_tlb_write_entry(u32 **p, struct label **l,
645 struct reloc **r,
646 enum tlb_write_entry wmode)
648 void(*tlbw)(u32 **) = NULL;
650 switch (wmode) {
651 case tlb_random: tlbw = i_tlbwr; break;
652 case tlb_indexed: tlbw = i_tlbwi; break;
655 switch (current_cpu_data.cputype) {
656 case CPU_R4000PC:
657 case CPU_R4000SC:
658 case CPU_R4000MC:
659 case CPU_R4400PC:
660 case CPU_R4400SC:
661 case CPU_R4400MC:
663 * This branch uses up a mtc0 hazard nop slot and saves
664 * two nops after the tlbw instruction.
666 il_bgezl(p, r, 0, label_tlbw_hazard);
667 tlbw(p);
668 l_tlbw_hazard(l, *p);
669 i_nop(p);
670 break;
672 case CPU_R4600:
673 case CPU_R4700:
674 case CPU_R5000:
675 case CPU_R5000A:
676 i_nop(p);
677 tlbw(p);
678 i_nop(p);
679 break;
681 case CPU_R4300:
682 case CPU_5KC:
683 case CPU_TX49XX:
684 case CPU_AU1000:
685 case CPU_AU1100:
686 case CPU_AU1500:
687 case CPU_AU1550:
688 case CPU_AU1200:
689 case CPU_PR4450:
690 i_nop(p);
691 tlbw(p);
692 break;
694 case CPU_R10000:
695 case CPU_R12000:
696 case CPU_R14000:
697 case CPU_SB1:
698 case CPU_SB1A:
699 case CPU_4KSC:
700 case CPU_20KC:
701 case CPU_25KF:
702 case CPU_BCM4710:
703 case CPU_BCM3302:
704 if (m4kc_tlbp_war())
705 i_nop(p);
706 tlbw(p);
707 break;
709 case CPU_NEVADA:
710 i_nop(p); /* QED specifies 2 nops hazard */
712 * This branch uses up a mtc0 hazard nop slot and saves
713 * a nop after the tlbw instruction.
715 il_bgezl(p, r, 0, label_tlbw_hazard);
716 tlbw(p);
717 l_tlbw_hazard(l, *p);
718 break;
720 case CPU_RM7000:
721 i_nop(p);
722 i_nop(p);
723 i_nop(p);
724 i_nop(p);
725 tlbw(p);
726 break;
728 case CPU_4KC:
729 case CPU_4KEC:
730 case CPU_24K:
731 case CPU_34K:
732 case CPU_74K:
733 i_ehb(p);
734 tlbw(p);
735 break;
737 case CPU_RM9000:
739 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
740 * use of the JTLB for instructions should not occur for 4
741 * cpu cycles and use for data translations should not occur
742 * for 3 cpu cycles.
744 i_ssnop(p);
745 i_ssnop(p);
746 i_ssnop(p);
747 i_ssnop(p);
748 tlbw(p);
749 i_ssnop(p);
750 i_ssnop(p);
751 i_ssnop(p);
752 i_ssnop(p);
753 break;
755 case CPU_VR4111:
756 case CPU_VR4121:
757 case CPU_VR4122:
758 case CPU_VR4181:
759 case CPU_VR4181A:
760 i_nop(p);
761 i_nop(p);
762 tlbw(p);
763 i_nop(p);
764 i_nop(p);
765 break;
767 case CPU_VR4131:
768 case CPU_VR4133:
769 case CPU_R5432:
770 i_nop(p);
771 i_nop(p);
772 tlbw(p);
773 break;
775 default:
776 panic("No TLB refill handler yet (CPU type: %d)",
777 current_cpu_data.cputype);
778 break;
782 #ifdef CONFIG_64BIT
784 * TMP and PTR are scratch.
785 * TMP will be clobbered, PTR will hold the pmd entry.
787 static __cpuinit void
788 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
789 unsigned int tmp, unsigned int ptr)
791 long pgdc = (long)pgd_current;
794 * The vmalloc handling is not in the hotpath.
796 i_dmfc0(p, tmp, C0_BADVADDR);
797 #ifdef MODULE_START
798 il_bltz(p, r, tmp, label_module_alloc);
799 #else
800 il_bltz(p, r, tmp, label_vmalloc);
801 #endif
802 /* No i_nop needed here, since the next insn doesn't touch TMP. */
804 #ifdef CONFIG_SMP
805 # ifdef CONFIG_MIPS_MT_SMTC
807 * SMTC uses TCBind value as "CPU" index
809 i_mfc0(p, ptr, C0_TCBIND);
810 i_dsrl(p, ptr, ptr, 19);
811 # else
813 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
814 * stored in CONTEXT.
816 i_dmfc0(p, ptr, C0_CONTEXT);
817 i_dsrl(p, ptr, ptr, 23);
818 #endif
819 i_LA_mostly(p, tmp, pgdc);
820 i_daddu(p, ptr, ptr, tmp);
821 i_dmfc0(p, tmp, C0_BADVADDR);
822 i_ld(p, ptr, rel_lo(pgdc), ptr);
823 #else
824 i_LA_mostly(p, ptr, pgdc);
825 i_ld(p, ptr, rel_lo(pgdc), ptr);
826 #endif
828 l_vmalloc_done(l, *p);
830 if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */
831 i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3);
832 else
833 i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32);
835 i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
836 i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
837 i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
838 i_ld(p, ptr, 0, ptr); /* get pmd pointer */
839 i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
840 i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
841 i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
845 * BVADDR is the faulting address, PTR is scratch.
846 * PTR will hold the pgd for vmalloc.
848 static __cpuinit void
849 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
850 unsigned int bvaddr, unsigned int ptr)
852 long swpd = (long)swapper_pg_dir;
854 #ifdef MODULE_START
855 long modd = (long)module_pg_dir;
857 l_module_alloc(l, *p);
859 * Assumption:
860 * VMALLOC_START >= 0xc000000000000000UL
861 * MODULE_START >= 0xe000000000000000UL
863 i_SLL(p, ptr, bvaddr, 2);
864 il_bgez(p, r, ptr, label_vmalloc);
866 if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START)) {
867 i_lui(p, ptr, rel_hi(MODULE_START)); /* delay slot */
868 } else {
869 /* unlikely configuration */
870 i_nop(p); /* delay slot */
871 i_LA(p, ptr, MODULE_START);
873 i_dsubu(p, bvaddr, bvaddr, ptr);
875 if (in_compat_space_p(modd) && !rel_lo(modd)) {
876 il_b(p, r, label_vmalloc_done);
877 i_lui(p, ptr, rel_hi(modd));
878 } else {
879 i_LA_mostly(p, ptr, modd);
880 il_b(p, r, label_vmalloc_done);
881 i_daddiu(p, ptr, ptr, rel_lo(modd));
884 l_vmalloc(l, *p);
885 if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START) &&
886 MODULE_START << 32 == VMALLOC_START)
887 i_dsll32(p, ptr, ptr, 0); /* typical case */
888 else
889 i_LA(p, ptr, VMALLOC_START);
890 #else
891 l_vmalloc(l, *p);
892 i_LA(p, ptr, VMALLOC_START);
893 #endif
894 i_dsubu(p, bvaddr, bvaddr, ptr);
896 if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
897 il_b(p, r, label_vmalloc_done);
898 i_lui(p, ptr, rel_hi(swpd));
899 } else {
900 i_LA_mostly(p, ptr, swpd);
901 il_b(p, r, label_vmalloc_done);
902 i_daddiu(p, ptr, ptr, rel_lo(swpd));
906 #else /* !CONFIG_64BIT */
909 * TMP and PTR are scratch.
910 * TMP will be clobbered, PTR will hold the pgd entry.
912 static __cpuinit void __maybe_unused
913 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
915 long pgdc = (long)pgd_current;
917 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
918 #ifdef CONFIG_SMP
919 #ifdef CONFIG_MIPS_MT_SMTC
921 * SMTC uses TCBind value as "CPU" index
923 i_mfc0(p, ptr, C0_TCBIND);
924 i_LA_mostly(p, tmp, pgdc);
925 i_srl(p, ptr, ptr, 19);
926 #else
928 * smp_processor_id() << 3 is stored in CONTEXT.
930 i_mfc0(p, ptr, C0_CONTEXT);
931 i_LA_mostly(p, tmp, pgdc);
932 i_srl(p, ptr, ptr, 23);
933 #endif
934 i_addu(p, ptr, tmp, ptr);
935 #else
936 i_LA_mostly(p, ptr, pgdc);
937 #endif
938 i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
939 i_lw(p, ptr, rel_lo(pgdc), ptr);
940 i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
941 i_sll(p, tmp, tmp, PGD_T_LOG2);
942 i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
945 #endif /* !CONFIG_64BIT */
947 static __cpuinit void build_adjust_context(u32 **p, unsigned int ctx)
949 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
950 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
952 switch (current_cpu_data.cputype) {
953 case CPU_VR41XX:
954 case CPU_VR4111:
955 case CPU_VR4121:
956 case CPU_VR4122:
957 case CPU_VR4131:
958 case CPU_VR4181:
959 case CPU_VR4181A:
960 case CPU_VR4133:
961 shift += 2;
962 break;
964 default:
965 break;
968 if (shift)
969 i_SRL(p, ctx, ctx, shift);
970 i_andi(p, ctx, ctx, mask);
973 static __cpuinit void build_get_ptep(u32 **p, unsigned int tmp,
974 unsigned int ptr)
977 * Bug workaround for the Nevada. It seems as if under certain
978 * circumstances the move from cp0_context might produce a
979 * bogus result when the mfc0 instruction and its consumer are
980 * in a different cacheline or a load instruction, probably any
981 * memory reference, is between them.
983 switch (current_cpu_data.cputype) {
984 case CPU_NEVADA:
985 i_LW(p, ptr, 0, ptr);
986 GET_CONTEXT(p, tmp); /* get context reg */
987 break;
989 default:
990 GET_CONTEXT(p, tmp); /* get context reg */
991 i_LW(p, ptr, 0, ptr);
992 break;
995 build_adjust_context(p, tmp);
996 i_ADDU(p, ptr, ptr, tmp); /* add in offset */
999 static __cpuinit void build_update_entries(u32 **p, unsigned int tmp,
1000 unsigned int ptep)
1003 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1004 * Kernel is a special case. Only a few CPUs use it.
1006 #ifdef CONFIG_64BIT_PHYS_ADDR
1007 if (cpu_has_64bits) {
1008 i_ld(p, tmp, 0, ptep); /* get even pte */
1009 i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1010 i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1011 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1012 i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1013 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1014 } else {
1015 int pte_off_even = sizeof(pte_t) / 2;
1016 int pte_off_odd = pte_off_even + sizeof(pte_t);
1018 /* The pte entries are pre-shifted */
1019 i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1020 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1021 i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1022 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1024 #else
1025 i_LW(p, tmp, 0, ptep); /* get even pte */
1026 i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1027 if (r45k_bvahwbug())
1028 build_tlb_probe_entry(p);
1029 i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1030 if (r4k_250MHZhwbug())
1031 i_mtc0(p, 0, C0_ENTRYLO0);
1032 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1033 i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1034 if (r45k_bvahwbug())
1035 i_mfc0(p, tmp, C0_INDEX);
1036 if (r4k_250MHZhwbug())
1037 i_mtc0(p, 0, C0_ENTRYLO1);
1038 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1039 #endif
1042 static void __cpuinit build_r4000_tlb_refill_handler(void)
1044 u32 *p = tlb_handler;
1045 struct label *l = labels;
1046 struct reloc *r = relocs;
1047 u32 *f;
1048 unsigned int final_len;
1049 int i;
1051 memset(tlb_handler, 0, sizeof(tlb_handler));
1052 memset(labels, 0, sizeof(labels));
1053 memset(relocs, 0, sizeof(relocs));
1054 memset(final_handler, 0, sizeof(final_handler));
1057 * create the plain linear handler
1059 if (bcm1250_m3_war()) {
1060 unsigned int segbits = 44;
1062 i_dmfc0(&p, K0, C0_BADVADDR);
1063 i_dmfc0(&p, K1, C0_ENTRYHI);
1064 i_xor(&p, K0, K0, K1);
1065 i_dsrl32(&p, K1, K0, 62 - 32);
1066 i_dsrl(&p, K0, K0, 12 + 1);
1067 i_dsll32(&p, K0, K0, 64 + 12 + 1 - segbits - 32);
1068 i_or(&p, K0, K0, K1);
1069 il_bnez(&p, &r, K0, label_leave);
1070 /* No need for i_nop */
1073 #ifdef CONFIG_64BIT
1074 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1075 #else
1076 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1077 #endif
1079 build_get_ptep(&p, K0, K1);
1080 build_update_entries(&p, K0, K1);
1081 build_tlb_write_entry(&p, &l, &r, tlb_random);
1082 l_leave(&l, p);
1083 i_eret(&p); /* return from trap */
1085 #ifdef CONFIG_64BIT
1086 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1087 #endif
1090 * Overflow check: For the 64bit handler, we need at least one
1091 * free instruction slot for the wrap-around branch. In worst
1092 * case, if the intended insertion point is a delay slot, we
1093 * need three, with the second nop'ed and the third being
1094 * unused.
1096 #ifdef CONFIG_32BIT
1097 if ((p - tlb_handler) > 64)
1098 panic("TLB refill handler space exceeded");
1099 #else
1100 if (((p - tlb_handler) > 63)
1101 || (((p - tlb_handler) > 61)
1102 && insn_has_bdelay(relocs, tlb_handler + 29)))
1103 panic("TLB refill handler space exceeded");
1104 #endif
1107 * Now fold the handler in the TLB refill handler space.
1109 #ifdef CONFIG_32BIT
1110 f = final_handler;
1111 /* Simplest case, just copy the handler. */
1112 copy_handler(relocs, labels, tlb_handler, p, f);
1113 final_len = p - tlb_handler;
1114 #else /* CONFIG_64BIT */
1115 f = final_handler + 32;
1116 if ((p - tlb_handler) <= 32) {
1117 /* Just copy the handler. */
1118 copy_handler(relocs, labels, tlb_handler, p, f);
1119 final_len = p - tlb_handler;
1120 } else {
1121 u32 *split = tlb_handler + 30;
1124 * Find the split point.
1126 if (insn_has_bdelay(relocs, split - 1))
1127 split--;
1129 /* Copy first part of the handler. */
1130 copy_handler(relocs, labels, tlb_handler, split, f);
1131 f += split - tlb_handler;
1133 /* Insert branch. */
1134 l_split(&l, final_handler);
1135 il_b(&f, &r, label_split);
1136 if (insn_has_bdelay(relocs, split))
1137 i_nop(&f);
1138 else {
1139 copy_handler(relocs, labels, split, split + 1, f);
1140 move_labels(labels, f, f + 1, -1);
1141 f++;
1142 split++;
1145 /* Copy the rest of the handler. */
1146 copy_handler(relocs, labels, split, p, final_handler);
1147 final_len = (f - (final_handler + 32)) + (p - split);
1149 #endif /* CONFIG_64BIT */
1151 resolve_relocs(relocs, labels);
1152 pr_info("Synthesized TLB refill handler (%u instructions).\n",
1153 final_len);
1155 f = final_handler;
1156 #ifdef CONFIG_64BIT
1157 if (final_len > 32)
1158 final_len = 64;
1159 else
1160 f = final_handler + 32;
1161 #endif /* CONFIG_64BIT */
1162 pr_debug("\t.set push\n");
1163 pr_debug("\t.set noreorder\n");
1164 for (i = 0; i < final_len; i++)
1165 pr_debug("\t.word 0x%08x\n", f[i]);
1166 pr_debug("\t.set pop\n");
1168 memcpy((void *)ebase, final_handler, 0x100);
1172 * TLB load/store/modify handlers.
1174 * Only the fastpath gets synthesized at runtime, the slowpath for
1175 * do_page_fault remains normal asm.
1177 extern void tlb_do_page_fault_0(void);
1178 extern void tlb_do_page_fault_1(void);
1181 * 128 instructions for the fastpath handler is generous and should
1182 * never be exceeded.
1184 #define FASTPATH_SIZE 128
1186 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1187 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1188 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1190 static void __cpuinit
1191 iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
1193 #ifdef CONFIG_SMP
1194 # ifdef CONFIG_64BIT_PHYS_ADDR
1195 if (cpu_has_64bits)
1196 i_lld(p, pte, 0, ptr);
1197 else
1198 # endif
1199 i_LL(p, pte, 0, ptr);
1200 #else
1201 # ifdef CONFIG_64BIT_PHYS_ADDR
1202 if (cpu_has_64bits)
1203 i_ld(p, pte, 0, ptr);
1204 else
1205 # endif
1206 i_LW(p, pte, 0, ptr);
1207 #endif
1210 static void __cpuinit
1211 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
1212 unsigned int mode)
1214 #ifdef CONFIG_64BIT_PHYS_ADDR
1215 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1216 #endif
1218 i_ori(p, pte, pte, mode);
1219 #ifdef CONFIG_SMP
1220 # ifdef CONFIG_64BIT_PHYS_ADDR
1221 if (cpu_has_64bits)
1222 i_scd(p, pte, 0, ptr);
1223 else
1224 # endif
1225 i_SC(p, pte, 0, ptr);
1227 if (r10000_llsc_war())
1228 il_beqzl(p, r, pte, label_smp_pgtable_change);
1229 else
1230 il_beqz(p, r, pte, label_smp_pgtable_change);
1232 # ifdef CONFIG_64BIT_PHYS_ADDR
1233 if (!cpu_has_64bits) {
1234 /* no i_nop needed */
1235 i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1236 i_ori(p, pte, pte, hwmode);
1237 i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1238 il_beqz(p, r, pte, label_smp_pgtable_change);
1239 /* no i_nop needed */
1240 i_lw(p, pte, 0, ptr);
1241 } else
1242 i_nop(p);
1243 # else
1244 i_nop(p);
1245 # endif
1246 #else
1247 # ifdef CONFIG_64BIT_PHYS_ADDR
1248 if (cpu_has_64bits)
1249 i_sd(p, pte, 0, ptr);
1250 else
1251 # endif
1252 i_SW(p, pte, 0, ptr);
1254 # ifdef CONFIG_64BIT_PHYS_ADDR
1255 if (!cpu_has_64bits) {
1256 i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1257 i_ori(p, pte, pte, hwmode);
1258 i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1259 i_lw(p, pte, 0, ptr);
1261 # endif
1262 #endif
1266 * Check if PTE is present, if not then jump to LABEL. PTR points to
1267 * the page table where this PTE is located, PTE will be re-loaded
1268 * with it's original value.
1270 static void __cpuinit
1271 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1272 unsigned int pte, unsigned int ptr, enum label_id lid)
1274 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1275 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1276 il_bnez(p, r, pte, lid);
1277 iPTE_LW(p, l, pte, ptr);
1280 /* Make PTE valid, store result in PTR. */
1281 static void __cpuinit
1282 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1283 unsigned int ptr)
1285 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1287 iPTE_SW(p, r, pte, ptr, mode);
1291 * Check if PTE can be written to, if not branch to LABEL. Regardless
1292 * restore PTE with value from PTR when done.
1294 static void __cpuinit
1295 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1296 unsigned int pte, unsigned int ptr, enum label_id lid)
1298 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1299 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1300 il_bnez(p, r, pte, lid);
1301 iPTE_LW(p, l, pte, ptr);
1304 /* Make PTE writable, update software status bits as well, then store
1305 * at PTR.
1307 static void __cpuinit
1308 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1309 unsigned int ptr)
1311 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1312 | _PAGE_DIRTY);
1314 iPTE_SW(p, r, pte, ptr, mode);
1318 * Check if PTE can be modified, if not branch to LABEL. Regardless
1319 * restore PTE with value from PTR when done.
1321 static void __cpuinit
1322 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1323 unsigned int pte, unsigned int ptr, enum label_id lid)
1325 i_andi(p, pte, pte, _PAGE_WRITE);
1326 il_beqz(p, r, pte, lid);
1327 iPTE_LW(p, l, pte, ptr);
1331 * R3000 style TLB load/store/modify handlers.
1335 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1336 * Then it returns.
1338 static void __cpuinit
1339 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1341 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1342 i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1343 i_tlbwi(p);
1344 i_jr(p, tmp);
1345 i_rfe(p); /* branch delay */
1349 * This places the pte into ENTRYLO0 and writes it with tlbwi
1350 * or tlbwr as appropriate. This is because the index register
1351 * may have the probe fail bit set as a result of a trap on a
1352 * kseg2 access, i.e. without refill. Then it returns.
1354 static void __cpuinit
1355 build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
1356 unsigned int pte, unsigned int tmp)
1358 i_mfc0(p, tmp, C0_INDEX);
1359 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1360 il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1361 i_mfc0(p, tmp, C0_EPC); /* branch delay */
1362 i_tlbwi(p); /* cp0 delay */
1363 i_jr(p, tmp);
1364 i_rfe(p); /* branch delay */
1365 l_r3000_write_probe_fail(l, *p);
1366 i_tlbwr(p); /* cp0 delay */
1367 i_jr(p, tmp);
1368 i_rfe(p); /* branch delay */
1371 static void __cpuinit
1372 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1373 unsigned int ptr)
1375 long pgdc = (long)pgd_current;
1377 i_mfc0(p, pte, C0_BADVADDR);
1378 i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1379 i_lw(p, ptr, rel_lo(pgdc), ptr);
1380 i_srl(p, pte, pte, 22); /* load delay */
1381 i_sll(p, pte, pte, 2);
1382 i_addu(p, ptr, ptr, pte);
1383 i_mfc0(p, pte, C0_CONTEXT);
1384 i_lw(p, ptr, 0, ptr); /* cp0 delay */
1385 i_andi(p, pte, pte, 0xffc); /* load delay */
1386 i_addu(p, ptr, ptr, pte);
1387 i_lw(p, pte, 0, ptr);
1388 i_tlbp(p); /* load delay */
1391 static void __cpuinit build_r3000_tlb_load_handler(void)
1393 u32 *p = handle_tlbl;
1394 struct label *l = labels;
1395 struct reloc *r = relocs;
1396 int i;
1398 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1399 memset(labels, 0, sizeof(labels));
1400 memset(relocs, 0, sizeof(relocs));
1402 build_r3000_tlbchange_handler_head(&p, K0, K1);
1403 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1404 i_nop(&p); /* load delay */
1405 build_make_valid(&p, &r, K0, K1);
1406 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1408 l_nopage_tlbl(&l, p);
1409 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1410 i_nop(&p);
1412 if ((p - handle_tlbl) > FASTPATH_SIZE)
1413 panic("TLB load handler fastpath space exceeded");
1415 resolve_relocs(relocs, labels);
1416 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1417 (unsigned int)(p - handle_tlbl));
1419 pr_debug("\t.set push\n");
1420 pr_debug("\t.set noreorder\n");
1421 for (i = 0; i < (p - handle_tlbl); i++)
1422 pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1423 pr_debug("\t.set pop\n");
1426 static void __cpuinit build_r3000_tlb_store_handler(void)
1428 u32 *p = handle_tlbs;
1429 struct label *l = labels;
1430 struct reloc *r = relocs;
1431 int i;
1433 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1434 memset(labels, 0, sizeof(labels));
1435 memset(relocs, 0, sizeof(relocs));
1437 build_r3000_tlbchange_handler_head(&p, K0, K1);
1438 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1439 i_nop(&p); /* load delay */
1440 build_make_write(&p, &r, K0, K1);
1441 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1443 l_nopage_tlbs(&l, p);
1444 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1445 i_nop(&p);
1447 if ((p - handle_tlbs) > FASTPATH_SIZE)
1448 panic("TLB store handler fastpath space exceeded");
1450 resolve_relocs(relocs, labels);
1451 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1452 (unsigned int)(p - handle_tlbs));
1454 pr_debug("\t.set push\n");
1455 pr_debug("\t.set noreorder\n");
1456 for (i = 0; i < (p - handle_tlbs); i++)
1457 pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1458 pr_debug("\t.set pop\n");
1461 static void __cpuinit build_r3000_tlb_modify_handler(void)
1463 u32 *p = handle_tlbm;
1464 struct label *l = labels;
1465 struct reloc *r = relocs;
1466 int i;
1468 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1469 memset(labels, 0, sizeof(labels));
1470 memset(relocs, 0, sizeof(relocs));
1472 build_r3000_tlbchange_handler_head(&p, K0, K1);
1473 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1474 i_nop(&p); /* load delay */
1475 build_make_write(&p, &r, K0, K1);
1476 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1478 l_nopage_tlbm(&l, p);
1479 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1480 i_nop(&p);
1482 if ((p - handle_tlbm) > FASTPATH_SIZE)
1483 panic("TLB modify handler fastpath space exceeded");
1485 resolve_relocs(relocs, labels);
1486 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1487 (unsigned int)(p - handle_tlbm));
1489 pr_debug("\t.set push\n");
1490 pr_debug("\t.set noreorder\n");
1491 for (i = 0; i < (p - handle_tlbm); i++)
1492 pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1493 pr_debug("\t.set pop\n");
1497 * R4000 style TLB load/store/modify handlers.
1499 static void __cpuinit
1500 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1501 struct reloc **r, unsigned int pte,
1502 unsigned int ptr)
1504 #ifdef CONFIG_64BIT
1505 build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1506 #else
1507 build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1508 #endif
1510 i_MFC0(p, pte, C0_BADVADDR);
1511 i_LW(p, ptr, 0, ptr);
1512 i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1513 i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1514 i_ADDU(p, ptr, ptr, pte);
1516 #ifdef CONFIG_SMP
1517 l_smp_pgtable_change(l, *p);
1518 # endif
1519 iPTE_LW(p, l, pte, ptr); /* get even pte */
1520 if (!m4kc_tlbp_war())
1521 build_tlb_probe_entry(p);
1524 static void __cpuinit
1525 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1526 struct reloc **r, unsigned int tmp,
1527 unsigned int ptr)
1529 i_ori(p, ptr, ptr, sizeof(pte_t));
1530 i_xori(p, ptr, ptr, sizeof(pte_t));
1531 build_update_entries(p, tmp, ptr);
1532 build_tlb_write_entry(p, l, r, tlb_indexed);
1533 l_leave(l, *p);
1534 i_eret(p); /* return from trap */
1536 #ifdef CONFIG_64BIT
1537 build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1538 #endif
1541 static void __cpuinit build_r4000_tlb_load_handler(void)
1543 u32 *p = handle_tlbl;
1544 struct label *l = labels;
1545 struct reloc *r = relocs;
1546 int i;
1548 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1549 memset(labels, 0, sizeof(labels));
1550 memset(relocs, 0, sizeof(relocs));
1552 if (bcm1250_m3_war()) {
1553 unsigned int segbits = 44;
1555 i_dmfc0(&p, K0, C0_BADVADDR);
1556 i_dmfc0(&p, K1, C0_ENTRYHI);
1557 i_xor(&p, K0, K0, K1);
1558 i_dsrl32(&p, K1, K0, 62 - 32);
1559 i_dsrl(&p, K0, K0, 12 + 1);
1560 i_dsll32(&p, K0, K0, 64 + 12 + 1 - segbits - 32);
1561 i_or(&p, K0, K0, K1);
1562 il_bnez(&p, &r, K0, label_leave);
1563 /* No need for i_nop */
1566 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1567 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1568 if (m4kc_tlbp_war())
1569 build_tlb_probe_entry(&p);
1570 build_make_valid(&p, &r, K0, K1);
1571 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1573 l_nopage_tlbl(&l, p);
1574 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1575 i_nop(&p);
1577 if ((p - handle_tlbl) > FASTPATH_SIZE)
1578 panic("TLB load handler fastpath space exceeded");
1580 resolve_relocs(relocs, labels);
1581 pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1582 (unsigned int)(p - handle_tlbl));
1584 pr_debug("\t.set push\n");
1585 pr_debug("\t.set noreorder\n");
1586 for (i = 0; i < (p - handle_tlbl); i++)
1587 pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1588 pr_debug("\t.set pop\n");
1591 static void __cpuinit build_r4000_tlb_store_handler(void)
1593 u32 *p = handle_tlbs;
1594 struct label *l = labels;
1595 struct reloc *r = relocs;
1596 int i;
1598 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1599 memset(labels, 0, sizeof(labels));
1600 memset(relocs, 0, sizeof(relocs));
1602 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1603 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1604 if (m4kc_tlbp_war())
1605 build_tlb_probe_entry(&p);
1606 build_make_write(&p, &r, K0, K1);
1607 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1609 l_nopage_tlbs(&l, p);
1610 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1611 i_nop(&p);
1613 if ((p - handle_tlbs) > FASTPATH_SIZE)
1614 panic("TLB store handler fastpath space exceeded");
1616 resolve_relocs(relocs, labels);
1617 pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1618 (unsigned int)(p - handle_tlbs));
1620 pr_debug("\t.set push\n");
1621 pr_debug("\t.set noreorder\n");
1622 for (i = 0; i < (p - handle_tlbs); i++)
1623 pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1624 pr_debug("\t.set pop\n");
1627 static void __cpuinit build_r4000_tlb_modify_handler(void)
1629 u32 *p = handle_tlbm;
1630 struct label *l = labels;
1631 struct reloc *r = relocs;
1632 int i;
1634 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1635 memset(labels, 0, sizeof(labels));
1636 memset(relocs, 0, sizeof(relocs));
1638 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1639 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1640 if (m4kc_tlbp_war())
1641 build_tlb_probe_entry(&p);
1642 /* Present and writable bits set, set accessed and dirty bits. */
1643 build_make_write(&p, &r, K0, K1);
1644 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1646 l_nopage_tlbm(&l, p);
1647 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1648 i_nop(&p);
1650 if ((p - handle_tlbm) > FASTPATH_SIZE)
1651 panic("TLB modify handler fastpath space exceeded");
1653 resolve_relocs(relocs, labels);
1654 pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1655 (unsigned int)(p - handle_tlbm));
1657 pr_debug("\t.set push\n");
1658 pr_debug("\t.set noreorder\n");
1659 for (i = 0; i < (p - handle_tlbm); i++)
1660 pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1661 pr_debug("\t.set pop\n");
1664 void __cpuinit build_tlb_refill_handler(void)
1667 * The refill handler is generated per-CPU, multi-node systems
1668 * may have local storage for it. The other handlers are only
1669 * needed once.
1671 static int run_once = 0;
1673 switch (current_cpu_data.cputype) {
1674 case CPU_R2000:
1675 case CPU_R3000:
1676 case CPU_R3000A:
1677 case CPU_R3081E:
1678 case CPU_TX3912:
1679 case CPU_TX3922:
1680 case CPU_TX3927:
1681 build_r3000_tlb_refill_handler();
1682 if (!run_once) {
1683 build_r3000_tlb_load_handler();
1684 build_r3000_tlb_store_handler();
1685 build_r3000_tlb_modify_handler();
1686 run_once++;
1688 break;
1690 case CPU_R6000:
1691 case CPU_R6000A:
1692 panic("No R6000 TLB refill handler yet");
1693 break;
1695 case CPU_R8000:
1696 panic("No R8000 TLB refill handler yet");
1697 break;
1699 default:
1700 build_r4000_tlb_refill_handler();
1701 if (!run_once) {
1702 build_r4000_tlb_load_handler();
1703 build_r4000_tlb_store_handler();
1704 build_r4000_tlb_modify_handler();
1705 run_once++;
1710 void __cpuinit flush_tlb_handlers(void)
1712 flush_icache_range((unsigned long)handle_tlbl,
1713 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1714 flush_icache_range((unsigned long)handle_tlbs,
1715 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1716 flush_icache_range((unsigned long)handle_tlbm,
1717 (unsigned long)handle_tlbm + sizeof(handle_tlbm));