RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / mips / kernel / smtc.c
blob15af41987497d7f2a1b13d775667be74e8fb7eb8
1 /* Copyright (C) 2004 Mips Technologies, Inc */
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/cpumask.h>
6 #include <linux/interrupt.h>
7 #include <linux/kernel_stat.h>
8 #include <linux/module.h>
10 #include <asm/cpu.h>
11 #include <asm/processor.h>
12 #include <asm/atomic.h>
13 #include <asm/system.h>
14 #include <asm/hardirq.h>
15 #include <asm/hazards.h>
16 #include <asm/irq.h>
17 #include <asm/mmu_context.h>
18 #include <asm/smp.h>
19 #include <asm/mipsregs.h>
20 #include <asm/cacheflush.h>
21 #include <asm/time.h>
22 #include <asm/addrspace.h>
23 #include <asm/smtc.h>
24 #include <asm/smtc_ipi.h>
25 #include <asm/smtc_proc.h>
28 * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
31 #define MIPS_CPU_IPI_IRQ 1
33 #define LOCK_MT_PRA() \
34 local_irq_save(flags); \
35 mtflags = dmt()
37 #define UNLOCK_MT_PRA() \
38 emt(mtflags); \
39 local_irq_restore(flags)
41 #define LOCK_CORE_PRA() \
42 local_irq_save(flags); \
43 mtflags = dvpe()
45 #define UNLOCK_CORE_PRA() \
46 evpe(mtflags); \
47 local_irq_restore(flags)
50 * Data structures purely associated with SMTC parallelism
55 * Table for tracking ASIDs whose lifetime is prolonged.
58 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
61 * Clock interrupt "latch" buffers, per "CPU"
64 unsigned int ipi_timer_latch[NR_CPUS];
67 * Number of InterProcessor Interupt (IPI) message buffers to allocate
70 #define IPIBUF_PER_CPU 4
72 struct smtc_ipi_q IPIQ[NR_CPUS];
73 static struct smtc_ipi_q freeIPIq;
76 /* Forward declarations */
78 void ipi_decode(struct smtc_ipi *);
79 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
80 static void setup_cross_vpe_interrupts(unsigned int nvpe);
81 void init_smtc_stats(void);
83 /* Global SMTC Status */
85 unsigned int smtc_status = 0;
87 /* Boot command line configuration overrides */
89 static int vpelimit = 0;
90 static int tclimit = 0;
91 static int ipibuffers = 0;
92 static int nostlb = 0;
93 static int asidmask = 0;
94 unsigned long smtc_asid_mask = 0xff;
96 static int __init maxvpes(char *str)
98 get_option(&str, &vpelimit);
99 return 1;
102 static int __init maxtcs(char *str)
104 get_option(&str, &tclimit);
105 return 1;
108 static int __init ipibufs(char *str)
110 get_option(&str, &ipibuffers);
111 return 1;
114 static int __init stlb_disable(char *s)
116 nostlb = 1;
117 return 1;
120 static int __init asidmask_set(char *str)
122 get_option(&str, &asidmask);
123 switch (asidmask) {
124 case 0x1:
125 case 0x3:
126 case 0x7:
127 case 0xf:
128 case 0x1f:
129 case 0x3f:
130 case 0x7f:
131 case 0xff:
132 smtc_asid_mask = (unsigned long)asidmask;
133 break;
134 default:
135 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
137 return 1;
140 __setup("maxvpes=", maxvpes);
141 __setup("maxtcs=", maxtcs);
142 __setup("ipibufs=", ipibufs);
143 __setup("nostlb", stlb_disable);
144 __setup("asidmask=", asidmask_set);
146 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
148 static int hang_trig = 0;
150 static int __init hangtrig_enable(char *s)
152 hang_trig = 1;
153 return 1;
157 __setup("hangtrig", hangtrig_enable);
159 #define DEFAULT_BLOCKED_IPI_LIMIT 32
161 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
163 static int __init tintq(char *str)
165 get_option(&str, &timerq_limit);
166 return 1;
169 __setup("tintq=", tintq);
171 int imstuckcount[2][8];
172 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
173 int vpemask[2][8] = {
174 {0, 0, 1, 0, 0, 0, 0, 1},
175 {0, 0, 0, 0, 0, 0, 0, 1}
177 int tcnoprog[NR_CPUS];
178 static atomic_t idle_hook_initialized = ATOMIC_INIT(0);
179 static int clock_hang_reported[NR_CPUS];
181 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
183 /* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
185 void __init sanitize_tlb_entries(void)
187 printk("Deprecated sanitize_tlb_entries() invoked\n");
192 * Configure shared TLB - VPC configuration bit must be set by caller
195 static void smtc_configure_tlb(void)
197 int i,tlbsiz,vpes;
198 unsigned long mvpconf0;
199 unsigned long config1val;
201 /* Set up ASID preservation table */
202 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
203 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
204 smtc_live_asid[vpes][i] = 0;
207 mvpconf0 = read_c0_mvpconf0();
209 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
210 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
211 /* If we have multiple VPEs, try to share the TLB */
212 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
214 * If TLB sizing is programmable, shared TLB
215 * size is the total available complement.
216 * Otherwise, we have to take the sum of all
217 * static VPE TLB entries.
219 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
220 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
222 * If there's more than one VPE, there had better
223 * be more than one TC, because we need one to bind
224 * to each VPE in turn to be able to read
225 * its configuration state!
227 settc(1);
228 /* Stop the TC from doing anything foolish */
229 write_tc_c0_tchalt(TCHALT_H);
230 mips_ihb();
231 /* No need to un-Halt - that happens later anyway */
232 for (i=0; i < vpes; i++) {
233 write_tc_c0_tcbind(i);
235 * To be 100% sure we're really getting the right
236 * information, we exit the configuration state
237 * and do an IHB after each rebinding.
239 write_c0_mvpcontrol(
240 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
241 mips_ihb();
243 * Only count if the MMU Type indicated is TLB
245 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
246 config1val = read_vpe_c0_config1();
247 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
250 /* Put core back in configuration state */
251 write_c0_mvpcontrol(
252 read_c0_mvpcontrol() | MVPCONTROL_VPC );
253 mips_ihb();
256 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
257 ehb();
260 * Setup kernel data structures to use software total,
261 * rather than read the per-VPE Config1 value. The values
262 * for "CPU 0" gets copied to all the other CPUs as part
263 * of their initialization in smtc_cpu_setup().
266 /* MIPS32 limits TLB indices to 64 */
267 if (tlbsiz > 64)
268 tlbsiz = 64;
269 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
270 smtc_status |= SMTC_TLB_SHARED;
271 local_flush_tlb_all();
273 printk("TLB of %d entry pairs shared by %d VPEs\n",
274 tlbsiz, vpes);
275 } else {
276 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
283 * Incrementally build the CPU map out of constituent MIPS MT cores,
284 * using the specified available VPEs and TCs. Plaform code needs
285 * to ensure that each MIPS MT core invokes this routine on reset,
286 * one at a time(!).
288 * This version of the build_cpu_map and prepare_cpus routines assumes
289 * that *all* TCs of a MIPS MT core will be used for Linux, and that
290 * they will be spread across *all* available VPEs (to minimise the
291 * loss of efficiency due to exception service serialization).
292 * An improved version would pick up configuration information and
293 * possibly leave some TCs/VPEs as "slave" processors.
295 * Use c0_MVPConf0 to find out how many TCs are available, setting up
296 * phys_cpu_present_map and the logical/physical mappings.
299 int __init mipsmt_build_cpu_map(int start_cpu_slot)
301 int i, ntcs;
304 * The CPU map isn't actually used for anything at this point,
305 * so it's not clear what else we should do apart from set
306 * everything up so that "logical" = "physical".
308 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
309 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
310 cpu_set(i, phys_cpu_present_map);
311 __cpu_number_map[i] = i;
312 __cpu_logical_map[i] = i;
314 /* Initialize map of CPUs with FPUs */
315 cpus_clear(mt_fpu_cpumask);
317 /* One of those TC's is the one booting, and not a secondary... */
318 printk("%i available secondary CPU TC(s)\n", i - 1);
320 return i;
324 * Common setup before any secondaries are started
325 * Make sure all CPU's are in a sensible state before we boot any of the
326 * secondaries.
328 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
329 * as possible across the available VPEs.
332 static void smtc_tc_setup(int vpe, int tc, int cpu)
334 settc(tc);
335 write_tc_c0_tchalt(TCHALT_H);
336 mips_ihb();
337 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
338 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
339 | TCSTATUS_A);
340 write_tc_c0_tccontext(0);
341 /* Bind tc to vpe */
342 write_tc_c0_tcbind(vpe);
343 /* In general, all TCs should have the same cpu_data indications */
344 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
345 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
346 if (cpu_data[0].cputype == CPU_34K)
347 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
348 cpu_data[cpu].vpe_id = vpe;
349 cpu_data[cpu].tc_id = tc;
353 void mipsmt_prepare_cpus(void)
355 int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
356 unsigned long flags;
357 unsigned long val;
358 int nipi;
359 struct smtc_ipi *pipi;
361 /* disable interrupts so we can disable MT */
362 local_irq_save(flags);
363 /* disable MT so we can configure */
364 dvpe();
365 dmt();
367 spin_lock_init(&freeIPIq.lock);
370 * We probably don't have as many VPEs as we do SMP "CPUs",
371 * but it's possible - and in any case we'll never use more!
373 for (i=0; i<NR_CPUS; i++) {
374 IPIQ[i].head = IPIQ[i].tail = NULL;
375 spin_lock_init(&IPIQ[i].lock);
376 IPIQ[i].depth = 0;
377 ipi_timer_latch[i] = 0;
380 /* cpu_data index starts at zero */
381 cpu = 0;
382 cpu_data[cpu].vpe_id = 0;
383 cpu_data[cpu].tc_id = 0;
384 cpu++;
386 /* Report on boot-time options */
387 mips_mt_set_cpuoptions ();
388 if (vpelimit > 0)
389 printk("Limit of %d VPEs set\n", vpelimit);
390 if (tclimit > 0)
391 printk("Limit of %d TCs set\n", tclimit);
392 if (nostlb) {
393 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
395 if (asidmask)
396 printk("ASID mask value override to 0x%x\n", asidmask);
398 /* Temporary */
399 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
400 if (hang_trig)
401 printk("Logic Analyser Trigger on suspected TC hang\n");
402 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
404 /* Put MVPE's into 'configuration state' */
405 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
407 val = read_c0_mvpconf0();
408 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
409 if (vpelimit > 0 && nvpe > vpelimit)
410 nvpe = vpelimit;
411 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
412 if (ntc > NR_CPUS)
413 ntc = NR_CPUS;
414 if (tclimit > 0 && ntc > tclimit)
415 ntc = tclimit;
416 tcpervpe = ntc / nvpe;
417 slop = ntc % nvpe; /* Residual TCs, < NVPE */
419 /* Set up shared TLB */
420 smtc_configure_tlb();
422 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
423 if (tcpervpe[vpe] == 0)
424 continue;
425 if (vpe != 0)
426 printk(", ");
427 printk("VPE %d: TC", vpe);
428 for (i = 0; i < tcpervpe; i++) {
430 * TC 0 is bound to VPE 0 at reset,
431 * and is presumably executing this
432 * code. Leave it alone!
434 if (tc != 0) {
435 smtc_tc_setup(vpe,tc, cpu);
436 cpu++;
438 printk(" %d", tc);
439 tc++;
441 if (slop) {
442 if (tc != 0) {
443 smtc_tc_setup(vpe,tc, cpu);
444 cpu++;
446 printk(" %d", tc);
447 tc++;
448 slop--;
450 if (vpe != 0) {
452 * Allow this VPE to control others.
454 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() |
455 VPECONF0_MVP);
458 * Clear any stale software interrupts from VPE's Cause
460 write_vpe_c0_cause(0);
463 * Clear ERL/EXL of VPEs other than 0
464 * and set restricted interrupt enable/mask.
466 write_vpe_c0_status((read_vpe_c0_status()
467 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
468 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
469 | ST0_IE));
471 * set config to be the same as vpe0,
472 * particularly kseg0 coherency alg
474 write_vpe_c0_config(read_c0_config());
475 /* Clear any pending timer interrupt */
476 write_vpe_c0_compare(0);
477 /* Propagate Config7 */
478 write_vpe_c0_config7(read_c0_config7());
479 write_vpe_c0_count(read_c0_count());
481 /* enable multi-threading within VPE */
482 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
483 /* enable the VPE */
484 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
488 * Pull any physically present but unused TCs out of circulation.
490 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
491 cpu_clear(tc, phys_cpu_present_map);
492 cpu_clear(tc, cpu_present_map);
493 tc++;
496 /* release config state */
497 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
499 printk("\n");
501 /* Set up coprocessor affinity CPU mask(s) */
503 for (tc = 0; tc < ntc; tc++) {
504 if (cpu_data[tc].options & MIPS_CPU_FPU)
505 cpu_set(tc, mt_fpu_cpumask);
508 /* set up ipi interrupts... */
510 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
512 setup_cross_vpe_interrupts(nvpe);
514 /* Set up queue of free IPI "messages". */
515 nipi = NR_CPUS * IPIBUF_PER_CPU;
516 if (ipibuffers > 0)
517 nipi = ipibuffers;
519 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
520 if (pipi == NULL)
521 panic("kmalloc of IPI message buffers failed\n");
522 else
523 printk("IPI buffer pool of %d buffers\n", nipi);
524 for (i = 0; i < nipi; i++) {
525 smtc_ipi_nq(&freeIPIq, pipi);
526 pipi++;
529 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
530 emt(EMT_ENABLE);
531 evpe(EVPE_ENABLE);
532 local_irq_restore(flags);
533 /* Initialize SMTC /proc statistics/diagnostics */
534 init_smtc_stats();
539 * Setup the PC, SP, and GP of a secondary processor and start it
540 * running!
541 * smp_bootstrap is the place to resume from
542 * __KSTK_TOS(idle) is apparently the stack pointer
543 * (unsigned long)idle->thread_info the gp
546 void smtc_boot_secondary(int cpu, struct task_struct *idle)
548 extern u32 kernelsp[NR_CPUS];
549 unsigned long flags;
550 int mtflags;
552 LOCK_MT_PRA();
553 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
554 dvpe();
556 settc(cpu_data[cpu].tc_id);
558 /* pc */
559 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
561 /* stack pointer */
562 kernelsp[cpu] = __KSTK_TOS(idle);
563 write_tc_gpr_sp(__KSTK_TOS(idle));
565 /* global pointer */
566 write_tc_gpr_gp((unsigned long)task_thread_info(idle));
568 smtc_status |= SMTC_MTC_ACTIVE;
569 write_tc_c0_tchalt(0);
570 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
571 evpe(EVPE_ENABLE);
573 UNLOCK_MT_PRA();
576 void smtc_init_secondary(void)
579 * Start timer on secondary VPEs if necessary.
580 * plat_timer_setup has already have been invoked by init/main
581 * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
582 * SMTC init code assigns TCs consdecutively and in ascending order
583 * to across available VPEs.
585 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
586 ((read_c0_tcbind() & TCBIND_CURVPE)
587 != cpu_data[smp_processor_id() - 1].vpe_id)){
588 write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
591 local_irq_enable();
594 void smtc_smp_finish(void)
596 printk("TC %d going on-line as CPU %d\n",
597 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
600 void smtc_cpus_done(void)
605 * Support for SMTC-optimized driver IRQ registration
609 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
610 * in do_IRQ. These are passed in setup_irq_smtc() and stored
611 * in this table.
614 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
615 unsigned long hwmask)
617 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
618 unsigned int vpe = current_cpu_data.vpe_id;
620 vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
621 #endif
622 irq_hwmask[irq] = hwmask;
624 return setup_irq(irq, new);
628 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
629 * Within a VPE one TC can interrupt another by different approaches.
630 * The easiest to get right would probably be to make all TCs except
631 * the target IXMT and set a software interrupt, but an IXMT-based
632 * scheme requires that a handler must run before a new IPI could
633 * be sent, which would break the "broadcast" loops in MIPS MT.
634 * A more gonzo approach within a VPE is to halt the TC, extract
635 * its Restart, Status, and a couple of GPRs, and program the Restart
636 * address to emulate an interrupt.
638 * Within a VPE, one can be confident that the target TC isn't in
639 * a critical EXL state when halted, since the write to the Halt
640 * register could not have issued on the writing thread if the
641 * halting thread had EXL set. So k0 and k1 of the target TC
642 * can be used by the injection code. Across VPEs, one can't
643 * be certain that the target TC isn't in a critical exception
644 * state. So we try a two-step process of sending a software
645 * interrupt to the target VPE, which either handles the event
646 * itself (if it was the target) or injects the event within
647 * the VPE.
650 static void smtc_ipi_qdump(void)
652 int i;
654 for (i = 0; i < NR_CPUS ;i++) {
655 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
656 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
657 IPIQ[i].depth);
662 * The standard atomic.h primitives don't quite do what we want
663 * here: We need an atomic add-and-return-previous-value (which
664 * could be done with atomic_add_return and a decrement) and an
665 * atomic set/zero-and-return-previous-value (which can't really
666 * be done with the atomic.h primitives). And since this is
667 * MIPS MT, we can assume that we have LL/SC.
669 static __inline__ int atomic_postincrement(unsigned int *pv)
671 unsigned long result;
673 unsigned long temp;
675 __asm__ __volatile__(
676 "1: ll %0, %2 \n"
677 " addu %1, %0, 1 \n"
678 " sc %1, %2 \n"
679 " beqz %1, 1b \n"
680 " sync \n"
681 : "=&r" (result), "=&r" (temp), "=m" (*pv)
682 : "m" (*pv)
683 : "memory");
685 return result;
688 void smtc_send_ipi(int cpu, int type, unsigned int action)
690 int tcstatus;
691 struct smtc_ipi *pipi;
692 unsigned long flags;
693 int mtflags;
695 if (cpu == smp_processor_id()) {
696 printk("Cannot Send IPI to self!\n");
697 return;
699 /* Set up a descriptor, to be delivered either promptly or queued */
700 pipi = smtc_ipi_dq(&freeIPIq);
701 if (pipi == NULL) {
702 bust_spinlocks(1);
703 mips_mt_regdump(dvpe());
704 panic("IPI Msg. Buffers Depleted\n");
706 pipi->type = type;
707 pipi->arg = (void *)action;
708 pipi->dest = cpu;
709 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
710 /* If not on same VPE, enqueue and send cross-VPE interupt */
711 smtc_ipi_nq(&IPIQ[cpu], pipi);
712 LOCK_CORE_PRA();
713 settc(cpu_data[cpu].tc_id);
714 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
715 UNLOCK_CORE_PRA();
716 } else {
718 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
719 * since ASID shootdown on the other VPE may
720 * collide with this operation.
722 LOCK_CORE_PRA();
723 settc(cpu_data[cpu].tc_id);
724 /* Halt the targeted TC */
725 write_tc_c0_tchalt(TCHALT_H);
726 mips_ihb();
729 * Inspect TCStatus - if IXMT is set, we have to queue
730 * a message. Otherwise, we set up the "interrupt"
731 * of the other TC
733 tcstatus = read_tc_c0_tcstatus();
735 if ((tcstatus & TCSTATUS_IXMT) != 0) {
737 * Spin-waiting here can deadlock,
738 * so we queue the message for the target TC.
740 write_tc_c0_tchalt(0);
741 UNLOCK_CORE_PRA();
742 /* Try to reduce redundant timer interrupt messages */
743 if (type == SMTC_CLOCK_TICK) {
744 if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
745 smtc_ipi_nq(&freeIPIq, pipi);
746 return;
749 smtc_ipi_nq(&IPIQ[cpu], pipi);
750 } else {
751 post_direct_ipi(cpu, pipi);
752 write_tc_c0_tchalt(0);
753 UNLOCK_CORE_PRA();
759 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
761 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
763 struct pt_regs *kstack;
764 unsigned long tcstatus;
765 unsigned long tcrestart;
766 extern u32 kernelsp[NR_CPUS];
767 extern void __smtc_ipi_vector(void);
769 /* Extract Status, EPC from halted TC */
770 tcstatus = read_tc_c0_tcstatus();
771 tcrestart = read_tc_c0_tcrestart();
772 /* If TCRestart indicates a WAIT instruction, advance the PC */
773 if ((tcrestart & 0x80000000)
774 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
775 tcrestart += 4;
778 * Save on TC's future kernel stack
780 * CU bit of Status is indicator that TC was
781 * already running on a kernel stack...
783 if (tcstatus & ST0_CU0) {
784 /* Note that this "- 1" is pointer arithmetic */
785 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
786 } else {
787 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
790 kstack->cp0_epc = (long)tcrestart;
791 /* Save TCStatus */
792 kstack->cp0_tcstatus = tcstatus;
793 /* Pass token of operation to be performed kernel stack pad area */
794 kstack->pad0[4] = (unsigned long)pipi;
795 /* Pass address of function to be called likewise */
796 kstack->pad0[5] = (unsigned long)&ipi_decode;
797 /* Set interrupt exempt and kernel mode */
798 tcstatus |= TCSTATUS_IXMT;
799 tcstatus &= ~TCSTATUS_TKSU;
800 write_tc_c0_tcstatus(tcstatus);
801 ehb();
802 /* Set TC Restart address to be SMTC IPI vector */
803 write_tc_c0_tcrestart(__smtc_ipi_vector);
806 static void ipi_resched_interrupt(void)
808 /* Return from interrupt should be enough to cause scheduler check */
812 static void ipi_call_interrupt(void)
814 /* Invoke generic function invocation code in smp.c */
815 smp_call_function_interrupt();
818 void ipi_decode(struct smtc_ipi *pipi)
820 void *arg_copy = pipi->arg;
821 int type_copy = pipi->type;
822 int dest_copy = pipi->dest;
824 smtc_ipi_nq(&freeIPIq, pipi);
825 switch (type_copy) {
826 case SMTC_CLOCK_TICK:
827 irq_enter();
828 kstat_this_cpu.irqs[MIPS_CPU_IRQ_BASE + cp0_compare_irq]++;
829 /* Invoke Clock "Interrupt" */
830 ipi_timer_latch[dest_copy] = 0;
831 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
832 clock_hang_reported[dest_copy] = 0;
833 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
834 local_timer_interrupt(0, NULL);
835 irq_exit();
836 break;
837 case LINUX_SMP_IPI:
838 switch ((int)arg_copy) {
839 case SMP_RESCHEDULE_YOURSELF:
840 ipi_resched_interrupt();
841 break;
842 case SMP_CALL_FUNCTION:
843 ipi_call_interrupt();
844 break;
845 default:
846 printk("Impossible SMTC IPI Argument 0x%x\n",
847 (int)arg_copy);
848 break;
850 break;
851 default:
852 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
853 break;
857 void deferred_smtc_ipi(void)
859 struct smtc_ipi *pipi;
860 unsigned long flags;
861 /* DEBUG */
862 int q = smp_processor_id();
865 * Test is not atomic, but much faster than a dequeue,
866 * and the vast majority of invocations will have a null queue.
868 if (IPIQ[q].head != NULL) {
869 while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
870 /* ipi_decode() should be called with interrupts off */
871 local_irq_save(flags);
872 ipi_decode(pipi);
873 local_irq_restore(flags);
879 * Send clock tick to all TCs except the one executing the funtion
882 void smtc_timer_broadcast(int vpe)
884 int cpu;
885 int myTC = cpu_data[smp_processor_id()].tc_id;
886 int myVPE = cpu_data[smp_processor_id()].vpe_id;
888 smtc_cpu_stats[smp_processor_id()].timerints++;
890 for_each_online_cpu(cpu) {
891 if (cpu_data[cpu].vpe_id == myVPE &&
892 cpu_data[cpu].tc_id != myTC)
893 smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
898 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
899 * set via cross-VPE MTTR manipulation of the Cause register. It would be
900 * in some regards preferable to have external logic for "doorbell" hardware
901 * interrupts.
904 static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
906 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
908 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
909 int my_tc = cpu_data[smp_processor_id()].tc_id;
910 int cpu;
911 struct smtc_ipi *pipi;
912 unsigned long tcstatus;
913 int sent;
914 unsigned long flags;
915 unsigned int mtflags;
916 unsigned int vpflags;
919 * So long as cross-VPE interrupts are done via
920 * MFTR/MTTR read-modify-writes of Cause, we need
921 * to stop other VPEs whenever the local VPE does
922 * anything similar.
924 local_irq_save(flags);
925 vpflags = dvpe();
926 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
927 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
928 irq_enable_hazard();
929 evpe(vpflags);
930 local_irq_restore(flags);
933 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
934 * queued for TCs on this VPE other than the current one.
935 * Return-from-interrupt should cause us to drain the queue
936 * for the current TC, so we ought not to have to do it explicitly here.
939 for_each_online_cpu(cpu) {
940 if (cpu_data[cpu].vpe_id != my_vpe)
941 continue;
943 pipi = smtc_ipi_dq(&IPIQ[cpu]);
944 if (pipi != NULL) {
945 if (cpu_data[cpu].tc_id != my_tc) {
946 sent = 0;
947 LOCK_MT_PRA();
948 settc(cpu_data[cpu].tc_id);
949 write_tc_c0_tchalt(TCHALT_H);
950 mips_ihb();
951 tcstatus = read_tc_c0_tcstatus();
952 if ((tcstatus & TCSTATUS_IXMT) == 0) {
953 post_direct_ipi(cpu, pipi);
954 sent = 1;
956 write_tc_c0_tchalt(0);
957 UNLOCK_MT_PRA();
958 if (!sent) {
959 smtc_ipi_req(&IPIQ[cpu], pipi);
961 } else {
963 * ipi_decode() should be called
964 * with interrupts off
966 local_irq_save(flags);
967 ipi_decode(pipi);
968 local_irq_restore(flags);
973 return IRQ_HANDLED;
976 static void ipi_irq_dispatch(void)
978 do_IRQ(cpu_ipi_irq);
981 static struct irqaction irq_ipi;
983 static void setup_cross_vpe_interrupts(unsigned int nvpe)
985 if (nvpe < 1)
986 return;
988 if (!cpu_has_vint)
989 panic("SMTC Kernel requires Vectored Interupt support");
991 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
993 irq_ipi.handler = ipi_interrupt;
994 irq_ipi.flags = IRQF_DISABLED;
995 irq_ipi.name = "SMTC_IPI";
997 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
999 irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
1000 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1004 * SMTC-specific hacks invoked from elsewhere in the kernel.
1006 * smtc_ipi_replay is called from raw_local_irq_restore which is only ever
1007 * called with interrupts disabled. We do rely on interrupts being disabled
1008 * here because using spin_lock_irqsave()/spin_unlock_irqrestore() would
1009 * result in a recursive call to raw_local_irq_restore().
1012 static void __smtc_ipi_replay(void)
1014 unsigned int cpu = smp_processor_id();
1017 * To the extent that we've ever turned interrupts off,
1018 * we may have accumulated deferred IPIs. This is subtle.
1019 * If we use the smtc_ipi_qdepth() macro, we'll get an
1020 * exact number - but we'll also disable interrupts
1021 * and create a window of failure where a new IPI gets
1022 * queued after we test the depth but before we re-enable
1023 * interrupts. So long as IXMT never gets set, however,
1024 * we should be OK: If we pick up something and dispatch
1025 * it here, that's great. If we see nothing, but concurrent
1026 * with this operation, another TC sends us an IPI, IXMT
1027 * is clear, and we'll handle it as a real pseudo-interrupt
1028 * and not a pseudo-pseudo interrupt.
1030 if (IPIQ[cpu].depth > 0) {
1031 while (1) {
1032 struct smtc_ipi_q *q = &IPIQ[cpu];
1033 struct smtc_ipi *pipi;
1034 extern void self_ipi(struct smtc_ipi *);
1036 spin_lock(&q->lock);
1037 pipi = __smtc_ipi_dq(q);
1038 spin_unlock(&q->lock);
1039 if (!pipi)
1040 break;
1042 self_ipi(pipi);
1043 smtc_cpu_stats[cpu].selfipis++;
1048 void smtc_ipi_replay(void)
1050 raw_local_irq_disable();
1051 __smtc_ipi_replay();
1054 EXPORT_SYMBOL(smtc_ipi_replay);
1056 void smtc_idle_loop_hook(void)
1058 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1059 int im;
1060 int flags;
1061 int mtflags;
1062 int bit;
1063 int vpe;
1064 int tc;
1065 int hook_ntcs;
1067 * printk within DMT-protected regions can deadlock,
1068 * so buffer diagnostic messages for later output.
1070 char *pdb_msg;
1071 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1073 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1074 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1075 int mvpconf0;
1076 /* Tedious stuff to just do once */
1077 mvpconf0 = read_c0_mvpconf0();
1078 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1079 if (hook_ntcs > NR_CPUS)
1080 hook_ntcs = NR_CPUS;
1081 for (tc = 0; tc < hook_ntcs; tc++) {
1082 tcnoprog[tc] = 0;
1083 clock_hang_reported[tc] = 0;
1085 for (vpe = 0; vpe < 2; vpe++)
1086 for (im = 0; im < 8; im++)
1087 imstuckcount[vpe][im] = 0;
1088 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1089 atomic_set(&idle_hook_initialized, 1000);
1090 } else {
1091 /* Someone else is initializing in parallel - let 'em finish */
1092 while (atomic_read(&idle_hook_initialized) < 1000)
1097 /* Have we stupidly left IXMT set somewhere? */
1098 if (read_c0_tcstatus() & 0x400) {
1099 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1100 ehb();
1101 printk("Dangling IXMT in cpu_idle()\n");
1104 /* Have we stupidly left an IM bit turned off? */
1105 #define IM_LIMIT 2000
1106 local_irq_save(flags);
1107 mtflags = dmt();
1108 pdb_msg = &id_ho_db_msg[0];
1109 im = read_c0_status();
1110 vpe = cpu_data[smp_processor_id()].vpe_id;
1111 for (bit = 0; bit < 8; bit++) {
1113 * In current prototype, I/O interrupts
1114 * are masked for VPE > 0
1116 if (vpemask[vpe][bit]) {
1117 if (!(im & (0x100 << bit)))
1118 imstuckcount[vpe][bit]++;
1119 else
1120 imstuckcount[vpe][bit] = 0;
1121 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1122 set_c0_status(0x100 << bit);
1123 ehb();
1124 imstuckcount[vpe][bit] = 0;
1125 pdb_msg += sprintf(pdb_msg,
1126 "Dangling IM %d fixed for VPE %d\n", bit,
1127 vpe);
1133 * Now that we limit outstanding timer IPIs, check for hung TC
1135 for (tc = 0; tc < NR_CPUS; tc++) {
1136 /* Don't check ourself - we'll dequeue IPIs just below */
1137 if ((tc != smp_processor_id()) &&
1138 ipi_timer_latch[tc] > timerq_limit) {
1139 if (clock_hang_reported[tc] == 0) {
1140 pdb_msg += sprintf(pdb_msg,
1141 "TC %d looks hung with timer latch at %d\n",
1142 tc, ipi_timer_latch[tc]);
1143 clock_hang_reported[tc]++;
1147 emt(mtflags);
1148 local_irq_restore(flags);
1149 if (pdb_msg != &id_ho_db_msg[0])
1150 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1151 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1154 * Replay any accumulated deferred IPIs. If "Instant Replay"
1155 * is in use, there should never be any.
1157 #ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1159 unsigned long flags;
1161 local_irq_save(flags);
1162 __smtc_ipi_replay();
1163 local_irq_restore(flags);
1165 #endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
1168 void smtc_soft_dump(void)
1170 int i;
1172 printk("Counter Interrupts taken per CPU (TC)\n");
1173 for (i=0; i < NR_CPUS; i++) {
1174 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1176 printk("Self-IPI invocations:\n");
1177 for (i=0; i < NR_CPUS; i++) {
1178 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1180 smtc_ipi_qdump();
1181 printk("Timer IPI Backlogs:\n");
1182 for (i=0; i < NR_CPUS; i++) {
1183 printk("%d: %d\n", i, ipi_timer_latch[i]);
1185 printk("%d Recoveries of \"stolen\" FPU\n",
1186 atomic_read(&smtc_fpu_recoveries));
1191 * TLB management routines special to SMTC
1194 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1196 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1197 int tlb, i;
1200 * It would be nice to be able to use a spinlock here,
1201 * but this is invoked from within TLB flush routines
1202 * that protect themselves with DVPE, so if a lock is
1203 * held by another TC, it'll never be freed.
1205 * DVPE/DMT must not be done with interrupts enabled,
1206 * so even so most callers will already have disabled
1207 * them, let's be really careful...
1210 local_irq_save(flags);
1211 if (smtc_status & SMTC_TLB_SHARED) {
1212 mtflags = dvpe();
1213 tlb = 0;
1214 } else {
1215 mtflags = dmt();
1216 tlb = cpu_data[cpu].vpe_id;
1218 asid = asid_cache(cpu);
1220 do {
1221 if (!((asid += ASID_INC) & ASID_MASK) ) {
1222 if (cpu_has_vtag_icache)
1223 flush_icache_all();
1224 /* Traverse all online CPUs (hack requires contigous range) */
1225 for (i = 0; i < num_online_cpus(); i++) {
1227 * We don't need to worry about our own CPU, nor those of
1228 * CPUs who don't share our TLB.
1230 if ((i != smp_processor_id()) &&
1231 ((smtc_status & SMTC_TLB_SHARED) ||
1232 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1233 settc(cpu_data[i].tc_id);
1234 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1235 if (!prevhalt) {
1236 write_tc_c0_tchalt(TCHALT_H);
1237 mips_ihb();
1239 tcstat = read_tc_c0_tcstatus();
1240 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1241 if (!prevhalt)
1242 write_tc_c0_tchalt(0);
1245 if (!asid) /* fix version if needed */
1246 asid = ASID_FIRST_VERSION;
1247 local_flush_tlb_all(); /* start new asid cycle */
1249 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1252 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1254 for (i = 0; i < num_online_cpus(); i++) {
1255 if ((smtc_status & SMTC_TLB_SHARED) ||
1256 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1257 cpu_context(i, mm) = asid_cache(i) = asid;
1260 if (smtc_status & SMTC_TLB_SHARED)
1261 evpe(mtflags);
1262 else
1263 emt(mtflags);
1264 local_irq_restore(flags);
1268 * Invoked from macros defined in mmu_context.h
1269 * which must already have disabled interrupts
1270 * and done a DVPE or DMT as appropriate.
1273 void smtc_flush_tlb_asid(unsigned long asid)
1275 int entry;
1276 unsigned long ehi;
1278 entry = read_c0_wired();
1280 /* Traverse all non-wired entries */
1281 while (entry < current_cpu_data.tlbsize) {
1282 write_c0_index(entry);
1283 ehb();
1284 tlb_read();
1285 ehb();
1286 ehi = read_c0_entryhi();
1287 if ((ehi & ASID_MASK) == asid) {
1289 * Invalidate only entries with specified ASID,
1290 * makiing sure all entries differ.
1292 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1293 write_c0_entrylo0(0);
1294 write_c0_entrylo1(0);
1295 mtc0_tlbw_hazard();
1296 tlb_write_indexed();
1298 entry++;
1300 write_c0_index(PARKED_INDEX);
1301 tlbw_use_hazard();
1305 * Support for single-threading cache flush operations.
1308 static int halt_state_save[NR_CPUS];
1311 * To really, really be sure that nothing is being done
1312 * by other TCs, halt them all. This code assumes that
1313 * a DVPE has already been done, so while their Halted
1314 * state is theoretically architecturally unstable, in
1315 * practice, it's not going to change while we're looking
1316 * at it.
1319 void smtc_cflush_lockdown(void)
1321 int cpu;
1323 for_each_online_cpu(cpu) {
1324 if (cpu != smp_processor_id()) {
1325 settc(cpu_data[cpu].tc_id);
1326 halt_state_save[cpu] = read_tc_c0_tchalt();
1327 write_tc_c0_tchalt(TCHALT_H);
1330 mips_ihb();
1333 /* It would be cheating to change the cpu_online states during a flush! */
1335 void smtc_cflush_release(void)
1337 int cpu;
1340 * Start with a hazard barrier to ensure
1341 * that all CACHE ops have played through.
1343 mips_ihb();
1345 for_each_online_cpu(cpu) {
1346 if (cpu != smp_processor_id()) {
1347 settc(cpu_data[cpu].tc_id);
1348 write_tc_c0_tchalt(halt_state_save[cpu]);
1351 mips_ihb();