RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / ia64 / kernel / cpufreq / acpi-cpufreq.c
blob15c08d52f09fb60038ff85db84a2ede007c0867f
1 /*
2 * arch/ia64/kernel/cpufreq/acpi-cpufreq.c
3 * This file provides the ACPI based P-state support. This
4 * module works with generic cpufreq infrastructure. Most of
5 * the code is based on i386 version
6 * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
8 * Copyright (C) 2005 Intel Corp
9 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/cpufreq.h>
16 #include <linux/proc_fs.h>
17 #include <linux/seq_file.h>
18 #include <asm/io.h>
19 #include <asm/uaccess.h>
20 #include <asm/pal.h>
22 #include <linux/acpi.h>
23 #include <acpi/processor.h>
25 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
27 MODULE_AUTHOR("Venkatesh Pallipadi");
28 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
29 MODULE_LICENSE("GPL");
32 struct cpufreq_acpi_io {
33 struct acpi_processor_performance acpi_data;
34 struct cpufreq_frequency_table *freq_table;
35 unsigned int resume;
38 static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
40 static struct cpufreq_driver acpi_cpufreq_driver;
43 static int
44 processor_set_pstate (
45 u32 value)
47 s64 retval;
49 dprintk("processor_set_pstate\n");
51 retval = ia64_pal_set_pstate((u64)value);
53 if (retval) {
54 dprintk("Failed to set freq to 0x%x, with error 0x%x\n",
55 value, retval);
56 return -ENODEV;
58 return (int)retval;
62 static int
63 processor_get_pstate (
64 u32 *value)
66 u64 pstate_index = 0;
67 s64 retval;
69 dprintk("processor_get_pstate\n");
71 retval = ia64_pal_get_pstate(&pstate_index,
72 PAL_GET_PSTATE_TYPE_INSTANT);
73 *value = (u32) pstate_index;
75 if (retval)
76 dprintk("Failed to get current freq with "
77 "error 0x%x, idx 0x%x\n", retval, *value);
79 return (int)retval;
83 /* To be used only after data->acpi_data is initialized */
84 static unsigned
85 extract_clock (
86 struct cpufreq_acpi_io *data,
87 unsigned value,
88 unsigned int cpu)
90 unsigned long i;
92 dprintk("extract_clock\n");
94 for (i = 0; i < data->acpi_data.state_count; i++) {
95 if (value == data->acpi_data.states[i].status)
96 return data->acpi_data.states[i].core_frequency;
98 return data->acpi_data.states[i-1].core_frequency;
102 static unsigned int
103 processor_get_freq (
104 struct cpufreq_acpi_io *data,
105 unsigned int cpu)
107 int ret = 0;
108 u32 value = 0;
109 cpumask_t saved_mask;
110 unsigned long clock_freq;
112 dprintk("processor_get_freq\n");
114 saved_mask = current->cpus_allowed;
115 set_cpus_allowed(current, cpumask_of_cpu(cpu));
116 if (smp_processor_id() != cpu) {
117 ret = -EAGAIN;
118 goto migrate_end;
121 /* processor_get_pstate gets the instantaneous frequency */
122 ret = processor_get_pstate(&value);
124 if (ret) {
125 set_cpus_allowed(current, saved_mask);
126 printk(KERN_WARNING "get performance failed with error %d\n",
127 ret);
128 ret = -EAGAIN;
129 goto migrate_end;
131 clock_freq = extract_clock(data, value, cpu);
132 ret = (clock_freq*1000);
134 migrate_end:
135 set_cpus_allowed(current, saved_mask);
136 return ret;
140 static int
141 processor_set_freq (
142 struct cpufreq_acpi_io *data,
143 unsigned int cpu,
144 int state)
146 int ret = 0;
147 u32 value = 0;
148 struct cpufreq_freqs cpufreq_freqs;
149 cpumask_t saved_mask;
150 int retval;
152 dprintk("processor_set_freq\n");
154 saved_mask = current->cpus_allowed;
155 set_cpus_allowed(current, cpumask_of_cpu(cpu));
156 if (smp_processor_id() != cpu) {
157 retval = -EAGAIN;
158 goto migrate_end;
161 if (state == data->acpi_data.state) {
162 if (unlikely(data->resume)) {
163 dprintk("Called after resume, resetting to P%d\n", state);
164 data->resume = 0;
165 } else {
166 dprintk("Already at target state (P%d)\n", state);
167 retval = 0;
168 goto migrate_end;
172 dprintk("Transitioning from P%d to P%d\n",
173 data->acpi_data.state, state);
175 /* cpufreq frequency struct */
176 cpufreq_freqs.cpu = cpu;
177 cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
178 cpufreq_freqs.new = data->freq_table[state].frequency;
180 /* notify cpufreq */
181 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
184 * First we write the target state's 'control' value to the
185 * control_register.
188 value = (u32) data->acpi_data.states[state].control;
190 dprintk("Transitioning to state: 0x%08x\n", value);
192 ret = processor_set_pstate(value);
193 if (ret) {
194 unsigned int tmp = cpufreq_freqs.new;
195 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
196 cpufreq_freqs.new = cpufreq_freqs.old;
197 cpufreq_freqs.old = tmp;
198 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
199 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
200 printk(KERN_WARNING "Transition failed with error %d\n", ret);
201 retval = -ENODEV;
202 goto migrate_end;
205 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
207 data->acpi_data.state = state;
209 retval = 0;
211 migrate_end:
212 set_cpus_allowed(current, saved_mask);
213 return (retval);
217 static unsigned int
218 acpi_cpufreq_get (
219 unsigned int cpu)
221 struct cpufreq_acpi_io *data = acpi_io_data[cpu];
223 dprintk("acpi_cpufreq_get\n");
225 return processor_get_freq(data, cpu);
229 static int
230 acpi_cpufreq_target (
231 struct cpufreq_policy *policy,
232 unsigned int target_freq,
233 unsigned int relation)
235 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
236 unsigned int next_state = 0;
237 unsigned int result = 0;
239 dprintk("acpi_cpufreq_setpolicy\n");
241 result = cpufreq_frequency_table_target(policy,
242 data->freq_table, target_freq, relation, &next_state);
243 if (result)
244 return (result);
246 result = processor_set_freq(data, policy->cpu, next_state);
248 return (result);
252 static int
253 acpi_cpufreq_verify (
254 struct cpufreq_policy *policy)
256 unsigned int result = 0;
257 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
259 dprintk("acpi_cpufreq_verify\n");
261 result = cpufreq_frequency_table_verify(policy,
262 data->freq_table);
264 return (result);
268 static int
269 acpi_cpufreq_cpu_init (
270 struct cpufreq_policy *policy)
272 unsigned int i;
273 unsigned int cpu = policy->cpu;
274 struct cpufreq_acpi_io *data;
275 unsigned int result = 0;
277 dprintk("acpi_cpufreq_cpu_init\n");
279 data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
280 if (!data)
281 return (-ENOMEM);
283 acpi_io_data[cpu] = data;
285 result = acpi_processor_register_performance(&data->acpi_data, cpu);
287 if (result)
288 goto err_free;
290 /* capability check */
291 if (data->acpi_data.state_count <= 1) {
292 dprintk("No P-States\n");
293 result = -ENODEV;
294 goto err_unreg;
297 if ((data->acpi_data.control_register.space_id !=
298 ACPI_ADR_SPACE_FIXED_HARDWARE) ||
299 (data->acpi_data.status_register.space_id !=
300 ACPI_ADR_SPACE_FIXED_HARDWARE)) {
301 dprintk("Unsupported address space [%d, %d]\n",
302 (u32) (data->acpi_data.control_register.space_id),
303 (u32) (data->acpi_data.status_register.space_id));
304 result = -ENODEV;
305 goto err_unreg;
308 /* alloc freq_table */
309 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
310 (data->acpi_data.state_count + 1),
311 GFP_KERNEL);
312 if (!data->freq_table) {
313 result = -ENOMEM;
314 goto err_unreg;
317 /* detect transition latency */
318 policy->cpuinfo.transition_latency = 0;
319 for (i=0; i<data->acpi_data.state_count; i++) {
320 if ((data->acpi_data.states[i].transition_latency * 1000) >
321 policy->cpuinfo.transition_latency) {
322 policy->cpuinfo.transition_latency =
323 data->acpi_data.states[i].transition_latency * 1000;
326 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
328 policy->cur = processor_get_freq(data, policy->cpu);
330 /* table init */
331 for (i = 0; i <= data->acpi_data.state_count; i++)
333 data->freq_table[i].index = i;
334 if (i < data->acpi_data.state_count) {
335 data->freq_table[i].frequency =
336 data->acpi_data.states[i].core_frequency * 1000;
337 } else {
338 data->freq_table[i].frequency = CPUFREQ_TABLE_END;
342 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
343 if (result) {
344 goto err_freqfree;
347 /* notify BIOS that we exist */
348 acpi_processor_notify_smm(THIS_MODULE);
350 printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "
351 "activated.\n", cpu);
353 for (i = 0; i < data->acpi_data.state_count; i++)
354 dprintk(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
355 (i == data->acpi_data.state?'*':' '), i,
356 (u32) data->acpi_data.states[i].core_frequency,
357 (u32) data->acpi_data.states[i].power,
358 (u32) data->acpi_data.states[i].transition_latency,
359 (u32) data->acpi_data.states[i].bus_master_latency,
360 (u32) data->acpi_data.states[i].status,
361 (u32) data->acpi_data.states[i].control);
363 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
365 /* the first call to ->target() should result in us actually
366 * writing something to the appropriate registers. */
367 data->resume = 1;
369 return (result);
371 err_freqfree:
372 kfree(data->freq_table);
373 err_unreg:
374 acpi_processor_unregister_performance(&data->acpi_data, cpu);
375 err_free:
376 kfree(data);
377 acpi_io_data[cpu] = NULL;
379 return (result);
383 static int
384 acpi_cpufreq_cpu_exit (
385 struct cpufreq_policy *policy)
387 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
389 dprintk("acpi_cpufreq_cpu_exit\n");
391 if (data) {
392 cpufreq_frequency_table_put_attr(policy->cpu);
393 acpi_io_data[policy->cpu] = NULL;
394 acpi_processor_unregister_performance(&data->acpi_data,
395 policy->cpu);
396 kfree(data);
399 return (0);
403 static struct freq_attr* acpi_cpufreq_attr[] = {
404 &cpufreq_freq_attr_scaling_available_freqs,
405 NULL,
409 static struct cpufreq_driver acpi_cpufreq_driver = {
410 .verify = acpi_cpufreq_verify,
411 .target = acpi_cpufreq_target,
412 .get = acpi_cpufreq_get,
413 .init = acpi_cpufreq_cpu_init,
414 .exit = acpi_cpufreq_cpu_exit,
415 .name = "acpi-cpufreq",
416 .owner = THIS_MODULE,
417 .attr = acpi_cpufreq_attr,
421 static int __init
422 acpi_cpufreq_init (void)
424 dprintk("acpi_cpufreq_init\n");
426 return cpufreq_register_driver(&acpi_cpufreq_driver);
430 static void __exit
431 acpi_cpufreq_exit (void)
433 dprintk("acpi_cpufreq_exit\n");
435 cpufreq_unregister_driver(&acpi_cpufreq_driver);
436 return;
440 late_initcall(acpi_cpufreq_init);
441 module_exit(acpi_cpufreq_exit);