RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / i386 / kernel / vmiclock.c
blob26a37f8a876259aa29ba794db48d0cb6988608e6
1 /*
2 * VMI paravirtual timer support routines.
4 * Copyright (C) 2007, VMware, Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more
15 * details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/smp.h>
24 #include <linux/interrupt.h>
25 #include <linux/cpumask.h>
26 #include <linux/clocksource.h>
27 #include <linux/clockchips.h>
29 #include <asm/vmi.h>
30 #include <asm/vmi_time.h>
31 #include <asm/arch_hooks.h>
32 #include <asm/apicdef.h>
33 #include <asm/apic.h>
34 #include <asm/timer.h>
36 #include <irq_vectors.h>
37 #include "io_ports.h"
39 #define VMI_ONESHOT (VMI_ALARM_IS_ONESHOT | VMI_CYCLES_REAL | vmi_get_alarm_wiring())
40 #define VMI_PERIODIC (VMI_ALARM_IS_PERIODIC | VMI_CYCLES_REAL | vmi_get_alarm_wiring())
42 static DEFINE_PER_CPU(struct clock_event_device, local_events);
44 static inline u32 vmi_counter(u32 flags)
46 /* Given VMI_ONESHOT or VMI_PERIODIC, return the corresponding
47 * cycle counter. */
48 return flags & VMI_ALARM_COUNTER_MASK;
51 /* paravirt_ops.get_wallclock = vmi_get_wallclock */
52 unsigned long vmi_get_wallclock(void)
54 unsigned long long wallclock;
55 wallclock = vmi_timer_ops.get_wallclock(); // nsec
56 (void)do_div(wallclock, 1000000000); // sec
58 return wallclock;
61 /* paravirt_ops.set_wallclock = vmi_set_wallclock */
62 int vmi_set_wallclock(unsigned long now)
64 return 0;
67 /* paravirt_ops.get_scheduled_cycles = vmi_get_sched_cycles */
68 unsigned long long vmi_get_sched_cycles(void)
70 return vmi_timer_ops.get_cycle_counter(VMI_CYCLES_AVAILABLE);
73 /* paravirt_ops.get_cpu_khz = vmi_cpu_khz */
74 unsigned long vmi_cpu_khz(void)
76 unsigned long long khz;
77 khz = vmi_timer_ops.get_cycle_frequency();
78 (void)do_div(khz, 1000);
79 return khz;
82 static inline unsigned int vmi_get_timer_vector(void)
84 #ifdef CONFIG_X86_IO_APIC
85 return FIRST_DEVICE_VECTOR;
86 #else
87 return FIRST_EXTERNAL_VECTOR;
88 #endif
91 /** vmi clockchip */
92 #ifdef CONFIG_X86_LOCAL_APIC
93 static unsigned int startup_timer_irq(unsigned int irq)
95 unsigned long val = apic_read(APIC_LVTT);
96 apic_write(APIC_LVTT, vmi_get_timer_vector());
98 return (val & APIC_SEND_PENDING);
101 static void mask_timer_irq(unsigned int irq)
103 unsigned long val = apic_read(APIC_LVTT);
104 apic_write(APIC_LVTT, val | APIC_LVT_MASKED);
107 static void unmask_timer_irq(unsigned int irq)
109 unsigned long val = apic_read(APIC_LVTT);
110 apic_write(APIC_LVTT, val & ~APIC_LVT_MASKED);
113 static void ack_timer_irq(unsigned int irq)
115 ack_APIC_irq();
118 static struct irq_chip vmi_chip __read_mostly = {
119 .name = "VMI-LOCAL",
120 .startup = startup_timer_irq,
121 .mask = mask_timer_irq,
122 .unmask = unmask_timer_irq,
123 .ack = ack_timer_irq
125 #endif
127 /** vmi clockevent */
128 #define VMI_ALARM_WIRED_IRQ0 0x00000000
129 #define VMI_ALARM_WIRED_LVTT 0x00010000
130 static int vmi_wiring = VMI_ALARM_WIRED_IRQ0;
132 static inline int vmi_get_alarm_wiring(void)
134 return vmi_wiring;
137 static void vmi_timer_set_mode(enum clock_event_mode mode,
138 struct clock_event_device *evt)
140 cycle_t now, cycles_per_hz;
141 BUG_ON(!irqs_disabled());
143 switch (mode) {
144 case CLOCK_EVT_MODE_ONESHOT:
145 break;
146 case CLOCK_EVT_MODE_PERIODIC:
147 cycles_per_hz = vmi_timer_ops.get_cycle_frequency();
148 (void)do_div(cycles_per_hz, HZ);
149 now = vmi_timer_ops.get_cycle_counter(vmi_counter(VMI_PERIODIC));
150 vmi_timer_ops.set_alarm(VMI_PERIODIC, now, cycles_per_hz);
151 break;
152 case CLOCK_EVT_MODE_UNUSED:
153 case CLOCK_EVT_MODE_SHUTDOWN:
154 switch (evt->mode) {
155 case CLOCK_EVT_MODE_ONESHOT:
156 vmi_timer_ops.cancel_alarm(VMI_ONESHOT);
157 break;
158 case CLOCK_EVT_MODE_PERIODIC:
159 vmi_timer_ops.cancel_alarm(VMI_PERIODIC);
160 break;
161 default:
162 break;
164 break;
165 default:
166 break;
170 static int vmi_timer_next_event(unsigned long delta,
171 struct clock_event_device *evt)
173 /* Unfortunately, set_next_event interface only passes relative
174 * expiry, but we want absolute expiry. It'd be better if were
175 * were passed an aboslute expiry, since a bunch of time may
176 * have been stolen between the time the delta is computed and
177 * when we set the alarm below. */
178 cycle_t now = vmi_timer_ops.get_cycle_counter(vmi_counter(VMI_ONESHOT));
180 BUG_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
181 vmi_timer_ops.set_alarm(VMI_ONESHOT, now + delta, 0);
182 return 0;
185 static struct clock_event_device vmi_clockevent = {
186 .name = "vmi-timer",
187 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
188 .shift = 22,
189 .set_mode = vmi_timer_set_mode,
190 .set_next_event = vmi_timer_next_event,
191 .rating = 1000,
192 .irq = 0,
195 static irqreturn_t vmi_timer_interrupt(int irq, void *dev_id)
197 struct clock_event_device *evt = &__get_cpu_var(local_events);
198 evt->event_handler(evt);
199 return IRQ_HANDLED;
202 static struct irqaction vmi_clock_action = {
203 .name = "vmi-timer",
204 .handler = vmi_timer_interrupt,
205 .flags = IRQF_DISABLED | IRQF_NOBALANCING,
206 .mask = CPU_MASK_ALL,
209 static void __devinit vmi_time_init_clockevent(void)
211 cycle_t cycles_per_msec;
212 struct clock_event_device *evt;
214 int cpu = smp_processor_id();
215 evt = &__get_cpu_var(local_events);
217 /* Use cycles_per_msec since div_sc params are 32-bits. */
218 cycles_per_msec = vmi_timer_ops.get_cycle_frequency();
219 (void)do_div(cycles_per_msec, 1000);
221 memcpy(evt, &vmi_clockevent, sizeof(*evt));
222 /* Must pick .shift such that .mult fits in 32-bits. Choosing
223 * .shift to be 22 allows 2^(32-22) cycles per nano-seconds
224 * before overflow. */
225 evt->mult = div_sc(cycles_per_msec, NSEC_PER_MSEC, evt->shift);
226 /* Upper bound is clockevent's use of ulong for cycle deltas. */
227 evt->max_delta_ns = clockevent_delta2ns(ULONG_MAX, evt);
228 evt->min_delta_ns = clockevent_delta2ns(1, evt);
229 evt->cpumask = cpumask_of_cpu(cpu);
231 printk(KERN_WARNING "vmi: registering clock event %s. mult=%lu shift=%u\n",
232 evt->name, evt->mult, evt->shift);
233 clockevents_register_device(evt);
236 void __init vmi_time_init(void)
238 /* Disable PIT: BIOSes start PIT CH0 with 18.2hz peridic. */
239 outb_p(0x3a, PIT_MODE); /* binary, mode 5, LSB/MSB, ch 0 */
241 vmi_time_init_clockevent();
242 setup_irq(0, &vmi_clock_action);
245 #ifdef CONFIG_X86_LOCAL_APIC
246 void __devinit vmi_time_bsp_init(void)
249 * On APIC systems, we want local timers to fire on each cpu. We do
250 * this by programming LVTT to deliver timer events to the IRQ handler
251 * for IRQ-0, since we can't re-use the APIC local timer handler
252 * without interfering with that code.
254 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
255 local_irq_disable();
256 #ifdef CONFIG_X86_SMP
258 * XXX handle_percpu_irq only defined for SMP; we need to switch over
259 * to using it, since this is a local interrupt, which each CPU must
260 * handle individually without locking out or dropping simultaneous
261 * local timers on other CPUs. We also don't want to trigger the
262 * quirk workaround code for interrupts which gets invoked from
263 * handle_percpu_irq via eoi, so we use our own IRQ chip.
265 set_irq_chip_and_handler_name(0, &vmi_chip, handle_percpu_irq, "lvtt");
266 #else
267 set_irq_chip_and_handler_name(0, &vmi_chip, handle_edge_irq, "lvtt");
268 #endif
269 vmi_wiring = VMI_ALARM_WIRED_LVTT;
270 apic_write(APIC_LVTT, vmi_get_timer_vector());
271 local_irq_enable();
272 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
275 void __devinit vmi_time_ap_init(void)
277 vmi_time_init_clockevent();
278 apic_write(APIC_LVTT, vmi_get_timer_vector());
280 #endif
282 /** vmi clocksource */
284 static cycle_t read_real_cycles(void)
286 return vmi_timer_ops.get_cycle_counter(VMI_CYCLES_REAL);
289 static struct clocksource clocksource_vmi = {
290 .name = "vmi-timer",
291 .rating = 450,
292 .read = read_real_cycles,
293 .mask = CLOCKSOURCE_MASK(64),
294 .mult = 0, /* to be set */
295 .shift = 22,
296 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
299 static int __init init_vmi_clocksource(void)
301 cycle_t cycles_per_msec;
303 if (!vmi_timer_ops.get_cycle_frequency)
304 return 0;
305 /* Use khz2mult rather than hz2mult since hz arg is only 32-bits. */
306 cycles_per_msec = vmi_timer_ops.get_cycle_frequency();
307 (void)do_div(cycles_per_msec, 1000);
309 /* Note that clocksource.{mult, shift} converts in the opposite direction
310 * as clockevents. */
311 clocksource_vmi.mult = clocksource_khz2mult(cycles_per_msec,
312 clocksource_vmi.shift);
314 printk(KERN_WARNING "vmi: registering clock source khz=%lld\n", cycles_per_msec);
315 return clocksource_register(&clocksource_vmi);
318 module_init(init_vmi_clocksource);