RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / i386 / kernel / smp.c
blob6299c080f6e2e3ce9e003a28314278f0eaa5a974
1 /*
2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
7 * This code is released under the GNU General Public License version 2 or
8 * later.
9 */
11 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/spinlock.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/mc146818rtc.h>
18 #include <linux/cache.h>
19 #include <linux/interrupt.h>
20 #include <linux/cpu.h>
21 #include <linux/module.h>
23 #include <asm/mtrr.h>
24 #include <asm/tlbflush.h>
25 #include <mach_apic.h>
28 * Some notes on x86 processor bugs affecting SMP operation:
30 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
31 * The Linux implications for SMP are handled as follows:
33 * Pentium III / [Xeon]
34 * None of the E1AP-E3AP errata are visible to the user.
36 * E1AP. see PII A1AP
37 * E2AP. see PII A2AP
38 * E3AP. see PII A3AP
40 * Pentium II / [Xeon]
41 * None of the A1AP-A3AP errata are visible to the user.
43 * A1AP. see PPro 1AP
44 * A2AP. see PPro 2AP
45 * A3AP. see PPro 7AP
47 * Pentium Pro
48 * None of 1AP-9AP errata are visible to the normal user,
49 * except occasional delivery of 'spurious interrupt' as trap #15.
50 * This is very rare and a non-problem.
52 * 1AP. Linux maps APIC as non-cacheable
53 * 2AP. worked around in hardware
54 * 3AP. fixed in C0 and above steppings microcode update.
55 * Linux does not use excessive STARTUP_IPIs.
56 * 4AP. worked around in hardware
57 * 5AP. symmetric IO mode (normal Linux operation) not affected.
58 * 'noapic' mode has vector 0xf filled out properly.
59 * 6AP. 'noapic' mode might be affected - fixed in later steppings
60 * 7AP. We do not assume writes to the LVT deassering IRQs
61 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
62 * 9AP. We do not use mixed mode
64 * Pentium
65 * There is a marginal case where REP MOVS on 100MHz SMP
66 * machines with B stepping processors can fail. XXX should provide
67 * an L1cache=Writethrough or L1cache=off option.
69 * B stepping CPUs may hang. There are hardware work arounds
70 * for this. We warn about it in case your board doesn't have the work
71 * arounds. Basically thats so I can tell anyone with a B stepping
72 * CPU and SMP problems "tough".
74 * Specific items [From Pentium Processor Specification Update]
76 * 1AP. Linux doesn't use remote read
77 * 2AP. Linux doesn't trust APIC errors
78 * 3AP. We work around this
79 * 4AP. Linux never generated 3 interrupts of the same priority
80 * to cause a lost local interrupt.
81 * 5AP. Remote read is never used
82 * 6AP. not affected - worked around in hardware
83 * 7AP. not affected - worked around in hardware
84 * 8AP. worked around in hardware - we get explicit CS errors if not
85 * 9AP. only 'noapic' mode affected. Might generate spurious
86 * interrupts, we log only the first one and count the
87 * rest silently.
88 * 10AP. not affected - worked around in hardware
89 * 11AP. Linux reads the APIC between writes to avoid this, as per
90 * the documentation. Make sure you preserve this as it affects
91 * the C stepping chips too.
92 * 12AP. not affected - worked around in hardware
93 * 13AP. not affected - worked around in hardware
94 * 14AP. we always deassert INIT during bootup
95 * 15AP. not affected - worked around in hardware
96 * 16AP. not affected - worked around in hardware
97 * 17AP. not affected - worked around in hardware
98 * 18AP. not affected - worked around in hardware
99 * 19AP. not affected - worked around in BIOS
101 * If this sounds worrying believe me these bugs are either ___RARE___,
102 * or are signal timing bugs worked around in hardware and there's
103 * about nothing of note with C stepping upwards.
106 DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
109 * the following functions deal with sending IPIs between CPUs.
111 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
114 static inline int __prepare_ICR (unsigned int shortcut, int vector)
116 unsigned int icr = shortcut | APIC_DEST_LOGICAL;
118 switch (vector) {
119 default:
120 icr |= APIC_DM_FIXED | vector;
121 break;
122 case NMI_VECTOR:
123 icr |= APIC_DM_NMI;
124 break;
126 return icr;
129 static inline int __prepare_ICR2 (unsigned int mask)
131 return SET_APIC_DEST_FIELD(mask);
134 void __send_IPI_shortcut(unsigned int shortcut, int vector)
137 * Subtle. In the case of the 'never do double writes' workaround
138 * we have to lock out interrupts to be safe. As we don't care
139 * of the value read we use an atomic rmw access to avoid costly
140 * cli/sti. Otherwise we use an even cheaper single atomic write
141 * to the APIC.
143 unsigned int cfg;
146 * Wait for idle.
148 apic_wait_icr_idle();
151 * No need to touch the target chip field
153 cfg = __prepare_ICR(shortcut, vector);
156 * Send the IPI. The write to APIC_ICR fires this off.
158 apic_write_around(APIC_ICR, cfg);
161 void fastcall send_IPI_self(int vector)
163 __send_IPI_shortcut(APIC_DEST_SELF, vector);
167 * This is used to send an IPI with no shorthand notation (the destination is
168 * specified in bits 56 to 63 of the ICR).
170 static inline void __send_IPI_dest_field(unsigned long mask, int vector)
172 unsigned long cfg;
175 * Wait for idle.
177 if (unlikely(vector == NMI_VECTOR))
178 safe_apic_wait_icr_idle();
179 else
180 apic_wait_icr_idle();
183 * prepare target chip field
185 cfg = __prepare_ICR2(mask);
186 apic_write_around(APIC_ICR2, cfg);
189 * program the ICR
191 cfg = __prepare_ICR(0, vector);
194 * Send the IPI. The write to APIC_ICR fires this off.
196 apic_write_around(APIC_ICR, cfg);
200 * This is only used on smaller machines.
202 void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
204 unsigned long mask = cpus_addr(cpumask)[0];
205 unsigned long flags;
207 local_irq_save(flags);
208 WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
209 __send_IPI_dest_field(mask, vector);
210 local_irq_restore(flags);
213 void send_IPI_mask_sequence(cpumask_t mask, int vector)
215 unsigned long flags;
216 unsigned int query_cpu;
219 * Hack. The clustered APIC addressing mode doesn't allow us to send
220 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
221 * should be modified to do 1 message per cluster ID - mbligh
224 local_irq_save(flags);
225 for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
226 if (cpu_isset(query_cpu, mask)) {
227 __send_IPI_dest_field(cpu_to_logical_apicid(query_cpu),
228 vector);
231 local_irq_restore(flags);
234 #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
237 * Smarter SMP flushing macros.
238 * c/o Linus Torvalds.
240 * These mean you can really definitely utterly forget about
241 * writing to user space from interrupts. (Its not allowed anyway).
243 * Optimizations Manfred Spraul <manfred@colorfullife.com>
246 static cpumask_t flush_cpumask;
247 static struct mm_struct * flush_mm;
248 static unsigned long flush_va;
249 static DEFINE_SPINLOCK(tlbstate_lock);
252 * We cannot call mmdrop() because we are in interrupt context,
253 * instead update mm->cpu_vm_mask.
255 * We need to reload %cr3 since the page tables may be going
256 * away from under us..
258 static inline void leave_mm (unsigned long cpu)
260 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
261 BUG();
262 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
263 load_cr3(swapper_pg_dir);
268 * The flush IPI assumes that a thread switch happens in this order:
269 * [cpu0: the cpu that switches]
270 * 1) switch_mm() either 1a) or 1b)
271 * 1a) thread switch to a different mm
272 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
273 * Stop ipi delivery for the old mm. This is not synchronized with
274 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
275 * for the wrong mm, and in the worst case we perform a superflous
276 * tlb flush.
277 * 1a2) set cpu_tlbstate to TLBSTATE_OK
278 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
279 * was in lazy tlb mode.
280 * 1a3) update cpu_tlbstate[].active_mm
281 * Now cpu0 accepts tlb flushes for the new mm.
282 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
283 * Now the other cpus will send tlb flush ipis.
284 * 1a4) change cr3.
285 * 1b) thread switch without mm change
286 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
287 * flush ipis.
288 * 1b1) set cpu_tlbstate to TLBSTATE_OK
289 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
290 * Atomically set the bit [other cpus will start sending flush ipis],
291 * and test the bit.
292 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
293 * 2) switch %%esp, ie current
295 * The interrupt must handle 2 special cases:
296 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
297 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
298 * runs in kernel space, the cpu could load tlb entries for user space
299 * pages.
301 * The good news is that cpu_tlbstate is local to each cpu, no
302 * write/read ordering problems.
306 * TLB flush IPI:
308 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
309 * 2) Leave the mm if we are in the lazy tlb mode.
312 fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
314 unsigned long cpu;
316 cpu = get_cpu();
318 if (!cpu_isset(cpu, flush_cpumask))
319 goto out;
321 * This was a BUG() but until someone can quote me the
322 * line from the intel manual that guarantees an IPI to
323 * multiple CPUs is retried _only_ on the erroring CPUs
324 * its staying as a return
326 * BUG();
329 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
330 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
331 if (flush_va == TLB_FLUSH_ALL)
332 local_flush_tlb();
333 else
334 __flush_tlb_one(flush_va);
335 } else
336 leave_mm(cpu);
338 ack_APIC_irq();
339 smp_mb__before_clear_bit();
340 cpu_clear(cpu, flush_cpumask);
341 smp_mb__after_clear_bit();
342 out:
343 put_cpu_no_resched();
346 void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
347 unsigned long va)
349 cpumask_t cpumask = *cpumaskp;
352 * A couple of (to be removed) sanity checks:
354 * - current CPU must not be in mask
355 * - mask must exist :)
357 BUG_ON(cpus_empty(cpumask));
358 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
359 BUG_ON(!mm);
361 #ifdef CONFIG_HOTPLUG_CPU
362 /* If a CPU which we ran on has gone down, OK. */
363 cpus_and(cpumask, cpumask, cpu_online_map);
364 if (unlikely(cpus_empty(cpumask)))
365 return;
366 #endif
369 * i'm not happy about this global shared spinlock in the
370 * MM hot path, but we'll see how contended it is.
371 * AK: x86-64 has a faster method that could be ported.
373 spin_lock(&tlbstate_lock);
375 flush_mm = mm;
376 flush_va = va;
377 cpus_or(flush_cpumask, cpumask, flush_cpumask);
379 * We have to send the IPI only to
380 * CPUs affected.
382 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
384 while (!cpus_empty(flush_cpumask))
385 /* nothing. lockup detection does not belong here */
386 cpu_relax();
388 flush_mm = NULL;
389 flush_va = 0;
390 spin_unlock(&tlbstate_lock);
393 void flush_tlb_current_task(void)
395 struct mm_struct *mm = current->mm;
396 cpumask_t cpu_mask;
398 preempt_disable();
399 cpu_mask = mm->cpu_vm_mask;
400 cpu_clear(smp_processor_id(), cpu_mask);
402 local_flush_tlb();
403 if (!cpus_empty(cpu_mask))
404 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
405 preempt_enable();
408 void flush_tlb_mm (struct mm_struct * mm)
410 cpumask_t cpu_mask;
412 preempt_disable();
413 cpu_mask = mm->cpu_vm_mask;
414 cpu_clear(smp_processor_id(), cpu_mask);
416 if (current->active_mm == mm) {
417 if (current->mm)
418 local_flush_tlb();
419 else
420 leave_mm(smp_processor_id());
422 if (!cpus_empty(cpu_mask))
423 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
425 preempt_enable();
428 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
430 struct mm_struct *mm = vma->vm_mm;
431 cpumask_t cpu_mask;
433 preempt_disable();
434 cpu_mask = mm->cpu_vm_mask;
435 cpu_clear(smp_processor_id(), cpu_mask);
437 if (current->active_mm == mm) {
438 if(current->mm)
439 __flush_tlb_one(va);
440 else
441 leave_mm(smp_processor_id());
444 if (!cpus_empty(cpu_mask))
445 flush_tlb_others(cpu_mask, mm, va);
447 preempt_enable();
449 EXPORT_SYMBOL(flush_tlb_page);
451 static void do_flush_tlb_all(void* info)
453 unsigned long cpu = smp_processor_id();
455 __flush_tlb_all();
456 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
457 leave_mm(cpu);
460 void flush_tlb_all(void)
462 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
466 * this function sends a 'reschedule' IPI to another CPU.
467 * it goes straight through and wastes no time serializing
468 * anything. Worst case is that we lose a reschedule ...
470 static void native_smp_send_reschedule(int cpu)
472 WARN_ON(cpu_is_offline(cpu));
473 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
477 * Structure and data for smp_call_function(). This is designed to minimise
478 * static memory requirements. It also looks cleaner.
480 static DEFINE_SPINLOCK(call_lock);
482 struct call_data_struct {
483 void (*func) (void *info);
484 void *info;
485 atomic_t started;
486 atomic_t finished;
487 int wait;
490 void lock_ipi_call_lock(void)
492 spin_lock_irq(&call_lock);
495 void unlock_ipi_call_lock(void)
497 spin_unlock_irq(&call_lock);
500 static struct call_data_struct *call_data;
502 static void __smp_call_function(void (*func) (void *info), void *info,
503 int nonatomic, int wait)
505 struct call_data_struct data;
506 int cpus = num_online_cpus() - 1;
508 if (!cpus)
509 return;
511 data.func = func;
512 data.info = info;
513 atomic_set(&data.started, 0);
514 data.wait = wait;
515 if (wait)
516 atomic_set(&data.finished, 0);
518 call_data = &data;
519 mb();
521 /* Send a message to all other CPUs and wait for them to respond */
522 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
524 /* Wait for response */
525 while (atomic_read(&data.started) != cpus)
526 cpu_relax();
528 if (wait)
529 while (atomic_read(&data.finished) != cpus)
530 cpu_relax();
535 * smp_call_function_mask(): Run a function on a set of other CPUs.
536 * @mask: The set of cpus to run on. Must not include the current cpu.
537 * @func: The function to run. This must be fast and non-blocking.
538 * @info: An arbitrary pointer to pass to the function.
539 * @wait: If true, wait (atomically) until function has completed on other CPUs.
541 * Returns 0 on success, else a negative status code.
543 * If @wait is true, then returns once @func has returned; otherwise
544 * it returns just before the target cpu calls @func.
546 * You must not call this function with disabled interrupts or from a
547 * hardware interrupt handler or from a bottom half handler.
549 static int
550 native_smp_call_function_mask(cpumask_t mask,
551 void (*func)(void *), void *info,
552 int wait)
554 struct call_data_struct data;
555 cpumask_t allbutself;
556 int cpus;
558 /* Can deadlock when called with interrupts disabled */
559 WARN_ON(irqs_disabled());
561 /* Holding any lock stops cpus from going down. */
562 spin_lock(&call_lock);
564 allbutself = cpu_online_map;
565 cpu_clear(smp_processor_id(), allbutself);
567 cpus_and(mask, mask, allbutself);
568 cpus = cpus_weight(mask);
570 if (!cpus) {
571 spin_unlock(&call_lock);
572 return 0;
575 data.func = func;
576 data.info = info;
577 atomic_set(&data.started, 0);
578 data.wait = wait;
579 if (wait)
580 atomic_set(&data.finished, 0);
582 call_data = &data;
583 mb();
585 /* Send a message to other CPUs */
586 if (cpus_equal(mask, allbutself))
587 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
588 else
589 send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
591 /* Wait for response */
592 while (atomic_read(&data.started) != cpus)
593 cpu_relax();
595 if (wait)
596 while (atomic_read(&data.finished) != cpus)
597 cpu_relax();
598 spin_unlock(&call_lock);
600 return 0;
603 static void stop_this_cpu (void * dummy)
605 local_irq_disable();
607 * Remove this CPU:
609 cpu_clear(smp_processor_id(), cpu_online_map);
610 disable_local_APIC();
611 if (cpu_data[smp_processor_id()].hlt_works_ok)
612 for(;;) halt();
613 for (;;);
617 * this function calls the 'stop' function on all other CPUs in the system.
620 static void native_smp_send_stop(void)
622 /* Don't deadlock on the call lock in panic */
623 int nolock = !spin_trylock(&call_lock);
624 unsigned long flags;
626 local_irq_save(flags);
627 __smp_call_function(stop_this_cpu, NULL, 0, 0);
628 if (!nolock)
629 spin_unlock(&call_lock);
630 disable_local_APIC();
631 local_irq_restore(flags);
635 * Reschedule call back. Nothing to do,
636 * all the work is done automatically when
637 * we return from the interrupt.
639 fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
641 ack_APIC_irq();
644 fastcall void smp_call_function_interrupt(struct pt_regs *regs)
646 void (*func) (void *info) = call_data->func;
647 void *info = call_data->info;
648 int wait = call_data->wait;
650 ack_APIC_irq();
652 * Notify initiating CPU that I've grabbed the data and am
653 * about to execute the function
655 mb();
656 atomic_inc(&call_data->started);
658 * At this point the info structure may be out of scope unless wait==1
660 irq_enter();
661 (*func)(info);
662 irq_exit();
664 if (wait) {
665 mb();
666 atomic_inc(&call_data->finished);
670 static int convert_apicid_to_cpu(int apic_id)
672 int i;
674 for (i = 0; i < NR_CPUS; i++) {
675 if (x86_cpu_to_apicid[i] == apic_id)
676 return i;
678 return -1;
681 int safe_smp_processor_id(void)
683 int apicid, cpuid;
685 if (!boot_cpu_has(X86_FEATURE_APIC))
686 return 0;
688 apicid = hard_smp_processor_id();
689 if (apicid == BAD_APICID)
690 return 0;
692 cpuid = convert_apicid_to_cpu(apicid);
694 return cpuid >= 0 ? cpuid : 0;
697 struct smp_ops smp_ops = {
698 .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
699 .smp_prepare_cpus = native_smp_prepare_cpus,
700 .cpu_up = native_cpu_up,
701 .smp_cpus_done = native_smp_cpus_done,
703 .smp_send_stop = native_smp_send_stop,
704 .smp_send_reschedule = native_smp_send_reschedule,
705 .smp_call_function_mask = native_smp_call_function_mask,