RT-AC66 3.0.0.4.374.130 core
[tomato.git] / release / src-rt-6.x / linux / linux-2.6 / arch / cris / arch-v10 / kernel / time.c
blob077e973c33f0c131be44a9c8e32fd4c149b61528
1 /* $Id: time.c,v 1.5 2004/09/29 06:12:46 starvik Exp $
3 * linux/arch/cris/arch-v10/kernel/time.c
5 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
6 * Copyright (C) 1999-2002 Axis Communications AB
8 */
10 #include <linux/timex.h>
11 #include <linux/time.h>
12 #include <linux/jiffies.h>
13 #include <linux/interrupt.h>
14 #include <linux/swap.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <asm/arch/svinto.h>
18 #include <asm/types.h>
19 #include <asm/signal.h>
20 #include <asm/io.h>
21 #include <asm/delay.h>
22 #include <asm/rtc.h>
24 /* define this if you need to use print_timestamp */
25 /* it will make jiffies at 96 hz instead of 100 hz though */
26 #undef USE_CASCADE_TIMERS
28 extern void update_xtime_from_cmos(void);
29 extern int set_rtc_mmss(unsigned long nowtime);
30 extern int setup_irq(int, struct irqaction *);
31 extern int have_rtc;
33 unsigned long get_ns_in_jiffie(void)
35 unsigned char timer_count, t1;
36 unsigned short presc_count;
37 unsigned long ns;
38 unsigned long flags;
40 local_irq_save(flags);
41 timer_count = *R_TIMER0_DATA;
42 presc_count = *R_TIM_PRESC_STATUS;
43 /* presc_count might be wrapped */
44 t1 = *R_TIMER0_DATA;
46 if (timer_count != t1){
47 /* it wrapped, read prescaler again... */
48 presc_count = *R_TIM_PRESC_STATUS;
49 timer_count = t1;
51 local_irq_restore(flags);
52 if (presc_count >= PRESCALE_VALUE/2 ){
53 presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
54 } else {
55 presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
58 ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
59 ( (presc_count) * (1000000000/PRESCALE_FREQ));
60 return ns;
63 unsigned long do_slow_gettimeoffset(void)
65 unsigned long count, t1;
66 unsigned long usec_count = 0;
67 unsigned short presc_count;
69 static unsigned long count_p = TIMER0_DIV;/* for the first call after boot */
70 static unsigned long jiffies_p = 0;
73 * cache volatile jiffies temporarily; we have IRQs turned off.
75 unsigned long jiffies_t;
77 /* The timer interrupt comes from Etrax timer 0. In order to get
78 * better precision, we check the current value. It might have
79 * underflowed already though.
82 #ifndef CONFIG_SVINTO_SIM
83 /* Not available in the xsim simulator. */
84 count = *R_TIMER0_DATA;
85 presc_count = *R_TIM_PRESC_STATUS;
86 /* presc_count might be wrapped */
87 t1 = *R_TIMER0_DATA;
88 if (count != t1){
89 /* it wrapped, read prescaler again... */
90 presc_count = *R_TIM_PRESC_STATUS;
91 count = t1;
93 #else
94 count = 0;
95 presc_count = 0;
96 #endif
98 jiffies_t = jiffies;
101 * avoiding timer inconsistencies (they are rare, but they happen)...
102 * there are one problem that must be avoided here:
103 * 1. the timer counter underflows
105 if( jiffies_t == jiffies_p ) {
106 if( count > count_p ) {
107 /* Timer wrapped, use new count and prescale
108 * increase the time corresponding to one jiffie
110 usec_count = 1000000/HZ;
112 } else
113 jiffies_p = jiffies_t;
114 count_p = count;
115 if (presc_count >= PRESCALE_VALUE/2 ){
116 presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
117 } else {
118 presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
120 /* Convert timer value to usec */
121 usec_count += ( (TIMER0_DIV - count) * (1000000/HZ)/TIMER0_DIV ) +
122 (( (presc_count) * (1000000000/PRESCALE_FREQ))/1000);
124 return usec_count;
127 /* Excerpt from the Etrax100 HSDD about the built-in watchdog:
129 * 3.10.4 Watchdog timer
131 * When the watchdog timer is started, it generates an NMI if the watchdog
132 * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
133 * stopped after an additional 3.3 ms, the watchdog resets the chip.
134 * The watchdog timer is stopped after reset. The watchdog timer is controlled
135 * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
136 * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
137 * described in the table below:
139 * Watchdog Value written:
140 * state: To enable: To key: Operation:
141 * -------- ---------- ------- ----------
142 * stopped 0 X No effect.
143 * stopped 1 key_val Start watchdog with key = key_val.
144 * started 0 ~key Stop watchdog
145 * started 1 ~key Restart watchdog with key = ~key.
146 * started X new_key_val Change key to new_key_val.
148 * Note: '~' is the bitwise NOT operator.
152 /* right now, starting the watchdog is the same as resetting it */
153 #define start_watchdog reset_watchdog
155 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
156 static int watchdog_key = 0; /* arbitrary number */
157 #endif
159 /* number of pages to consider "out of memory". it is normal that the memory
160 * is used though, so put this really low.
163 #define WATCHDOG_MIN_FREE_PAGES 8
165 void
166 reset_watchdog(void)
168 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
169 /* only keep watchdog happy as long as we have memory left! */
170 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
171 /* reset the watchdog with the inverse of the old key */
172 watchdog_key ^= 0x7; /* invert key, which is 3 bits */
173 *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
174 IO_STATE(R_WATCHDOG, enable, start);
176 #endif
179 /* stop the watchdog - we still need the correct key */
181 void
182 stop_watchdog(void)
184 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
185 watchdog_key ^= 0x7; /* invert key, which is 3 bits */
186 *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
187 IO_STATE(R_WATCHDOG, enable, stop);
188 #endif
191 /* last time the cmos clock got updated */
192 static long last_rtc_update = 0;
195 * timer_interrupt() needs to keep up the real-time clock,
196 * as well as call the "do_timer()" routine every clocktick
199 //static unsigned short myjiff; /* used by our debug routine print_timestamp */
201 extern void cris_do_profile(struct pt_regs *regs);
203 static inline irqreturn_t
204 timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
206 /* acknowledge the timer irq */
208 #ifdef USE_CASCADE_TIMERS
209 *R_TIMER_CTRL =
210 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
211 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
212 IO_STATE( R_TIMER_CTRL, i1, clr) |
213 IO_STATE( R_TIMER_CTRL, tm1, run) |
214 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
215 IO_STATE( R_TIMER_CTRL, i0, clr) |
216 IO_STATE( R_TIMER_CTRL, tm0, run) |
217 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
218 #else
219 *R_TIMER_CTRL = r_timer_ctrl_shadow |
220 IO_STATE(R_TIMER_CTRL, i0, clr);
221 #endif
223 /* reset watchdog otherwise it resets us! */
225 reset_watchdog();
227 /* call the real timer interrupt handler */
229 do_timer(1);
231 cris_do_profile(regs); /* Save profiling information */
234 * If we have an externally synchronized Linux clock, then update
235 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
236 * called as close as possible to 500 ms before the new second starts.
238 * The division here is not time critical since it will run once in
239 * 11 minutes
241 if (ntp_synced() &&
242 xtime.tv_sec > last_rtc_update + 660 &&
243 (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
244 (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
245 if (set_rtc_mmss(xtime.tv_sec) == 0)
246 last_rtc_update = xtime.tv_sec;
247 else
248 last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
250 return IRQ_HANDLED;
253 /* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain
254 * it needs to be IRQF_DISABLED to make the jiffies update work properly
257 static struct irqaction irq2 = { timer_interrupt, IRQF_SHARED | IRQF_DISABLED,
258 CPU_MASK_NONE, "timer", NULL, NULL};
260 void __init
261 time_init(void)
263 /* probe for the RTC and read it if it exists
264 * Before the RTC can be probed the loops_per_usec variable needs
265 * to be initialized to make usleep work. A better value for
266 * loops_per_usec is calculated by the kernel later once the
267 * clock has started.
269 loops_per_usec = 50;
271 if(RTC_INIT() < 0) {
272 /* no RTC, start at 1980 */
273 xtime.tv_sec = 0;
274 xtime.tv_nsec = 0;
275 have_rtc = 0;
276 } else {
277 /* get the current time */
278 have_rtc = 1;
279 update_xtime_from_cmos();
283 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
284 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
286 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
288 /* Setup the etrax timers
289 * Base frequency is 25000 hz, divider 250 -> 100 HZ
290 * In normal mode, we use timer0, so timer1 is free. In cascade
291 * mode (which we sometimes use for debugging) both timers are used.
292 * Remember that linux/timex.h contains #defines that rely on the
293 * timer settings below (hz and divide factor) !!!
296 #ifdef USE_CASCADE_TIMERS
297 *R_TIMER_CTRL =
298 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
299 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
300 IO_STATE( R_TIMER_CTRL, i1, nop) |
301 IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
302 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
303 IO_STATE( R_TIMER_CTRL, i0, nop) |
304 IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
305 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
307 *R_TIMER_CTRL = r_timer_ctrl_shadow =
308 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
309 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
310 IO_STATE( R_TIMER_CTRL, i1, nop) |
311 IO_STATE( R_TIMER_CTRL, tm1, run) |
312 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
313 IO_STATE( R_TIMER_CTRL, i0, nop) |
314 IO_STATE( R_TIMER_CTRL, tm0, run) |
315 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
316 #else
317 *R_TIMER_CTRL =
318 IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
319 IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
320 IO_STATE(R_TIMER_CTRL, i1, nop) |
321 IO_STATE(R_TIMER_CTRL, tm1, stop_ld) |
322 IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
323 IO_STATE(R_TIMER_CTRL, i0, nop) |
324 IO_STATE(R_TIMER_CTRL, tm0, stop_ld) |
325 IO_STATE(R_TIMER_CTRL, clksel0, flexible);
327 *R_TIMER_CTRL = r_timer_ctrl_shadow =
328 IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
329 IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
330 IO_STATE(R_TIMER_CTRL, i1, nop) |
331 IO_STATE(R_TIMER_CTRL, tm1, run) |
332 IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
333 IO_STATE(R_TIMER_CTRL, i0, nop) |
334 IO_STATE(R_TIMER_CTRL, tm0, run) |
335 IO_STATE(R_TIMER_CTRL, clksel0, flexible);
337 *R_TIMER_PRESCALE = PRESCALE_VALUE;
338 #endif
340 *R_IRQ_MASK0_SET =
341 IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */
343 /* now actually register the timer irq handler that calls timer_interrupt() */
345 setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
347 /* enable watchdog if we should use one */
349 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
350 printk("Enabling watchdog...\n");
351 start_watchdog();
353 /* If we use the hardware watchdog, we want to trap it as an NMI
354 and dump registers before it resets us. For this to happen, we
355 must set the "m" NMI enable flag (which once set, is unset only
356 when an NMI is taken).
358 The same goes for the external NMI, but that doesn't have any
359 driver or infrastructure support yet. */
360 asm ("setf m");
362 *R_IRQ_MASK0_SET =
363 IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
364 *R_VECT_MASK_SET =
365 IO_STATE(R_VECT_MASK_SET, nmi, set);
366 #endif